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Abstract— In this article, we propose a planning algorithm
for coverage of complex structures with a network of robotic
sensing agents, with multi-robot surveillance missions as our
main motivating application. The sensors are deployed to
monitor the external surface of a 3D structure. The algorithm
controls the motion of each sensor so that a measure of the
collective coverage attained by the network is nondecreasing,
while the sensors converge to an equilibrium configuration.
A modified version of the algorithm is also provided to
introduce collision avoidance properties. The effectiveness of
the algorithm is demonstrated in a simulation and validated
experimentally by executing the planned paths on an aerial
robot.

I. INTRODUCTION

Coverage problems for mobile sensor networks have at-
tracted a notable volume of research in the past few decades,
because they constitute a flexible model for numerous ap-
plications, such as deployment, inspection and surveillance.
Coverage problems can be divided in two large categories.
Static coverage problems [1]–[3] are about finding a good
placement of the sensors, while dynamic coverage problems
[4], [5] are about deploying the sensors to survey an envi-
ronment continuously, until it has been searched sufficiently
well.

In traditional research works on static coverage problems
[1], the sensors have circular sensing patterns, meaning that
their sensing power is maximal at their own position, and
decays with the distance from the sensor. This model is
only appropriate to describe omnidirectional sensors, such
as temperature sensors or circular laser scans. This type of
problem is usually addressed with Voronoi tessellations and
the Lloyd algorithm [6], with each sensor being assigned a
subregion corresponding to its Voronoi cell.

In more recent works [5], [7], the sensors have anisotropic
sensing patters, which allows to model a larger variety of
sensing devices, such as monocular cameras or cone-shaped
laser scans. However, these models are still deficient to
describe certain coverage problems, such as the inspection

A. Adaldo, D. V. Dimarogonas and K. H. Johansson are with the
Department of Automatic Control, School of Electrical Engineering, KTH
Royal Institute of Technology, Osquladas väg 10, 10044, Stockholm. Emails:
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of a surface or the surveillance of a 3D structure, because
they do not capture the morphology of the structure.

Moreover, in the related literature, there have been many
works that have addressed the Coverage Path Planning (CPP)
problem in 2D spaces and fewer approaches that have ad-
dressed coverage of 3D spaces [8]. In [9] a complete survey
was presented on CPP methods in 2D and 3D. Towards
the 3D CPP, Atkar et al. [10] presented an offline 3D
CPP method for spray-painting of automotive parts. Their
method used a CAD model and the resulting CPP should
satisfy certain requirements for paint decomposition. In [11],
the authors presented a CPP with real time re-planning for
inspection of 3D underwater structures, where the planning
assumed an a priori knowledge of a bathymetric map and
they adapted their methodology for the case of an au-
tonomous underwater vehicle. In [12], the authors introduced
a new algorithm for producing paths that cover complex
3D environments. In this case, the algorithm was based on
off-line sampling with the application of autonomous ship
hull inspection, while the presented algorithm was able to
generate paths for structures with unprecedented complexity.

In the area of aerial inspection, [13] presented a time-
optimal UAV trajectory planning for 3D urban structure
coverage. In this approach, initially the structures to be
covered (buildings) were simplified into hemispheres and
cylinders and in a later stage the trajectories were planned
to cover these simple surfaces. In [14], the authors studied
the problem of 3D CPP via viewpoint re-sampling and
tour optimization for aerial robots. More specifically, they
presented a method that supports the integration of mul-
tiple sensors with different fields of view and considered
the motion constraints on aerial robots. Moreover, in the
area of multi-robot coverage for aerial robotics in [15], a
coverage algorithm with multiple UAVs for remote sensing
in agriculture has been proposed, where the target area was
partitioned into k non-overlapping sub-tasks and in order to
avoid collision, different altitudes have been assigned to each
UAV and security zones were defined, where the vehicles are
not allowed to enter.

In this paper, we consider a problem of static coverage of
a 3D structure with a network of mobile sensors. The target
application is the surveillance of a building or infrastructure
with a network of aerial robots endowed with cameras. Our
contribution can be summarized as follows. On one hand,
the sensors have anisotropic sensing patterns that depend not
only on the alignment between the observed point and the
line of sight of the sensor (as in [5] and [16]), but also
on the alignment between the normal to the surface and

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 24–28, 2017, Vancouver, BC, Canada

978-1-5386-2682-5/17/$31.00 ©2017 IEEE 1838



the line of sight of the sensors. To deal with this type of
sensing pattern, we leverage on our previous work [16] to
define a generalized notion of Voronoi tessellation, and we
introduce a coverage function that measures how well the
structure is surveilled by the sensors. We also abstract the
structure to surveil into a finite set of landmarks, so that the
sensors are not required to perform complex computations
for partitioning a continuous environment. We also propose
an extension of the algorithm to avoid collisions among the
agents as well as with other objects nearby. Finally, another
contribution of this paper is the experimental evaluation of
the proposed scheme. The advantages of our approach with
respect to existing algorithms for cooperative surveillance
include the following: environment abstraction, path planning
and obstacle avoidance in are collected into an unified
framework; by using a generalized concept of Voronoi tes-
sellation, we obtain formal convergence results analogous
to those obtained for classical coverage problems of planar
environments; reconfiguration in the event of an agent joining
or leaving the network in mid mission is straightforward.
The indoor trials demonstrate the applicability of this method
towards surveillance tasks using autonomous real-life aerial
platforms.

II. PRELIMINARIES

The null vector in Rn is denoted by 0n. A vector in Rn is
also intended as the corresponding column vector in Rn×1.
The cross product between two vectors u, v ∈ Rn is denoted
by u×v. The skew operator is denoted by S(·) (i.e., S(u)v =
u × v). The identity matrix in Rn×n is denoted by In. The
transpose of a matrix M ∈ Rn×m is denoted by Mᵀ. The
Euclidean norm of a vector u ∈ Rn is denoted by ‖u‖. The
set S2 = {u ∈ R3 : ‖u‖ = 1} is called the unit sphere. A
vector u ∈ S2 represents a direction in R3. The kinematics
of a vector u ∈ S2 can be described as

u̇ = S(ω)u, (1)

where ω is called the angular velocity of the vector. Since
u̇ = ω × u ⊥ u, a vector u ∈ S2 which evolves according
to (1) remains forever in S2.

III. PROBLEM STATEMENT

A. Setup

A landmark represents a point or a small area of interest
within the surface of an object to inspect. A landmark
` = (p`, u`) is defined by a position p` ∈ R3 and an unity-
norm vector u` which represents the outward normal to the
body evaluated at the position of the landmark. A set of
landmarks offers an abstract and approximate representation
of the external surface of a body. The higher is the number
of landmarks, the higher is the approximation accuracy. A
landmark-set representation of the surface of a 3D structure
can be obtained, for example, from a point cloud or from a
3D model, by using opportune sampling algorithms (see for
example [17], [18]), as we explain in Section VI.

A mobile sensor is a formal abstraction for a generic mo-
bile and directional sensing device, (such as an aerial robot

endowed with a camera, as we describe in our motivating
example). A mobile sensor σ = (pσ, uσ, fσ) is defined by
a position pσ ∈ R3, a direction uσ ∈ S2, and an upper-
bounded function fσ : R3×S2 ×R3×S2 → R. The function
fσ defines the sensing pattern of the mobile sensor σ; namely,
fσ(pσ, uσ, p`, u`) is a measure of the visibility of a landmark
` attained by the mobile sensor σ. This function is also called
the footprint of the mobile sensor σ.

Definition 1: The visibility vis(σ, `) of a landmark ` at-
tained by a sensor σ is defined as

vis(σ, `) = fσ(pσ, uσ, p`, u`). (2)

Definition 2: The coverage cov(σ,L) of a finite set L of
landmarks attained by a mobile sensor σ is defined as

cov(σ,L) =
∑
`∈L

vis(σ, `). (3)

Definition 3: Let L = {`1, . . . , `M} be a finite ordered
set of landmarks, and Σ = {σ1, . . . , σN} be a finite ordered
set of mobile sensors. Let P : {1, . . . ,M} → {1, . . . , N}
be a map that assigns each landmark to one of the sensors,
in the sense that each landmark `j is assigned to the sensor
σP(j). Finally, let Li = {`j ∈ L : P(j) = i} be the set of
the landmarks assigned to sensor σi. We define the coverage
score function associated to the set L as

CovL(Σ,P) =

N∑
i=1

cov(σi,Li). (4)

Definition 4: Let L, Σ, P , and Li with i ∈ {1, . . . , N}
be defined as in Definition 3. The tuple (L,Σ,P) is said to
be a Voronoi tessellation if the following two conditions are
satisfied:

• for each `j ∈ L, vis(σP(j), `j) ≥ vis(σi, `j) for all
σi ∈ Σ;

• for each σi ∈ Σ, it holds that ∂ cov(σi,Li)/∂pi = 03
and S(ui)∂ cov(σi,Li)/∂ui = 03.

Voronoi tessellations as by Definition 4 constitute a gen-
eralization of the classical Voronoi tessellations considered,
for example, in [6]. In fact, Definition 4 reduces to clas-
sical Voronoi tessellations if, for each σ ∈ Σ, we set
fσ(pσ, uσ, p`, u`) = ‖pσ−p`‖2. By Definition 4, if (L,Σ,P)
is a Voronoi tessellation, then (Σ,P) constitutes a local
optimum of the coverage score function CovL(·, ·).

B. Control objective

Given a set L of landmarks and a network Σ of mobile
sensors, our objective is to control the motion of the sensors
and the assignment P of the landmarks so as to drive the
tuple (L,Σ,P) to a Voronoi tessellation, while increasing
the value of the coverage score function.

IV. CONTROL ALGORITHM

In this section, we describe a control algorithm that
achieves the objective described in Section III-B. For this
algorithm, we leverage on the results presented in [16],
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and we tailor the algorithm to our motivating application
of structure surveillance. We consider an ordered set L =
{`1, . . . , `M} of M ∈ N landmarks, and an ordered set
Σ = {σ1, . . . , σN} of N ∈ N mobile sensors. For each
mobile sensor σi, we denote σi(t) = (pi(t), ui(t), fi), but
we also write σi (without time dependency) to speak of the
mobile sensor as a physical device. Similarly, we denote
Σ(t) = (σ1(t), . . . , σN (t)), but we also write Σ to speak of
the sensor network as the ensemble of the physical sensors.
The kinematics of each sensor σi is defined by

ṗi(t) =vi(t), (5)
u̇i(t) =S(ωi(t))ui(t), (6)

where vi(t) and ωi(t) are the control inputs, and constitute,
respectively, the linear velocity and the angular velocity of
the sensor.

Each sensor σi is assigned a subset Li(t) of the landmarks.
Note that, even if the set L is fixed, the set Li(t) of the
landmarks assigned to a particular sensor changes over time.
The landmark assignment is equivalently defined by the time-
varying map Pt : {1, . . . ,M} → {1, . . . , N} such that
Pt(j) = i ⇐⇒ `j ∈ Li(t).

The proposed control law for each mobile sensor is simply
a gradient climb of the sensor coverage:

vi(t) =kv
∂ cov(σi(t),Li(t))

∂pi
, (7)

ωi(t) =− kωS(ui(t))
∂ cov(σi(t),Li(t))

∂ui
, (8)

where kv and kω are positive gains, and
∂ cov(σi(t),Li(t))/∂pi denotes the gradient (taken as
a column vector) of cov(σi(t),Li(t)) with respect to pi
(similarly for ∂ cov(σi(t),Li(t))/∂ui). Note that each
mobile sensor can compute (7) and (8) based only on the
knowledge of pi(t), ui(t) and Li(t), and does not need to
communicate with the other sensors.

To complete the definition of the control algorithm, we
only need to specify how the landmark assignment changes
over time (i.e., how the sets Li(t) are updated). For this part
of the algorithm, we let the sensors send some data to each
other on discrete time instants. Namely, for each sensor σi we
define a time sequence {ti,k}k, with k ∈ N, such that, at each
time ti,k, σi opens a communication with another agent. For
the purposes of the algorithm, the way that these sequences
are generated is irrelevant. For example, they can be pre-
assigned, periodic, event-triggered, or triggered by an user.
The only requirement is given by the following assumption.

Assumption 1: There exists a finite upper bound on the
intervals ti,kj′ − ti,kj between two consecutive communica-
tions with the same sensor σj .

Naturally, a lower bound on these intervals must also exist
for implementation purposes.

A communication instance initiated by σi with another
sensor σj consists in σi passing some of its landmarks to
σj . A landmark ` ∈ Li(ti,k) is passed if and only if σj has
a better vision of ` than σi has (i.e., if vis(σj(ti,k), `) >

vis(σi(ti,k), `)). The actions executed during a communica-
tion instance are formalized in Algorithm 1.

Algorithm 1 Actions executed by a sensor σi at communi-
cation time ti,k.

open communication with σj

∆ := ∅
for ` ∈ Li(ti,k) do

if vis(σj(ti,k), `) > vis(σi(ti,k), `) then
∆ := ∆ ∪ {`}

end if
end for
Lj(t

+
i,k) := Lj(ti,k) ∪∆

Li(t
+
i,k) := Li(ti,k) \∆

Our control algorithm is now obtained simply as Algo-
rithm 2.

Algorithm 2 Control algorithm for each sensor σi ∈ Σ

if t /∈ {ti,k} then move according to (7) and (8)
else execute Algorithm 1
end if

A few remarks on the control algorithm are due.
Remark 1: Sensors communication is only pairwise and

intermittent, which makes the algorithm suitable for embed-
ded processors with wireless communication channels. The
sensors need to be within each other’s communication radius,
at least as often as to satisfy Assumption 1. This requirement
is mild if we consider that the sensors are surveying the same
physical object.

Remark 2: The algorithm allows the sensors to have
heterogeneous sensing patterns. However, in this case, the
sensors need to know each other’s footprint.

The properties of the algorithm are formalized as the
following Theorem 1.

Theorem 1: Consider a set L of landmarks, a network Σ
of mobile sensors, and an initial assignment P0 : L → Σ
of the landmarks. Under Algorithm 2 with Assumption 1,
the tuple (L,Σ(t),Pt) converges to a Voronoi tessellation,
while the coverage score function CovL(Σ(t),Pt) is mono-
tonically nondecreasing.

A proof of Theorem 1 can be obtained by modeling
the sensor network as a hybrid system, and then using an
invariance principle for hybrid systems (Theorem 8.2 in
[19]). The main argument of the theorem is that the coverage
score function is upper-bounded and strictly increasing along
the system dynamics. A complete proof is omitted here
because of space restrictions, but the interested reader is
referred to our previous work [16] for the proof of a similar
result.

V. COLLISION AVOIDANCE

Collision avoidance is easily incorporated in the control
algorithm by modifying Definition 1 to take into account the
possible proximity of the sensor to other bodies, such as the
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other sensors in the network. Namely, consider the following
collision avoidance function:

φ(p, b) =

{
0, ‖p− b‖ > ρ,

1/ρ2 − 1/‖p− b‖2, ‖p− b‖ ≤ ρ,
(9)

where ρ > 0 is a safety radius. Note that φ(p, b) ≤ 0,
φ(p, b) < 0 if ‖p − b‖ > ρ, and that φ(p, b) → −∞ when
p− b → 0. The results in this section can be generalized to
other collision avoidance functions with these characteristics,
but for simplicity we are going to refer to (9).

The definition of the visibility of a landmark is modified
as follows.

Definition 5: The visibility of a landmark ` attained by a
mobile sensor σ while avoiding collisions with bodies b ∈ B
is defined as

vis(σ, `,B) = fσ(pσ, uσ, p`, u`) +
∑
b∈B

φ(pσ, b). (10)

Note that incorporating a collision avoidance term in the vis-
ibility function allows also to model effects such as excessive
proximity to another body hindering the performances of the
sensor. For example, the body may obstruct the field of view
of the sensor or influence the motion of the sensor in an
undersired way.

Definitions 2, 3, and 4 are easily modified in the same
way. First, we define

cov(σ,L,B) =
∑
`∈L

vis(σ, `,B). (11)

Then, we let Bi(t) = {pj(t) : σj ∈ Σ \ {σi}} ∪ B̃, where
B̃ is a set of fixed points. This choice is motivated by the
fact that the sensors should not collide with each other, but
neither with other static bodies in the vicinity. For example,
one can have B̃ = L, which captures the requirement to avoid
excessive proximity with the structure under surveillance.
Consequently to (11), we define

CovL(Σ,P) =

N∑
i=1

cov(σi,Li,Bi). (12)

The tuple (Σ,L,P) is called a Voronoi tessellation if
• for each ` ∈ L, vis(σP(j), `,BP(j)) ≥ vis(σi, `,Bi) for

all σi ∈ Σ;
• for each σi ∈ Σ, there exists a neighborhood N ⊂

R3 × S2 of (pσi
, uσi

) such that cov(σi,Li,Bi) ≥
cov((p, u, fσi

),Li,Bi) for all (p, u) ∈ N .
The control law (7)-(8) for the motion of each sen-
sor is modified by substituting cov(σi(t),Li(t)) for
cov(σi(t),Li(t),Bi(t)).

When we use the modified definition of Voronoi tessella-
tion and the modified version of the control law introduced
in this section, Theorem 1 is still valid, while each sensor
σi avoids collisions with the bodies in Bi. In fact, when two
agents are sufficiently close, the contribution of the collision
avoidance term φ(·, ·) to the control input prevails upon any
other contribution, and the distance between the two agents
cannot be reduced further.

VI. LANDMARK EXTRACTION

The 3D surface of the object to inspect is represented in a
point cloud form containing the landmark positions (i.e., p`
for each ` ∈ L). This representation approximates the surface
based on the density of the contained points. To fully define
a landmark `, we need to associate an unity norm vector
u` to each of these points p`, where u` corresponds to the
normal to the surface in p`. Depending on the origin of the
point cloud, the distribution of the points can be non-uniform
for different parts of the structure, leading to inaccurate
normal vector estimation. Therefore, the point cloud is down-
sampled up to the desired Level of Detail (LoD) to maintain
the original shape of the structure, using the voxelized grid
approach [20]. A voxel grid filter down-samples the point
cloud computing a substitute point for all points inside the
voxel with their centroid, thus providing a uniform spatial
distribution for the points.

For the estimation of the unity-norm vectors u`, the Kd-
tree algorithm [21] is used for finding the nearest neighbor.
Considering the query point pl and k neighboring points the
aim is to find an orthogonal basis that describes this set of
points, using Principal Component Analysis (PCA). For each
neighborhood of points a plane is defined from it’s centroid p
and it’s normal u`. Thus, the plane fitting can be formulated
as the Least-Squares (LS) problem with cost-function the
orthogonal distance defined as (p`−p) ·u` between the plane
and query point pl. This formulation leads to the Covariance
matrix C (Equation 13) created from the nearest neighbors
of the query point. For each point p`, the covariance matrix
C is formed as follows:

C =
1

k

k∑
`=1

(p` − p) · (p` − p)ᵀ. (13)

Considering the covariance matrix eigenvalue decomposition,
the estimate of the unit normal of the surface will be parallel
to the eigenvector that corresponds to the smallest eigenvalue
Namely, given that

C · ~vj = λj · ~vj , (14)

with j ∈ {1, 2, 3}, and where λj are eigenvalues of the
covariance matrix, and ~vj are the eigenvectors that form
an orthogonal frame, the unit norm is derived from the
eigenvector ~v0 that corresponds to the smallest eigenvalue, so
we set u` = ~v0. In this paper, the Point Cloud Library (PCL)
[17] is used to down-sample the point cloud and calculate
the normals to the surface of the object.

VII. NUMERICAL SIMULATION

In this section, we present a numerical simulation of
the proposed algorithm. The simulation is built upon the
middleware ROS [22], and the controller of each sensor is
implemented as a single ROS node. In particular, for each
simulated sensor σi, there is a controller node that executes
Algorithm 2 and computes vi(t) and ωi(t), and a simulator
node that integrates the kinematics (6). This setup presents
at least two advantages: first, the simulation reproduces
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Fig. 1: Contour plot of footprint (15) with pσ = 03, uσ =
[1, 0, 0]ᵀ, p` = [x, y, 0]ᵀ, u` = [1, 0, 0]ᵀ, D = 2.5, α =
0.515, β = 0.485 and γ = 1.0.

faithfully the distributed nature of the control algorithm;
second, the same ROS nodes used in the simulation can be
used to execute the control algorithm on physical robots. The
simulation features N = 4 simulated robotic sensors and a
landmark set extracted from a point cloud of a cylinder with
the procedure described in Section VI. The sensors’ footprint
is designed to model the sensing patter of a monocular
camera:

f(pσ, uσ, p`, u`) =

− ‖pσ +Duσ − p`‖2 ·
(
α+ β

uᵀ
σ(pσ +Duσ − p`)

‖pσ +Duσ − p`‖

)
− γ‖pσ +Du` − p`‖2 ·

(
α+ β

uᵀ
` (pσ +Du` − p`)

‖pσ +Du` − p`‖

)
,

(15)

with a continuous extension for pσ + Duσ − p` = 03 and
for pσ +Du` − p` = 03. Here D > 0 is an optimal distance
for the visibility of a landmark while α, β, γ > 0 regulate
the shape of the footprint. Note that by design choice this
footprint is nonpositive, which makes all the coverage values
nonpositive. A coverage value closer to zero means that a
better coverage is attained. Figure 1 shows a contour plot
of footprint (15). The coverage score function is computed
including a collision avoidance function (i.e., according to
(12)), with Bi(t) = {pj(t) : σj ∈ Σ \ {σi}}.

A communication instance is triggered by a sensor when
the norm of its velocity goes below a certain threshold, with
a minimum interval of 1.0 seconds between two consecutive
instances initiated by the same sensor. The initial positions
of the sensors are taken as [−1.5,−1.5, 0]ᵀ, [−1.5, 1.5, 0]ᵀ,
[−1.5,−1.5, 1]ᵀ and [−1.5, 1.5, 1]ᵀ. The simulation is run
for 100 seconds. The results of the simulation are illustrated
in Figures 2 and 3. Figure 2 comprises six snapshots of
the configuration assumed by the sensor network during the
simulation. In Figure 2, each sensor σi is represented as a
colored arrow, with the tail of the arrow being the position
pσi

of the sensor, and the direction of the arrow being uσi
.

Each landmark ` is represented as a colored point p` (the
unit vector u` is not shown to avoid cluttering the pictures).

The color of a landmark corresponds to the sensor that is
responsible to cover that landmark at that particular time.

Figure 3 illustrates the coverage attained by the sensors
throughout the simulation, as well as the total coverage
attained by the network. All the quantitites are negative since
the footprint used is negative semidefinite. From picture 3,
we can see that the coverage attained by each sensor presents
large discontinuities across the communication instants, since
landmarks are transferred at those instants. On the other
hand, we can see that the total coverage attained by the
network is nondecreasing, and converges to a value corre-
sponding to the equilibrium configuration that we can see
in the last snapshot of Figure 2. The small spikes in the
plot must be attributed to the short delays in the message
transmission in ROS.

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed method has been evaluated with the uti-
lization of the Ascending Technologies NEO hexacopter,
depicted in Figure 4. The platform has a diameter of 0.59m
and a height of 0.24m. The length of each propeller is
0.28m, as depicted in Figure 4. This platform is capable of
providing a flight time of 26min, and can reach a maximum
airspeed of 15m/s and a maximum climb rate of 8m/s,
with payload capacity up to 2 kg. The platform has an
onboard Intel NUC computer with a Core i7-5557U and 8
GB of RAM. The NUC runs Ubuntu Server 14.04 with ROS.
Additionally, multiple external sensory systems (e.g. cam-
eras, laser scanners, etc.) can be operated on the platform.
Regarding the onboard sensory system, a monocular camera
developed by Skybotix AG (weight of 0.088 kg, depicted in
Figure 4), is attached on the protective case on the front
side. The camera was operated in 20 fps with a resolution of
640x480 pixels.

The proposed method, established in Sections IV and V,
has been entirely implemented in Python. The inputs for the
method are the same as described in Section VII, plus the
position controller sampling time. However, to better suit the
dimensions of the laboratory, we set D = 1.3 and γ = 0.5.
The generated paths are sent to the NEO platform through
the ROS framework.

The platform contains three main components to provide
autonomous flight, which are a Mo-Cap system for pose
extraction, a Multi-Sensor-Fusion Extended Kalman Filter
(MSF-EKF) [23] and a linear Model Predictive Control
(MPC) position controller [24]–[26]. The MSF-EKF compo-
nent fuses the obtained pose information and the NEO IMU
measurements. This consists of an error state Kalman filter,
based on inertial odometry, performing sensor fusion as a
generic software package, while it has the unique feature of
being able to handle delayed and multi-rate measurements,
while staying withing computational bounds. The linear
MPC position controller [26] generates attitude and thrust
references for the NEO low-level attitude controller. The
overall schematic of the experimental setup is presented in
Figure 5.

1842



x

−3 −2 −1 0 1 2 3

y

−3
−2

−1
0

1
2

3

z

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

x

−3 −2 −1 0 1 2 3

y

−3
−2

−1
0

1
2

3

z

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

x

−3 −2 −1 0 1 2 3

y

−3
−2

−1
0

1
2

3

z

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

x

−3 −2 −1 0 1 2 3

y

−3
−2

−1
0

1
2

3

z

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

x

−3 −2 −1 0 1 2 3

y

−3
−2

−1
0

1
2

3

z

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

x

−3 −2 −1 0 1 2 3

y

−3
−2

−1
0

1
2

3

z

−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Fig. 2: Snapshots of the configuration assumed by the sensor network. Each sensor σi is represented as a colored arrow,
with the tail of the arrow being the position pσi

of the sensor, and the direction of the arrow being uσi
. Each landmark `

is represented as a colored point p`. In lexicographical order, with t = 0 being the start of the simulation, the snaphots are
taken at: t = 0, t = 5, t = 25, t = 50, t = 85, t = 100.
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Fig. 3: Coverage attained by each sensor and total coverage
attained by the network throughout the simulation. The short
spikes in the total coverage signal are due to asynchronous
message transmission among ROS nodes.

Fig. 4: AscTec NEO platform with attached monocular
camera.

B. Experimental Evaluation

For demonstrating the applicability of the presented
method, an indoor experiment has been performed in the
FROST lab at Luleå University. Figure 6 depicts the artificial
structure to inspect assembled for the experimental trial.
The cylindrical structure in the pictures is provided for
visual purposes, while for the landmark generation we use
a cylinder object is with radius of 0.165m and height 1m.
For the safety of the flight, and to avoid ground effect and
collisions with the ceiling, the landmarks are extracted only
between 0.5m and 1.1m height.

In this experiment, the Vicon Motion-capture (Mo-cap)
system has been utilized for precise object localization, and
this information is utilized by the NEO for the task execution.
The waypoints generated by the algorithm are converted into
position-velocity-yaw trajectories as the input for the linear
MPC controller [26] for the navigation. This is done by
taking into account the sampling time Ts and the desired
velocity along the path ~Vd which are 200Hz and 0.5m/s
respectively. Figure 6 depicts the position of two agents in
the left, while in the middle and right the image streams
from the two agents are shown. Additionally, the reference
path, the trajectories followed by the agents and the point
cloud of the object are shown in Figure 7. The starting
point of the agents are [−1.7,−1.5, 0]ᵀ and [−1.7,−1.5, 0]ᵀ,
while the final position is [0, 1.3, 0.68]ᵀ and [0.5,−1.7, 0.8]ᵀ.
The error between the reference trajectories and the obtained
trajectories is mainly caused by ground effect and error in
attitude controller. Furthermore, Figure 7 also includes the
point cloud that used for obtaining the landmark set. Finally,
Figure 8 shows the coverage attained by each agent along

1843



trajectory
linear MPC

position

controller

EKF

sensor fusion

attitude/thrust

commands

imu data

pose

twist

pose

video stream

Python ROS Aerial Robot

AscTec Neocoverage 

algorithm

MoCap

System

Fig. 5: Software and hardware components used for experimental setup.

Fig. 6: On the left is the position of two agents in the experiment, on the middle is the visual feedback of the first agent,
and on the right is the visual feedback of the second agent.

0.2

0.4

0.6

0.8

1

z
 [

m
]

-1

y [m]

0
-1.5-1

x [m]

-0.51 00.511.5

1
st

agent

2
nd

agent

refrence 1

refrence 2

1
st

final position

2
nd

final position

point cloud of object

Fig. 7: Trajectories followed in the indoor experiment.

its path, and the total coverage attained by the network.

IX. CONCLUSIONS

Motivated by applications in the field of robotic surveil-
lance, in this paper we have investigated a coverage problem
of 3D structures with robotic sensor networks. We have
introduced an abstraction of the structure to surveil, and we
have generalized the concept of Voronoi tessellation to fit our
problem, defining a coverage score function as a measure of
the quality of the surveillance attained by the sensor network.
Then, we have proposed a control algorithm that drives
the sensors to a Voronoi tessellation while the coverage
score function is nondecreasing. We have also extended
the algorithm to deal with collision avoidance problems.
The algorithm has been validated by a simulation and an
experiment with an aerial robot.

Future developments of this works include the extension
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Fig. 8: Coverage attained by each agent along its path, and
total coverage attained by the network. The short spikes in
the total coverage signal are due to asynchronous message
transmission among ROS nodes.

of the proposed framework to dynamic coverage, and in
particular to inspection problems (e.g., detecting faults on
a 3D structure). We are also investigating how to improve
the coverage score beyond local optima.
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