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Abstract—This paper suggests a mapless indoor localization
using wifi received signal strength (RSS) of a smartphone,
collected by multiple people. A new trajectory learning algorithm
by combining a dynamic time warping and a machine learning
technique is proposed in order to generate an alternative map.
Moreover, we combine particle filter and Gaussian process (GP)
for the position estimation, because it can use the alternative map
as the probabilistic function (the prior), and can use probabilistic
relationship (the likelihood) between wifi RSSs and location. Field
experimental results confirm the usefulness of our algorithm
when the map is not available and robustness against outliers, in
that the accuracy of the proposed localization is similar to that
using the true map information.

I. INTRODUCTION

Indoor localization becomes of increasing interests due to
the need for location information where GPS is not available.
Fortunately, prevalence of wireless access points built in many
buildings and public spaces helps developing a wifi-based
indoor localization without additional installation of positioning
devices such as lidar, camera, and ultra wide band.

Wifi-based localization consists of training and test phases,
which is called fingerprinting. In the training phase, a service
provider collects the wifi received signal strengths (RSSs) at
known locations, and then builds a relationship between RSS
and location. In the test phase, a user asks for position by
sending currently measured RSS to the server. On the other
hand, the server runs a localization algorithm and returns an
estimate with context such as a map. Here, it is important to
address the assumption that the server is always able to provide
map information. The problem is that, during communicating
map information, the privacy of both a user and a service
provider can be invaded by disclosing the user’s location
and identity, and the service provider’s data. The mapless
localization proposed in this paper eliminates the need to
disclose such information.

The mapless localization and navigation have been studied
in many robotic and cybernetic applications. The works [1],
[2] exploit IMU sensors to track the trajectory of a smartphone
user. However, in general indoor environments, the accurate
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estimation for the velocity and the direction is difficult. For
example, for obtaining the accurate velocity, the attitude of
the smartphone needs to be kept fixed without rotating. More
specifically, using a step detection for estimating the moving
distance of a user involves significant error when the user
swings the smartphone by walking. Also, the estimation of the
heading direction is much biased due to the ferrous material
and the accumulated gyro error. In [3], [4], a RSS propagation
model is assumed to be so accurate that precise localization is
possible without map information. However, the indoor signal
propagation model significantly varies over area due to the
multi-path fading problem caused by walls. In [5], [6], they
rely on visual sensors that need to always face forward, which
is impractical. This paper eliminates to need the particular
behavior restriction about smartphone and the accurate signal
propagation model.

Our indoor localization is characterized by relieving those
restrictions and not using private data. Theses can facilitate
a crowdsourcing localization in that the massive amount of
the qualified training samples can be collected without costly
efforts [7], [8]. This paper proposes a mapless localization
algorithm by learning hidden intended trajectories from the
trajectories sampled from crowds. The intended trajectories
become the alternative map information to support the absence
of the true map information.

The algorithm supporting the absence of map consists of two
parts. First, it detects the start and the end points (landmarks)
of any trajectory samples obtained from crowds, by recognizing
the pattern of wifi signals. This work is necessary to obtain
the similar trajectories that have the same start and end points.
We combine linear discriminant analysis (LDA) and principal
component analysis (PCA) [9], which play a role of both
dimensionality reduction and clustering datapoints obtained
from different landmarks. The landmark involves the featured
sites such as room, toilet, front of elevator or stair.

Second, we learn scattered trajectory samples that have the
same start and end points, into one intended trajectory. In
order to match different length and time synchronization of
the samples, we apply dynamic time warping with kalman
smoothing [10], [11]. Also, robust trajectory learning is
achieved, which allows to classify the outlier trajectory.

As the final estimator for a positioning, a combination
of Gaussian process (GP) and a particle filter [12]–[14] is
applied. The prior distribution of the particle filter is defined
as a function of the learned trajectories. The likelihood is
defined as GP output that models wifi RSS with respect to the
corresponding positions [15].978-1-5090-2425-4/16/$31.00 c© 2016 IEEE



Our final contribution involves field experiments in an office
building at Seoul National University. We obtain training
datapoints from different people carrying a smartphone, and
test our indoor localization algorithm for another participant.
The participants are not given any guideline about restricted
attitude to carry the smartphone, for example, not to swing the
smartphone or not to put it in pocket. From the experimental
results, we find out that the learned trajectories are very close
to the true map. Therefore, the result of our indoor localization
without map information is accurate almost as the result using
the true map information.

The rest of this paper is organized as follows. Section II for-
malizes the wifi-based indoor localization using a combination
of Gaussian process and the particle filter. Section III describes
the contributed trajectory learning algorithm. In section IV,
experiments and analysis are presented. Finally, section V is
devoted to concluding remark.

II. PROBLEM FORMULATION

This section formalizes the indoor localization using smart-
phone and its measurement, i.e. wifi received signal strengths
(RSSs) obtained between wireless access points (APs) and the
smartphone. We use Bayesian filtering to estimate the location
of a smartphone user from RSS measurements. In section II-A,
Gaussian process (GP) is applied to find a relationship between
measurements and positions. In section II-B, particle filter is
used for combining the GP model and smoothing filters for
indoor localization. The main motivation can be found while
establishing the particle filter when we cast the question how
we improve the localization without a true map information.

A. Gaussian process for modelling wifi RSS likelihood

First, we are interested in building a relationship between
the 2-D position x and the corresponding RSS measurement
y obtained from one wifi access point. Let D = {(xi, yi)}li=1

be a set of l number of training datapoints drawn from

yi = g(xi) + ε, (1)

where the noise ε is drawn from normal distribution N(0, σ2
gp)

with the known variance σ2
gp. In the GP model, the joint

distribution over the noisy training outputs, Y = {y1, . . . , yl}T,
is a function of the training inputs, X = {x1, · · · ,xl}, with
the form

Y ∼ N(0,K(X,X) + σ2
gpI), (2)

where K(X,X) is l× l kernel matrix whose (i, j)-th element
is k(xi,xj). The squared exponential is a commonly used
kernel function, given by

k(xi,xj) = θ1exp
(
− ‖ xi − xj ‖2

2θ2

)
, (3)

where θ1 and θ2 are hyperparameters of the kernel, which are
learned by the conjugate gradient descent method [16].

After the training, the GP estimates the output value of the
Gaussian process for the input value that is the location of

interest x∗ in our setting. The output takes Gaussian distribution
with the mean µx∗ and variance σ2

x∗ :

p (g(x∗)|x∗,X,y) = N
(
g(x∗);µx∗ , σ

2
x∗

)
, (4)

and

µx∗ = kT
∗(K(X,X) + σ2

GP I)−1Y

σ2
x∗

= k(x∗,x∗)− kT
∗(K(X,X) + σ2

GP I)−1k∗,

where k∗ is the l× 1 vector of covariances between x∗ and X.
The equation (4) describes the likelihood of RSS obtained

from ‘one’ AP at particular position. Assuming that the RSSs
from different wifi APs are independent, we can obtain the
joint likelihood model as follows:

p(yt|xt) =
d∏
i=1

(p(yi|xt)) , (5)

where d is the number of wifi APs, p(yi|xt) is the simplified
notation of (4), t is time index, and yt = [y1t, · · · , ydt]T is a
set of RSSs obtained from d different wifi APs at time t.

B. Particle filter for estimating location

Particle filter estimates the posterior probabilistic density
function (pdf), p (xt|y1:t), over a user’s location xt with given
wifi RSSs y1:t. By Bayes’s rule, the pdf can be given by:

p (xt|y1:t) =
p (yt|xt) p (xt|y1:t−1)

p (yt|y1:t−1)
, (6)

where

p (xt|y1:t−1) =

∫
p(xt|xt−1)p (xt−1|y1:t−1) dxt−1.

Because eqn. (6) cannot be calculated analytically except
for some special cases such as the linear Gaussian state-space
model (e.g., Kalman filter), the particle filter approximates
the posterior pdf using a finite set of weighted particles. Let
{xit, wit}

Np

i=1 be a set of Np number of particles and weights,
where the weights are normalized, i.e.

∑Np

i=1 w
i
t = 1. Each

xit represents the hypothetical state of the true state with
the corresponding probabilistic value wit. Thus, eqn. (6) is
approximated as follows:

p (xt|y1:t) ≈
Np∑
i=1

witδ(xt − xit), (7)

where δ(·) is Dirac delta function. Then, the estimate of the
state xt can be described by:

x̂t = E[xt|y1:t]

≈
Np∑
i=1

witx
i
t. (8)

The weights can be obtained in the following:

wit = wit−1

p
(
yt|xit

)
p(xit|xit−1)

q (xt|x1:t−1,y1:t)

= wit−1p
(
yt|xit

)
. (9)



Thus, the weights are updated by likelihood p(yt|xit) only. Note
that the likelihood is defined as the result of GP in equation
(5).

An important remaining part of the particle filter is sampling
the particles using the prior probability p(xt|xt−1). The role of
the prior is to smooth target trajectory and to generate particles
in areas irrelevant to the true location. In many researches, the
prior is modeled by:

p(xt|xt−1) = Pdis · Pmap, (10)

where
Pdis = N (‖ xt − xt−1 ‖; v∆t, σv∆t) ,

and

Pmap =

{
0 if a particle crossed a wall
1 if a particle did not cross a wall.

Here, we tackle problems of using Pdis and Pmap in the
conventional indoor localization. The probability Pdis needs the
velocity v and the variance σv of the user. However, obtaining
accurate velocity requires the condition that the attitude of a
smartphone has to be kept fixed without rotating, e.g. foot-
mounted pedestrian tracking [17]. This is not practical because
most people swing a smartphone when walking. Therefore,
instead of Pdis, we apply Hodrick-prescott filter [18], PHF ,
which obtains a smoothed-curve representation of a time-series
trajectory, given by:

PHF = N
(
‖ xt − xt−2 − 2xt−1 ‖2; 0, σv

)
, (11)

where it does not require the velocity estimation.
The other issue is that the accuracy of the indoor localization

is much affected by an informative map, i.e. Pmap. If the map
is unknown, the accuracy is dramatically reduced. Our major
motivation is to tackle situations when the map is not available
and the contribution is to generate an alternative function PTL
that imitates map information. The prior we will use is modified
from (10) is as follows:

p(xt|xt−1) = PHF · PTL, (12)

and the specific description for PTL will be shown in the next
section.

III. LEARNING INDOOR TRAJECTORY

The purpose of the trajectory learning is to help localization
accurate when map information is not available. In section
III-A, we show the concept of the trajectory learning problem.
Section III-B describes the specific trajectory learning algorithm
and section III-C addresses the underlying issues to support
the algorithm given in III-B.

A. Concept of learning indoor trajectory

The basic idea for learning the indoor trajectories comes
from that people tend to walk similar trajectories when they
have the same departure point and destination. In statistical
view, when the trajectories x1:M

1:t of M different people (they
have the same departure and destination) are given, there exists

a hidden intended trajectory z1:t that is representative of all
x1:M

1:t . For example, z1:t can be average trajectory of x1:M
1:t .

For considering a realistic indoor localization, first we need
to consider that each of x1:M

1:t can have different length because
people move at different speed. Second, we allow some people
to have different trajectories although they have the same
departure and destination. Therefore, the algorithm is required
to detect those different trajectories (or outliers). Satisfying
these conditions, dynamic time warping with kalman smoothing
[10] is greatly suitable for learning indoor trajectory, which is
described in the following section III-B.

On the other hand, the assumption that we need to know the
departure and the destination, can be solved by recognizing pat-
terns of wifi RSSs. We apply a machine learning technique for
detecting landmarks such as the departure and the destination,
which will be shown in section III-C.

B. Trajectory learning algorithm

We are given M trajectories xkj of length N (k), where k =

0, . . . ,M − 1 and j = 0, . . . , N (k) − 1. Difference from the
notation used in the previous section, i.e., x1:M

1:t , is because
we allow the trajectories to have different length. Our goal
is to find one hidden intended trajectory zt of length T at
t = 0, . . . , T − 1. The length T is set to the twice the average
length of the trajectories, i.e., T = 2/M

∑M
k=1N

(k).
The trajectory learning algorithm considers the trajectories

xkj (having the same departing point and destination), as the
observations of the one intended trajectory, zt. It is expressed
as

zt+1 = f(zt) + wzt , wz ∼ N(0,Σz) (13)
xkj = zτk

j
+ wx

j , wx ∼ N(0,Σx), (14)

where wz and wx are the Gaussian noises whose covariance
matrices Σz and Σx are to be estimated. The subscript τkj is the
time index z to which the observation xkj is mapped. The time
indices τkj are assumed to follow a multinomial distribution,
i.e. τkj ∼ p(τkj+1|τkj ).

Estimation of the hidden trajectory zt and the time indices
τkj can be done by maximizing the following log-likelihood:

maxτ,Σ(·) logp(z, τ ; Σ(·)), (15)

where Σ(·) denotes both Σz and Σx. However, it is difficult
to optimize the likelihood over Σ(·) and τ simultaneously.
We maximize (15) through two iterative algorithms. First, we
update the covariance matrix Σ(·) with the fixed τ . In E-step, the
pairwise marginals over the latent variables z1:t are evaluated
with the current Σ(·), by using a Kalman smoother. Then, M-
step uses theses marginals to update the covariance matrix
Σ(·).

Second, to optimize over the time-indexing variables τ ,
dynamic time warping (DTW) is used, where DTW is a
sequence alignment algorithm by measuring similarity between
two different signals.
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Fig. 1: Illustration of trajectory learning algorithm: the trajectories sampled from 6 different people (shown in (a)) are learned.
The corresponding result is very close to the true trajectory as shown in (b). In (c), one outlier trajectory is added to the
trajectories used in (a) and the result is still close to the true as shown in (c). We can detect the outlier trajectory by examining
the norm of the covariance in (d), where the seventh outlier trajectory has an outstanding value.

We estimate the time index τ̂ that maximizes the log-
likelihood at fixed Σ(·) and z, given by:

τ̂ = argmaxτ logp(z, τ ; Σ(·))

= argmaxτ
M−1∑
k=0

Nk−1∑
j=0

[logp(xkj |zτk
j |T , τ

k
j )

+logp(τkj |τkj−1)]. (16)

DTW solves the optimization problem (16) using dynamic
programming. More detailed description for this algorithm can
be found in [10].

Figs. 1(a) and 1(b) show the result of trajectory learning
when 6 different people move the same intended trajectory. In
Fig. 1(b), individual samples are made from the combination of
the GP and the particle filter in section II. After the trajectory
learning algorithm, the learned trajectory is very close to the
true as shown in Fig. 1(a).

Until now, we assume that the trajectories, xkj ’s, are similar.
We now suppose that some of xkj ’s are different (e.g., detour)
although they have the same start and end points of the
trajectories. It is possible to detect the outliers by examining
the estimated covariance Σx because it implies the difference
between the learned trajectory z and a sample trajectory
x from the equations (13). Figs. 1(c) and 1(d) show this
situation when the additional seventh person moves along
another trajectory described in Fig. 1(c). Despite this outlier,
the learning algorithm gives the accurate trajectory shown in
Fig. 1(c), which is similar to the learned trajectory in Fig. 1(a).
Also, when we examine the norm of covariance Σx of each
trajectory, the different trajectory has a distinctive value in
comparison with the others, as shown in in Fig. 1(d). From
this, we can recognize the outlier trajectory.

C. Landmark detection
This section provides the detection of the start (departing

point) and the end points (destination) in order to gather the
similar trajectories. This is a necessary part to obtain the sample
trajectories xkj that were used for making the hidden trajectory
z in the previous section.

First of all, we define the specific site (or landmarks) which
can be the start and the end points of any trajectory. In this
paper, we define landmark locations as the front of elevator or
stair, and the middle of room and toilet.

Let W = {(yi, wi)}ni=1 be a set of n number of training
datapoints, where y = [y1, · · · , yd]T is a set of the RSSs
obtained from d wifi APs, w ∈ {1, 2, . . . , C} denotes the label
of the designated landmarks, and C is the number of landmarks.
In many indoor areas, d is large. For example, 193 (d=193) APs
are found in an office building of Seoul National University
and 531 APs are used in the open UJIIndoorLoc dataset [19].
Therefore, we need a dimensionality reduction to deal with
high dimensional data in a fast computation.

Also, y has that many empty elements because signal of
one wifi AP does not reach the large indoor area. These empty
elements are set to the minimum RSS value. The dimensionality
reduction method plays a role of eliminating those meaningless
elements.

Linear discriminant analysis (LDA) and principal component
analysis (PCA) are fundamental dimensionality reduction
techniques. LDA is a supervised dimensionality reduction
in that only labeled training data are used, and PCA is an
unsupervised method in that only unlabeled training data
are used. Semi-supervised approaches can outperform the
individual supervised or unsupervised methods by using both
labeled and unlabeled data [20]. The following is a description
for the semi-supervised dimensionality reduction algorithm
based on LDA and PCA.

The between-class covariance matrix Sb, the within-class
covariance matrix Sw, and the scatter matrix S are defined as:

Sb =

C∑
c=1

nc(µc − µ)(µc − µ)T, (17)

Sw =
C∑
c=1

∑
i:wi=c

(yi − µc)(yi − µc)T, (18)

S =
l∑
i=1

(yi − µ)(yi − µ)T, (19)
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Fig. 2: Clustered landmark datapoints in the reduced RSS signal
space using the semi-supervised PCA-LDA of section III-C,
where the training datapoints of the landmarks are obtained
on the 14-th floor of Bldg 301 of Seoul National University
shown in Fig. 4.

where nc is the number of the labeled samples in class c ∈
{1, 2, . . . , C}. Also, µc and µ are the mean vectors of the
datapoints of class c and all datapoints, respectively, given by:

µc =
1

n

∑
i:wi=c

yi, µ =
1

nc

n∑
i=1

yi.

LDA is to find the transformation matrix such that the
between-class covariance matrix Sb in the embedding space
is maximized and the within-class covariance matrix Sw
in the embedding space is minimized. The transformation
matrix TLDA is given by the following generalized eigenvalue
problem:

SbTLDA = SwTLDAΛ,

where Λ and TLDA are matrices whose diagonal elements
correspond to the generalized eigenvalues {λi}di=1 and a matrix
whose column vectors {ϕi}di=1 correspond to the generalized
eigenvectors, respectively.

Similarly, PCA finds the transformation matrix TPCA in the
following:

STPCA = TPCAΛ.

To use the concept of semi-supervised approach, we modify
the generalized eigenvalue problem as follows:

SlbT = SlwTΛ, (20)
Slb = αSb + (1− α)S, (21)
Slw = αSw + (1− α)I, (22)

where I is the identity matrix, and α is the weight parameter
on LDA and PCA.

Assuming λ1 ≥ λ2 ≥ · · · ≥ λd, the transformation matrix
Q is obtained as follows:

Q =
(√

λ1ϕ1|
√
λ2ϕ2| · · · |

√
λrϕr

)
, (23)
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cluster in Fig. 2 and the path of the user. The testing user
moves along with “room1 → elevator1 → toilet1 → elevator2
→ toilet2 → elevator1 → room1”.

Fig. 4: Floor plan of the 14-th floor of Bldg 301 at Seoul
National University.

where r is the dimension of the reduced space. Therefore, a
low-dimensional representation ȳi ∈ Rr of the original data
yi ∈ Rd (r � d) is obtained by

ȳi = T Tyi. (24)

Fig. 2 illustrates that different landmark datapoints have been
clearly clustered in the reduced space. With the well-classified
data, we detect the moment at which the user is located at
the designated landmark points, based on the distance-metric
threshold. We define the distance metric as:

Dc = ‖µ̄c − ȳd‖ (25)

which denotes the distance in the reduced space between center
of each cluster, i.e. µ̄c = T Tµc, and the test point ȳd. Fig. 3
shows the distance metric Dc with respect to the movement
of a user for 2 minute. Fig. 3 shows the accurate history of
the varying distance between the designated landmarks and
the user position, in the signal space.

After detecting landmarks of trajectory samples, we collect
the refined trajectories. Let z = {z(1), z(2), · · · , z(m)} be a set
of m learned trajectories, where each z(·) has different start
and end points. For example, departure and destination of z(1)
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Fig. 5: Experimental results of the localization: (circle-line) with the proposed algorithm, (triangle-line) given map, and
(square-line) without map. The proposed algorithm, which does not use the map information, gives similar performance to the
case using the true map information.

are toilet and room, and those of z(2) are elevator and toilet,
respectively. Keep in mind that the learned trajectories z are
used for building the probability PTL, in (12). We model PTL
as the Gaussian distribution:

PTL ∼ N (xt;µTL,ΣTL) (26)

and

µTL = argzmin‖z− xt‖,

where µTL is the closest position among z to the particle
sample xt. Also, the variance ΣTL is defined as the estimated
covariance, Σz in eqn. (13), which represents the degree at
which the particles are allowed to be apart from the learned
trajectory z. Closing this section, we summarize the flow of
our algorithm into Algorithm 1.

Algorithm 1 Pseudo code of the proposed indoor localization
without map

Given:
· Gaussian process training data set, {(xi,yi)}li=1 in II-A.
· Landmark training data set, {(yi, wi)}ni=1 in III-C.
Initial estimation phase:
· The prior p(xt+1|xt) = PHF in (11).
· The likelihood of GP p(yt|xt) in (5).
· Run the particle filter and estimate trajectories in II. Theses
trajectories are stored to update the prior in the update
estimation phase.
Update estimation phase:
· Detect landmarks using the algorithm in III-C and collect
the trajectories that have the same start and end landmarks.
· Do trajectory learning algorithm in III-B.
· Build the probability PTL in (26).
· Update the prior p(xt+1|xt) = PHF · PTL in (12).
· Run the particle filter for localization in II.

IV. EXPERIMENTS

A. Setup

Our experimental field is the 14-th floor of building 301 at
Seoul National University, as shown in Fig 4. The used device is
Samsung galaxy S4 whose cpu is 1.6 GHz with android OS and
wifi communication uses IEEE 802.11 protocol. We program
the smartphone application using Java eclipse for obtaining
the wifi fingerprints, sensor measurements, and communicating
with the laptop. The function of scanning wifi in android
provides us the information of mac address, name of AP, and
the decibel level of RSS. Ten different people participated in
collecting training data and they are not given any guideline
about their attitude, for example, not to swing the smartphone
and not to put it in pocket. We record videos of the movement
where Gopro camera was built on head, which can be used
to extract the ground truth trajectories. The number of used
wifi APs is 193, but we do not know their locations. We
use 10-dimensional data from the 193 raw data through the
dimensionality reduction described in section III-C.

B. Results

First of all, we show the learned trajectories that represent
the alternative map information. The training participants in
our experiments moved freely in the experimental area. After
obtaining those localized results using Initial estimation phase
in Algorithm 1, the landmark detection algorithm collects 44
trajectories and divides them into 5 kinds of the trajectories
whose start and end points are the designated 5 landmarks
respectively, as shown in Fig. 5(a). Then, the trajectory learning
algorithm finds only 5 learned trajectories as shown in Fig. 5(a).
The learned trajectories are very helpful for the localization in
our algorithm, in Fig. 5(b), in that the result of the proposed
algorithm is almost accurate as the result using the true map
information. The average distance errors between the estimated
positions and the true are 3.15 m (the proposed), 2.95 m (given
map), and 4.15 m (without map), respectively. A few among



the estimated positions, in our algorithm, stray from the map
because it cannot perfectly restrict the estimates in the reachable
area as much as the algorithm using the true map. This makes
a slight difference between our algorithm and the localization
using the map. The result of the proposed algorithm much
outperforms the result without the map. From this result, we
confirm that our algorithm is useful for the situation when a
map is not available.

V. CONCLUSION

This paper addressed the indoor localization that uses no
map information and preserves the privacy of the participants.
The proposed trajectory learning algorithm provided the
similar information map to the true map so that achieved
accurate localization results. Because this trajectory learning
algorithm does not require any particular behavior restriction
to the participants, it is well-suited for crowdsourcing. Our
crowdsourcing localization can continuously update the pseudo-
map more accurately, which is useful for assisting humans effort
and robotic navigating in indoor area.
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[9] M. Sugiyama, T. Idé, S. Nakajima, and J. Sese, “Semi-supervised
local fisher discriminant analysis for dimensionality reduction,” Machine
learning, vol. 78, no. 1-2, pp. 35–61, 2010.

[10] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004, p. 1.

[11] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,” The International Journal of Robotics
Research, 2010.

[12] J. Ko and D. Fox, “Gp-bayesfilters: Bayesian filtering using gaussian
process prediction and observation models,” Autonomous Robots, vol. 27,
no. 1, pp. 75–90, 2009.

[13] B. Ferris, D. Fox, and N. D. Lawrence, “Wifi-slam using gaussian process
latent variable models.” in IJCAI, vol. 7, 2007, pp. 2480–2485.

[14] F. Duvallet and A. D. Tews, “Wifi position estimation in industrial
environments using gaussian processes,” in Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008,
pp. 2216–2221.

[15] J. H. Yoo, W. Kim, and H. J. Kim, “Event-driven gaussian process for
object localization in wireless sensor networks,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE,
2011, pp. 2790–2795.

[16] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[17] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,”
Computer Graphics and Applications, IEEE, vol. 25, no. 6, pp. 38–46,
2005.

[18] M. O. Ravn and H. Uhlig, “On adjusting the hodrick-prescott filter for the
frequency of observations,” Review of economics and statistics, vol. 84,
no. 2, pp. 371–376, 2002.

[19] S. Joaquin, M. Raul, M.-U. Adolfo, J. A. Tomar, P. A. Joan, B.-B. Mauri,
and H. Joaquin, “Ujiindoorloc: A new multi-building and multi-floor
database for wlan fingerprint-based indoor localization problems,” in
Indoor Positioning and Indoor Navigation (IPIN), 2014 International
Conference on. IEEE, 2014.

[20] O. Chapelle, B. Schölkopf, A. Zien, et al., Semi-supervised learning.
MIT press Cambridge, 2006.


