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Abstract

A probabilistic pursuit–evasion game from the lit-
erature is used as an example of a multi-robot sys-
tem. The model is extended with particular focus on
localization errors and communication limitations.
These constraints are important in real multi-robot
systems, but has often been neglected in previous
studies. It is shown in the paper how multi-robot
systems outperform single robots, also in the case of
imperfect localization and bandwidth limitations in
the communication channel. Simulation results give
trade-offs between communication constraints, num-
ber of pursuers, and control performance.

1 Introduction

Multi-robot systems have many advantages com-
pared to single-robot solutions, such as improved
performance, sensing, distribution, and reliability.
Examples of recent approaches for the study of multi-
robot systems include behavior-based robotics [2, 15,
18], fuzzy control [17], dynamic game theory [8], and
nonlinear control theory [4, 14]. Similarly to a single-
robot system, one need in the design of multi-robot
systems to consider challenges like partial knowledge
of the environment, sensors noise, dynamic changes
of the environment, and self-localization. For a
multi-robot system, however, also the communica-
tion is of outmost importance. Every communica-
tion channel has a bandwidth limitation, due to that
transmitted data packets must less than a maximum
size, and (possibly) due to that the channel is shared
so that communication only can take place during
certain time intervals. From a heuristic view point,
it seems obvious that communication must improve
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the performance of the overall system. Remarkably
few research results exist, however, that support and
quantify this belief. An exception is the simula-
tion study and experiments by Balch and Arkin [1],
which compared performances of a multi-robot sys-
tem with and without perfect communication. An-
other exception is a result by Dudek et al. [6], which
states that if the individual robots are modelled as
finite automata and they can perfectly communi-
cate their state to each other, then the multi-robot
system is as powerful as a Turing machine. The
current paper contributes to a paradigm for inte-
grated control and communication design for multi-
robot systems [13]. We let a classical pursuit–evasion
game [10, 3] with several pursuers serve as a proto-
type system. The focus is on imperfect localization
and communication issues. These are strongly cou-
pled since position information is present in much
of the relevant information to be communicated in
a multi-robot system. The framework of pursuit–
evasion games can be used to model several multi-
robot situations, such as search-and-rescue opera-
tions, localization of lost objects, search-and-capture
missions, forage-and-consume tasks, etc. In the pa-
per we assume a Markov model for the motion of the
evader, so the multi-robot system could hence model
a search-and-rescue operations. The paper is orga-
nized as follows. In Section 2 we describe the model
for the pursuit–evasion game. Section 3 extends the
probabilistic framework developed by Hespanha et
al. in [8] to the situation of imperfect localization of
the pursuers. In Section 4 the classical approach of
Multi Hypothesis Tracking is described in the case
of pursuit–evasion games to keep low the number of
hypothesis. We discuss pursuit–evasion games with
limited communication bandwidth in Section 5. Sim-
ulation results show the interaction between commu-
nication constraints, number of pursuers, and control
performance (rescue time). In Section 6 we suggest
a simple information measure that can be used to



decide when communicating. Finally, Section 7 con-
tains some concluding remarks and directions for fu-
ture research.

Notation Throughout the paper, we denote by
(Ω,B, P ) the probability space where all probabil-
ities are defined: Ω is the event set that contains
all the possible events related to the pursuit–evasion
games, B is a family of subsets of Ω forming a σ-
algebra, and P : B → [0, 1] is a probability measure
on B. The assumption on B is that it is rich enough
so that all the probabilities considered below are well
defined. We use boldface characters to denote ran-
dom variables. For simplicity of notation we also
denote probabilities like P (xe(t) = xe|Yt = Yt) as
P (xe(t)|Yt), when values at which the function is
calculated are arbitrary values.

2 Pursuit–Evasion Games

Consider a pursuit-evasion game with several pur-
suers and one randomly moving evader. The fol-
lowing notation is borrowed mainly from [8]. The
main extension here is the introduction of pursuer
localization errors and communication limitations.
See [8, 9, 12] for other considerations. We suppose
the space and the time are quantized. In particu-
lar, the space is divided in a finite number of cells
X = {1, 2, . . . , nc} and each event is associated a
time instant t which belongs to the discrete set of
times T = {1, 2, . . . }. Each pursuer can sense the
surroundings and collect measurements. Since the
sensor measurements are corrupted by noise we use
random variables to model the sensor data. We de-
note with y(t) the random vector of the measure-
ments taken by the pursuers at time instant t, de-
fined in a measurement space Y. At each time instant
t ∈ T the pursuers can execute a control action u(t)
that, in general, corresponds to a movement to an-
other cell of the state space. We denote with U the
set of all possible control actions. The control ac-
tion u(t) is a function of the measurements collected
by the pursuers and is thus regarded as a random
variable. For each time t we denote by Yt ∈ Y∗ the
set of all measurements1 taken up to time t, which
means that Yt = {y(1), . . . ,y(t)}. We define the
control law g : Y∗ → U : Yt 7→ g (Yt) as a function
that maps measurements taken up to some time t to
a control action executed at the time instant t + 1:

u(t + 1) = g (Yt) , t ∈ T (1)

The control law g determines in general the next con-
trol action in order to minimize the time of finding
the evader. In the pursuit–evasion game, np ≥ 1

1We denote with Y∗ the set of all finite sequences of the
set Y.
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Figure 1: Synchronization. At times Tsync the pur-
suers can use the communication channel to share
information.

pursuers try to find a single moving evader. At
each time t ∈ T , denote the position of the evader
as xe(t) ∈ X and the position of the pursuers as
x(t) =

{

x1(t),x2(t), . . . ,xnp
(t)

}

∈ X . The positions
xe(t) and xi(t) are random variables due to the un-
certainty of the locations of the evader and the pur-
suers, respectively. Some cells are occupied by fixed
obstacles, so that neither the pursuers nor the evader
can move to these cells. We suppose that the posi-
tion of the obstacles is unknown by the pursuers, but
some initial map estimate is given. The obstacle map
is defined by a function m : X → {0, 1}, which takes
the value one in those cells that contain an obstacle
and zero otherwise. Since the positions of the obsta-
cles is not known in advance, we consider m(x) to be
a random variable. We assume that m(x), x ∈ X ,
are independent random variables and that the game
starts with an a priori obstacle map. To specify the
structure of the control law g, we do not need at this
point a precise probabilistic model of the pursuers
and the evaders.It is enough to assume that, for each
x, xe ∈ X and for each Y ∈ Y∗, it is possible to
compute the conditional probability pe,p(xe, x, Y ) =
P (xe(t+1) = xe,x(t+1) = x|Yt = Yt) of the evader
being in position xe and the pursuers in position x
given the measurements Yt = Y . We can then define
the control law implicitly as

g(Yt) = arg max
{x1,x2,...,xnp}∈U

nc
np

∑

k=1

pe,p(xk, xk, Yt) (2)

which moves the pursuers to the cells that maximize
the posterior probability of the evader and the pur-
suers being in the same cell at time t + 1. Note that
this control law is a deterministic policy.

3 Probabilistic Map with Localization

Errors

In this section we define the probabilistic map ap-
proach [21, 8, 7] for the pursuit–evasion game with
one evader and several pursuers. When the informa-
tion to build a map is not perfect, it is possible to
assign the probability densities of the location of the
objects. Such a probability density function is called
a probabilistic map. Since the map is built using
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(a) Each pursuer rely only on its own measurements until the
fusion step at each t = Tsync.
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Figure 2: The average rescue time T
∗

as function of the number of pursuers np and the period of synchro-
nization Tsync

sensor data, the probabilistic map is the probability
density of object positions conditioned on the sensor
measurements. For the problem of pursuit–evasion,
we consider a Bayesian filtering [5] assuming that the
environment is Markov (i.e., the past and the future
data are (conditionally) independent given knowl-
edge of the current state). The basic idea is thus to
estimate the posterior probability density over the
state space conditioned on the data. In robotics this
posterior probability is also called belief.

3.1 Probabilistic Maps

In Section 2 we defined a model for the case of many
pursuers and one evader. As in [8], we consider as
sensor measurement for the single pursuer i the vec-
tor

yi(t) = (vi(t),oi(t), ei(t)) (3)

where vi(t) ∈ U denotes the measured position of
the pursuer (given, for example, from odometry),
oi(t) ⊂ X the set of all the cells where an obstacle
was detected, and ei(t) ⊂ X the set of cells where
an evader was detected (using, for example, a
sonar). A sensor measurement belongs to the set
Y , U × 2X × 2X , where 2X denotes the power
set of the set X (i.e., the set of all subsets of X ).
The detection of obstacles is assumed to be perfect.
The detection of the evader is however subjected
to errors. In particular, we consider false positives
(which correspond to detecting an evader even if
the evader is not in the corresponding cell) and
false negatives (which correspond to not detecting

an evader even if the evader is in the corresponding
cell). We denote the probability of false positives
p and the probability of false negatives q, which
hence are assumed to be constant. We also suppose
that the detection of the objects (both evader and
obstacles) can happen only if these objects are in
a cell next to the cell occupied by the pursuer.
Formally we define the set of adjacent cells to a
cell x as A(x), which is thus the collection of cells
that share a side or a corner with x. We assume
that the motion of the evader and pursuers is of
one cell at each step and the cells where they can
move is in the neighborhood of the current position
with exception of the evader that can also remain
in the same cell. Thus in (2), U is defined to be in
the set of all the cells neighborhood of cells where
the probability density of the pursuer to be in those
cells is not zero (or larger than a fixed threshold).
We describe next how to compute the conditional
posterior probability, or belief, pe,p(xe, x, Yt) =
P (xe(t + 1) = xe,x(t + 1) = x|Yt = Yt) of the
evader being in cell xe and the pursuer in the cell x
at time t + 1 given the measurements Yt = Yt taken
up to time t = |Yt|. We compute pe,p(xe, x, Yt)
recursively in two steps:

1. Measurement Step: the probability P (xe(t) =
xe,x(t) = x|Yt = Yt) of the evader being in
cell xe and the pursuers in x at time t given
the measurements Yt, is computed based on
pe,p(xe, x, Yt−1) and on the model of the drift
P (v(t) = v|x(t) = x) (localization error).



2. Prediction Step: the probability pe,p(xe, x, Yt) =
P (xe(t + 1) = xe,x(t + 1) = x|Yt = Yt) of the
evader being in the cell xe and the pursuer in
the cell x at time t + 1 given the measurements
Yt, computed from P (xe(t) = xe,x(t) = x|Yt =
Yt).

The two steps of this recursive algorithm are further
described below. The algorithm is initialized with
some a priori probability pe,p(xe, x, ∅), xe, x ∈ X ,
for the position of the evader and the pursuers2.

3.2 Measurement Step

The probability map pe,p(xe, x, Yt) can be written,
using Bayes’ rule, as

pe,p(xe, x, Yt) = ζ2 pe,p(xe, x, Yt−1)·

P (y(t)|Yt−1,xe(t),x(t)) (4)

where ζ2 = 1/P (y(t) = y|Yt−1 = Yt−1) is a positive
normalizing constant, independent of xe and x. The
last term of (4) is equal to

P (y(t)|xe(t),x(t)) = P (v(t),o(t), e(t)|xe(t),x(t)) =

P (v(t)|xe(t),x(t)) · P (e(t)|xe(t),x(t),v(t))·

P (o(t)|xe(t),x(t),v(t), e(t)) (5)

The first term of (5) can be written as

P (v(t) = v|xe(t) = xe,x(t) = x) = P (v(t) = v|x(t) = x)

since the odometry measurements are independent
of the position of the evader. A model of the drift
error w of the pursuers is now needed. We capture
them by introducing the probability density function
pw(x), x ∈ X , for the position of the pursuers, which
we assume to be known3. If we assume that the
measurements can be written as

v(t) = x(t) + w(t) (6)

where w is some noise, then we have

P (v(t) = v|x(t) = x) = pw(v(t) − x(t)) (7)

For the second term of (5) we have

P (e(t)|xe(t),x(t),v(t)) =
{

0 if xe /∈ A(x)

pk1 (1 − p)k2 qk3 (1 − q)k4 otherwise

(8)

2Here ∅ ∈ Y∗ denotes the empty sequence of measure-
ments.

3The assumptions here are that the pursuers use the same
control law and they can localize themselves after some time,
so that the drift is bounded. This is plausible since it is in
many cases possible to find landmarks (for example, doors)
that resets the localization error to zero [11].

where k1 are the number of pursuers that give false
positive, k2 the number of pursuers that give true
negative, k3 the number of pursuers that give false
negatives and k4 the number of pursuers that give
true positives. Due to the low obstacle density, the
third term of (5) is approximately independent of
the position of the evader xe(t) and the position of
the pursuer x(t). Thus it can be rewritten as

P (o(t)|xe(t),x(t),v(t), e(t)) = P (o(t)|v(t), e(t))
(9)

which is not a function of the state variables and thus
can be regarded as a constant ζ3, say.

3.3 Prediction Step

For the prediction step we can write the posterior
conditional probability as follows

pe,p(xe, x, Yt) = P (xe(t + 1) = xe,x(t + 1) = x|Yt = Yt)

=
∑

x∈A(x)

P (xe(t + 1) = xe,x(t + 1) = x,

x(t) = x,m(x) = 0|Yt = Yt)

=
∑

x∈A(x)

∑

xe∈{xe}∪A(xe)

P (xe(t + 1) = xe,xe(t) = xe,

m(xe) = 0,x(t + 1) = x,x(t) = x,m(x) = 0|Yt = Yt)

(10)

where we used the model of the motion of the evader
and the pursuers. We can expand (10) using Bayes’
rule:

∑

x∈A(x)

∑

xe∈{xe}∪A(xe)

P (xe(t + 1) = xe,x(t + 1) = x|x(t) = x,

xe(t) = xe,m(xe) = 0,m(x) = 0,Yt = Yt)·

P (m(xe) = 0,m(x) = 0|xe(t) = xe,x(t) = x,Yt = Yt)·

P (xe(t) = xe,x(t) = x|Yt)

(11)

where the last factor of (11) is known from the
measurement step. Since the obstacle density is
low, xe(t) and x(t) are approximately independent
of m(xe) and m(x). This means that we have
P (m(xe) = 0,m(x) = 0|xe(t) = xe,x(t) = x,Yt =
Yt) ≈ P (m(xe) = 0|Yt = Yt) P (m(x) = 0|Yt = Yt).
Since obstacles do not move, we can rewrite these
factors as

P (m(xe) = 0|Yt = Yt) =










1 if xe /∈ o(t) and xe ∈ A(x) ∪ {x}

0 if xe ∈ o(t) and xe ∈ A(x) ∪ {x}

P (m(xe) = 0|Yt−1 = Yt−1) otherwise



The first factor of (11) can be expanded as

P (xe(t + 1) = xe|x(t + 1) = x,x(t) = x,

xe(t) = xe,Yt = Yt) · P (x(t + 1) = x|x(t) = x,

xe(t) = xe,Yt = Yt) (12)

In the first factor of (12), we note that the position
of the evader at time step t + 1 is independent of
the position of the pursuers (Markovian motion of
the evader). The probability of the evader to move
from its position to an adjacent cell or to stay in the
same cell is uniform and equal to 1/9. The second
factor of (12) is equal to 1 since the control law is
deterministic.

4 Multiple Hypothesis

The probability map pe,p(xe, x, Yt) for a single pur-
suer, i.e. when the random variable x has only one
component which models its position in the environ-
ment, for all possible pairs (xe, x) gives the prob-
ability of the evader being in position xe and the
pursuer begin in position x. This means that the
dimension of the probability map p(xe, x, Yt) in the
simple case of one evader and one pursuer is X 2.
Roughly speaking this is equivalent to consider nc

copies of the original map X where each copy rep-
resents the probability of the evader being in all the
possible positions assuming that the pursuer is fixed
in a particular position with a given probability. We
can write that each probability map, Mk, is defined
as:

Mk , p(xe(t) = xe, x(t) = i|Yt = Yt) =

P (xe(t) = xe,x(t) = k|Yt = Yt) (13)

for ∀xe ∈ X and a given position k ∈ X of the pur-
suer. A particular map Mk is null, i.e. all values are
zeros if the probability of the pursuer of being in k
is zero as expressed in (5). Depending on the model
of the drift of the robot we generally have a high
number of not null maps Mk and this means that we
have to consider all of them to compute the control
law (2). Each probability map Mk represents a hy-
pothesis [20, 16]. When we consider a multi-robot
system the hypothesis grow exponentially with the
number of pursuers and the computation of a control
action is very heavy to perform and the performance
decreases very fast. To bound the total number of
hypothesis we rely on:

• natural landmarks (like walls and obstacles)

• ad-hoc landmarks (landmarks put in the envi-
ronment with the purpose of letting the pursuer
to localize itself)

The natural landmarks allow to prune some hypothe-
sis that do not match the measurements. As example
we can suppose to have two hypothesis expressed by
the two probability maps Mk1

and Mk2
, one mod-

elling the fact that the pursuer is in position k1 with
some probability and in position k2, which is close
to a wall, with some other probability. If during the
measurement step is not detected a wall the hypoth-
esis that model the possibility of the pursuer to be
close to a wall can be considered false and delete. In
this simple way it is possible to limit the grew of the
hypothesis. In the case of large environments, which
means that the pursuer will be very often far from
the walls some ad-hoc landmarks spread in the envi-
ronment can be assumed to be used. Anyway con-
sidering a more structured environment the number
of these ad-hoc landmarks can be kept quite low.

5 Communication Limitations

In the previous sections we proposed an algorithm
that maximizes the posterior probability map of the
evader and the pursuer to be in the same cell at step
t + 1. Implicitly we assumed that the pursuers can
communicate over a channel that is always available.
That system can be considered centralized, since each
pursuer has access to the measurements of all the
other pursuers at each time instance. In this section
we consider a different set-up in which the observa-
tions are available to all the pursuers only at partic-
ular time instances. At these instances, the proba-
bility maps of the pursuers can be synchronized by
fusing their individual information. In order to sim-
plify the considerations, we assume that each pur-
suers know with probability one its position in the
map X (i.e., no drift w ≡ 0). The pursuers can
communicate only at the time instances:

Tsync =
{

Tsync1
, Tsync2

, . . .
}

⊂ T (14)

as depicted in Figure 1. At times Tsync the pursuers
can communicate to each other and integrates the
measurements of the other pursuers (sensor fusion)4.
Denote by Yi

t the sequence of measurements taken
by pursuer i up to time t. Then we can recursively
define,

Yi
Tsynck

= Yi
Tsynck

∪

np
⋃

j=1,j 6=i

Y
j
Tsynck

(15)

Between two synchronization instances, each pursuer
moves by maximizing the probability of finding the
evader at the next time instance given its own mea-
surements. Figure 2(a) shows the results of 100 simu-
lations for different numbers of pursuers and different

4In the following we call with Tsync a general synchroniza-
tion time.
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Figure 3: An example of a two pursuers–one evader game with periodic communication. The darker the color
of the cell, the higher is the probability of finding an evader. When there is no synchronization, the pursuers
rely on their measurements. At t = Tsync the pursuers communicate the measurements and a new probability
map is computed (sensor fusion).

period of Tsync. We can see that for a fixed Tsync, the

average rescue time T
∗

is decreasing as the number of
pursuers increases, meaning that a multi-robot sys-
tem performs better than a single robot with respect
to the rescue time. If the period of synchronization
increases, the rescue time increases. Figure 3 illus-
trates the probability maps of two pursuers between
and at the synchronization times. The main diffi-
culty in solving the pursuit–evasion problem when
having a communication channel that is available
only a certain instances, as given by Tsync, is that
between these instances each pursuer relies only on
its own measurements. A simple and intuitive idea to
improve the performance of the overall system (i.e.,

to decrease the average rescue time T
∗
) is to let each

pursuer estimate the measurements of all the other
pursuers between synchronization times. Note that
the only measurement that is more reasonable to es-
timate is the position of the teammates. In order to
estimate the positions of the other pursuer, each pur-
suer must have a model of how the teammates move
(i.e., the control laws and possibly a model of the
drift). Figure 2(b) shows the results of simulations
for different Tsync, when each pursuer is estimating
the position of the teammates. If either the number
of pursuers increases or the synchronization inter-
val decreases, the average rescue time T

∗
decreases.

Note that if the synchronization interval is not too
large, then the system where pursuers estimate the
position of the teammates outperform the other one.

A more detailed plot is shown in Figure 5. We can
see that the system where pursuers use estimation
perform better in terms of average rescue time, but
only if the period of synchronization is not too large.
The cause of this is due to false positives and false
negatives. The estimated position of the pursuer co-
incides with the real one only if the measurements
are perfect. Since we have false positives and false
negatives, the error between estimated position and
real position is in general not zero. Moreover, if the
period of synchronization is very large then the error
between estimated and real position becomes large,
which result in a degradation of the performance of
the overall system.

6 Entropy Based Synchronization

In the previous section we discussed the communica-
tion issue between pursuers when the synchroniza-
tion happens periodically. Intuitively not all the
probability maps are very ”important” for the team-
mates, for example a map that is flat (i.e. the prob-
ability map is close to the uniform distribution) can
be considered quite useless since does not give any
idea of where the pursuer can be. The idea described
here is very simple and intuitive, but we need to for-
malize the concept of ”important” probability maps.
We can relate this concept to the information content
of the probability map and we can use the entropy
function [19] of the probability map as measure. The
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Figure 4: The average rescue time T
∗

as function
of the number of pursuers np for four different syn-
chronization periods. The solid lines refer to the case
of no estimation of the position of teammates, while
the dashed lines refer to the case of estimation.

entropy is defined as:

H(Ψ) , −Ψ log2 (Ψ)) (16)

where Ψ = pe,p(xe, x, Yt) is a probability map. A
threshold on the entropy can give a simple method to
decide when to communicate a particular probability
map. For example, if the entropy is very small means
that the probability map contains useful information
and should be sent. In Figure 5 there are some results
obtained using the entropy-based synchronization in
the case of two pursuers and one evader game. In
the upper plot of Figure 5 curve 1 shows an aver-
age of the synchronization period for each simula-
tion. Since the synchronization is controlled by the
entropy of the probability map and the synchroniza-
tion instant becomes dynamic, the plot shows the
average Tsync for each simulation. Curve 2 shows
the number of synchronization instances that hap-
pened in one simulation. The curve E[Tsync] is the
average of all the Tsync which gives for 100 simula-
tions and idea of how often the robots synchronize.
The average is around 11.7 seconds. In the bottom
of the Figure 5 curve 1 in dashed line shows the cap-
ture time (T ∗) for each simulation and in solid line is
shown the average of rescue times (E[T ∗] = T ∗). If
we now compare the plot in Figure 2(a) correspond-
ing to Tsync = 10, that is close to the average of
the entropy-based case (11.7 seconds), we have that
for the first case, with two pursuers, the average res-
cue time is around 74.2 seconds while in this case we
have an average rescue time of 50.5 seconds. Using
an entropy-based in average the rescue time is lower
since only high content probability maps are shared.

7 Conclusions and Future Work

In this paper we discussed two important issues of
a multi-robot system: localization errors of single
robots and limitations in the communication be-
tween robots. We used the pursuit–evasion game to
model a quite general class of multi-robot systems
and we proposed an extension of a probabilistic ap-
proach for this kind of systems when there are local-
ization errors. The probabilistic approach was natu-
ral to deal with the assumptions of imperfect local-
ization, measurement noise, and inaccurate a priori
obstacle map. Simulations showed that a multi-robot
systems performs better than a single robot system,
when it relies on perfect communication. We dis-
cussed a possible extension in the case of communi-
cation constraints, such as periodic communication.
Some preliminary results using an entropy-based ap-
proach was also discussed. Our current research in-
volves three extensions of the pursuit–evasion game
for the multi-robot system described in the paper.
The first task is to let the the communication chan-
nel be available only at random time instances, which
would model a real situation, for example, when a
WLAN is shared by many (unpredictable) users. The
second is to find a good measure to compare prob-
ability maps calculated in different instants. The
third task is to integrate localization errors in the
communication model.
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