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Abstract— A new distributed coordination algorithm for
multi-vehicle systems is presented in this paper. The algorithm
combines a particular choice of navigation function with
Voronoi partitions. This results not only in obstacle avoidance
and motion to the goal, but also in a desirable geographical
distribution of the vehicles. Our algorithm is decentralized in
that each vehicle needs only to know the position of neigh-
boring vehicles, but no other inter-vehicle communication
or centralized control are required. The algorithm gives a
natural priority to safety, goal convergence, and formation
keeping, in that (1) collision avoidance is guaranteed under
all circumstances, (2) the vehicles will move toward the goal
as long as a given optimization problem is feasible, and (3)
if prior criteria admit, the vehicles tend to a desirable lattice
formation. These theoretical properties are discussed in the
paper and the performance of the algorithm is illustrated in
simulations with realistic models of twenty all-terrain vehicles.
Planned experimental evaluation using customized miniature
cars is also briefly described.

Index Terms— Multi-robot systems; Flocking; Swarming;
Obstacle avoidance

I. INTRODUCTION

A growing number of applications motivate the devel-
opment of coordination algorithms for autonomous multi-
vehicle systems and problems concerning formation con-
trol have recently attracted the attention of several re-
searchers [3], [4], [5]. Most of these algorithms, however,
do not treat obstacle avoidance in complex environments in
a satisfying way. Obstacle avoidance is fundamental for any
practical mobile system and has been extensively studied
for single-robot systems [1], [2]. In general, it is non-
trivial to extend or combine existing methods for obstacle
avoidance and formation control in a systematic way. This
paper proposes a solution to this problem.

Recent contributions to obstacle avoidance for multi-
vehicle systems is presented in [7], [8], [9], [10], [11].
Most of these studies use appealingly minimalistic con-
trollers to achieve quite remarkable group behavior. These
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controllers can sometimes be motivated by observations of
biological systems. There is, however, a prize to pay for the
simplicity. In many cases assumptions need to be imposed
on the environment, such as convexity constraints on the
obstacles. These assumptions are artificial and seldom
valid in either man-made or natural environments. General
obstacles are allowed in [10], but the scheme is limited
to rigid centralized leader follower formations. The idea
to map certain obstacle shapes to points and then apply a
scheme using switching interaction potentials is discussed
in [9].

The main contribution of this paper is a new coordination
algorithm for flocking in a terrain with obstacles of general
shape. Our solution is based on a modified navigation
function [2] and a coverage control algorithm [12]. The
navigation function considered provides a computationally
efficient way to achieve motion to the goal. In the coverage
control algorithm, a Voronoi region is updated continuously
for each vehicle and the control makes the vehicle move
to the centroid of its region. The naive obstacle extension
would be to just intersect the Voronoi regions with the
obstacles and apply the approach of [12]. Doing that
would however render all the local minima problems of the
early obstacle avoidance schemes. We propose to let the
obstacles influence the density function used to compute
the centroid, as well as the Voronoi regions themselves.
Furthermore, we introduce artificial mirror neighbors to
achieve formation maintenance when the vehicles are mov-
ing in an open space.

The organization of the paper is as follows. In Section II
we briefly present the navigation function tool and the
methods we borrow from coverage control. Section III
describes the proposed coordination algorithm, which is
decentralized and thus to be executed in parallel on all
vehicles. In Section IV analytical results on the properties
of the algorithm are presented. Particularly, safety, goal
convergence, and formation invariance are investigated.
The coordination algorithm is then evaluated through sim-
ulations in Section V. The simulations illustrate the nice
multi-vehicle performance generated by the algorithm both



for simple integrator vehicle dynamics as well as for quite
realistic vehicle models. The latter is motivated from ongo-
ing development of an experimental multi-vehicle platform,
which is also briefly described. Some concluding remarks
are given in Section VI.

II. PRELIMINARIES

The proposed multi-vehicle coordination algorithm is
based on a navigation function and on Voronoi partitions,
which are both discussed in this section.

A. A Modified Navigation Function

Navigation functions were introduced by Rimon and
Koditschek [6] and denote a special version of the potential
functions used in many navigation and obstacle-avoidance
schemes, e.g., [13]. Here we introduce the slightly modified
navigation function used in [2].

Consider an obstacle-free bounded set Ω ⊂ R
2 contain-

ing the goal point p∗. The navigation function f : Ω → R+

is defined as a continuous function that approximately
maps every point p ∈ Ω to the length of the shortest
and collision-free path going from p to p∗. The function
values are first calculated on a uniform rectangular grid
covering Ω. These values are then interpolated to the whole
of Ω. When computing the path lengths in the grid one
can imagine adding the possibility of diagonal steps, thus
allowing steps from an 8-neighborhood, or just use the
4-neighborhood of the original grid. Both these options
are depicted in Figure 1. Although the 8-neighborhood
in one sense is a better approximation to the Euclidean
length of the shortest path, the 4-neighborhood, combined
with a particular interpolation scheme, has the property
of constant gradient norm. This is important, since the 8-
neighborhood might give raise to problems similar to those
caused by local minmima. Obstacle configurations can be
constructed, where two adjacent gridpoints have values that
are arbitraily close, making the gradient arbitrarily small.
We use the 4-neighborhood to guarantee the absense of
such problems. See [2] for details on the interpolation
scheme.

Note that f does not have any undesired local minima,
and the negative gradient of f at p always gives a direction
in which the length of the shortest path to p∗ decreases. In
comparison to the navigation function introduced by Rimon
and Koditschek [6], the modified navigation function de-
scribed above is easier to compute, but on the other hand is
only piecewise differentiable and requires the introduction
of a rectangular mesh covering Ω.

B. Voronoi Partitions

Next we review briefly some notation on coverage con-
trol based on Voronoi partitions from Cortes et al. [12].

Consider N > 1 vehicles in a convex polytope
Q ⊂ Ω positioned at pi ∈ Q and collected in the set
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Fig. 1. Level curves of the navigation function f , computed using both
8- and 4-neighborhoods.

P = {p1, p2, . . . , pN}. A collection of regions V (P ) =
{V1, V2, . . . , VN}, Vi ⊂ Q, is denoted a Voronoi partition
generated by P if

Vi = {q ∈ Q : ‖q − pi‖ < ‖q − pj‖, ∀j �= i},
where ‖ · ‖ is the Euclidean norm. The sets Vi are called
Voronoi regions and a typical partition can be seen in
Figure 2.

Fig. 2. Example of Voronoi regions.

Let φ : Ω → R+ be a given map and introduce the function

HV (P ) =
∫

Q

min
i

‖q − pi‖2 dφ(q).

Note that HV (P ) can be interpreted as the expected value
of the least-square distance to a vehicle p ∈ P from a
randomly located source q ∈ Q having probability density
φ. It turns out that the gradient of HV (P ) with respect to
the position pi is equal to

∂HV (P )
∂pi

= 2MVi
(pi − CVi

),

where

MVi
=

∫
Vi

φ(q) dq,

CVi
=

1
MVi

∫
Vi

qφ(q) dq. (1)

The quantities MVi
and CVi

are the generalized mass
and center of mass (centroid), respectively, and Vi, i =
1, . . . , N , are the Voronoi regions associated with P .



If P ∗ is a local minimum of HV (P ), then

V (P ∗) = {V ∗
1 , V ∗

2 , . . . , V ∗
N}

are the Voronoi regions generated by P ∗, and P ∗ coincide
with the centers of mass of the Voronoi regions defined by
V (P ∗), i.e.,

CV ∗
i

= argminpi
HV (P ).

We are now ready to describe the proposed scheme.

III. DISTRIBUTED COORDINATION ALGORITHM

In this section we present our new multi-vehicle co-
ordination algorithm for flocking and obstacle avoidance.
Consider N vehicles governed by the discrete dynamics

pi(k + 1) = pi(k) + ui(k), i = 1, . . . , N,

where ||ui|| ≤ umax for some positive umax. The problem
we are considering is that of driving the vehicles from an
initial configuration p1(0), . . . , pN (0) towards a goal point
p∗, without colliding with each other or with obstacles.
During the maneuver, we want the vehicles to maintain
a flock, if possible, i.e., to keep the distance to nearby
vehicles as close to some desired value d > 0 as possible.
Each vehicle has only local sensor information about its
immediate surroundings. Regarding the navigation func-
tion, the standard approach is to let f reflect all known
obstacles and add new ones, and recalculate f , as they are
encountered.

The reason for why first-order discrete vehicle dynamics
suffice is that the algorithm is intended to be used as
a high-level control component in a hierarchical control
structure. When applying the algorithm to vehicles with
complex dynamics, such as car-like robots, a lower-level
control component is handling the task of achieving the
motion from pi(k) to pi(k + 1). In these cases, it is also
convenient to supply the lower-level control algorithm with
a guaranteed safe region Wi (as defined below), in which
to plan the trajectory. Section V describes the hierarchical
control structure further.

Before specifying the algorithm, we need some more
definitions and notations. The map φ in the definition of
HV in previous section is set to

φ(q) = e−kf(q),

where f is the navigation function and the gain k ≥ 0 is a
design parameter, which affects the tradeoff between goal
direction and formation maintenance. A nice property that
follows from choosing φ to be an exponential function, is
that the control law is independent of the actual distance
to the goal when the goal is relatively far away, see the
discussion at the end of Section IV.

Let the sensing radius of each vehicle be R, let further-
more Br(p) ⊂ Ω denote the (open) disc with radius r and

center in p. We define Pi as the neighbors of pi within R,
i.e.,

Pi = {pj ∈ BR(pi) : j �= i}.
Let Si ⊂ Ω denote the visible subset from pi ∈ Ω.
Given a Voronoi partition V (P ) = {V1, V2, . . . , VN} of
Ω generated by P = {p1, p2, . . . , pN}, define the sets

Wi = Vi ∩ Si ∩ BR/2(pi), i = 1, . . . , N. (2)

The rationale behind the choice BR/2(pi) is explained in
Remark 3.2 below. For each i ∈ {1, . . . , N}, introduce the
optimization problem

min
p∈Wi

‖p − CVi
‖2 (3)

s. t. f(p) < f(pi) − ε

where ε > 0 is a design parameter. Let d > 0 denote the
desired inter-vehicle spacing, when the vehicles are moving
in an open space.

The following distributed control algorithm is executed
in parallel on all vehicles. Initially it is assumed that the
design parameters k,R, ε, d are fixed.

Coordination Algorithm
1) [Sensor reading] Set pi = pi(k) and determine Si

and Pi from sensor measurements.
2) [Mirror neighbor] If pi is not inside the convex hull

of Pi, then for each pj ∈ Pi create a mirror neighbor
p̂j as

p̂j = pi − d
pj − pi

‖pj − pi‖ ,

Let P̂i be the union of Pi and all such mirror
neighbors, i.e., P̂i = Pi ∪ {p̂j}

3) [Voronoi region] Derive the Voronoi region Vi, based
on P̂i, and compute Wi = Vi∩Si∩BR/2(pi) as in (2).

4) [Optimization] Derive the centroid

CWi
=

1
MWi

∫
Wi

qφ(q) dq,

as in (1), and determine the minimizer of the opti-
mization problem (3). If there is no feasible solution,
set pi(k) = pi, otherwise set pi(k) equal to the
minimizer.

5) [Control actuation] Let ûi(k) = pi(k)−pi and apply
the control

ui(k) =




ûi(k), if ‖ûi(k)‖ < umax

ûi(k)
‖ûi(k)‖umax, otherwise.

Let k := k + 1 and goto Step 1.
Remark 3.1: Safety, goal convergence and formation

maintenance are three desirable properties of the multi-
vehicle system. Note that they in many situations are con-
tradictory. The proposed coordination algorithm, however,
suggests a clear priority between them: (1) if there is no
safe direction to move in, the vehicles stand still; (2) if there



are safe directions to move in, then motion towards the goal
is given higher priority than formation maintenance; and
(3) if there are several safe movements towards the goal,
then the one with the best formation properties is chosen.

Remark 3.2: The Voronoi region Vi in the coordination
algorithm is calculated with information only from BR(pi).
It is easy to construct examples when Vi does not agree
with the Voronoi region V̂i, say, obtained with global
information. An important observation is that Vi and V̂i

agree inside BR/2(pi), which leads to the control ui being
unaffected by this limitation on sensor information.

Remark 3.3: The optimization constraint f(p) <
f(pi) − ε in (3) guarantees that the navigation function
decreases at each step, if a feasible point p exists. If no
feasible point exists, the algorithm sets p = pi so the
navigation function value for that particular vehicle remains
unchanged. Since the navigation function approximates the
distance to the goal, the constraint makes the vehicle move
towards the goal or stand still. Note that even if one vehicle
pi has to stand still at a step due to the lack of feasible
update points, the movement of the other vehicles at that
step may generate feasible points for pi at the next step.

Remark 3.4: The mirror neighbors are introduced in the
algorithm to achieve flocking in open areas. They make
the vehicles converge to a lattice formation with inter-
vehicle distances equal to d. Without the mirror neighbors,
the vehicles at the boundary of a flock will tend to “float
away” in open areas. The coordination algorithm makes
the multi-vehicle system perform suitable squeeze, split
and join maneuvers under some obstacle configurations,
as further described in Section V.

IV. PROPERTIES

In this section we present results on safety, goal conver-
gence, and flocking for the proposed flocking algorithm.
They support part of the previous remarks. The perfor-
mance of the algorithm is then illustrated in the next
section. We start by examining the property of highest
priority.

Proposition 4.1 (Safety): The vehicles avoid collision
with obstacles and other vehicles when coordinated by the
algorithm.

Proof. First note that given a vehicle configuration
P = {p1, . . . , pN} at time k, the configuration P ′ =
{p′1, . . . , p′N} at time k + 1 must necessarily be such
that p′i ∈ Wi for all i = 1, . . . , N , where Wi =
Vi ∩ Si ∩ BR/2(pi). Obstacle avoidance follows from that
Wi is disjoint from the subset of R

2 that is occupied
by the obstacles. Inter-vehicle collision avoidance follows
similarly, since Wi ⊂ Vi and Wj ⊂ Vj , j �= i, are disjoint
due to that the Voronoi regions are disjoint by construction.

The second priority, goal convergence, is investigated in
the following lemma.

Proposition 4.2 (Goal convergence): At each iteration
of the algorithm, the vehicles either move towards the goal,
in the sense that f decreases along the trajectory, or stand
still.

Proof. If the optimization problem (3) has a feasible so-
lution, then f(p′i) < f(pi)−ε where pi denotes the current
position of vehicle i and p′i the next. If the optimization
problem has no feasible solution, then p′i is set to pi so the
vehicle stands still.

Remark 4.3: Let f̂ denote the map for the true distance
to the goal. It is easy to show that for a vehicle at p,
f(p)/

√
2 < f̂(p) ≤ f(p). Hence, if f(p) tends to zero

along the trajectory of a vehicle, necessarily f̂(p) also tends
to zero, i.e., the vehicle tends to the goal.

Remark 4.4: Note that there is always an obstacle-free
direction along which the navigation function decreases. A
vehicle thus only stands still when all descent directions are
blocked by neighboring Voronoi regions. It is possible to
construct examples in which this happens, so the algorithm
does not give global goal convergence. Our experience
shows, however, that such examples are quite rare and
that in most practical situations the algorithm gives global
convergence.

The third property to be discussed is formation mainte-
nance.

Proposition 4.5 (Formation invariance): Consider a lat-
tice of N vehicles in an open space. Suppose all vehicles
have six neighbors, either real vehicles or mirror neighbors,
and that the distances to all six neighbors are equal to d.
Moreover, suppose that for all j �= i, there exist aj ∈ R

2

and Aj ∈ R such that

Wj = {p : p = q + aj , q ∈ Wi}
f(q) = f(q + aj) + Aj , ∀q ∈ Wi.

Then, the formation is invariant under the coordination
algorithm.

The proof is a straightforward application of the following
lemma, which shows the appealing translational invariance
of the proposed control scheme. In other words, two locally
similar configurations at different distances to the goal will
give rise to the same control actions.

Lemma 4.6 (Control invariance): Consider two vehicles
pi and pj with corresponding sets Wi and Wj of the same
shape. Suppose their corresponding values of the navigation
function only differ by a constant, i.e., suppose there exist
a ∈ R

2 and A ∈ R such that Wj = {p : p = q + a, q ∈
Wi}, f(q) = f(q + a) + A, ∀q ∈ Wi. Then the controls
for vehicle i and j are equal:

ui(k) = uj(k).



Proof. Note that

MWi
=

∫
Wi

φ(q) dq =
∫

Wi

e−kf(q) dq

=
∫

Wi

e−k(f(q+a)+A) dq =
∫

Wj

e−k(f(q)+A) dq

= e−kA

∫
Wj

e−kf(q) dq = e−kAMWj
.

Thus,

CWi
=

1
MWi

∫
Wi

qφ(q) dq =
1

e−kAMWj

∫
Wi

qφ(q) dq

=
1

e−kAMWj

e−kA

∫
Wj

(q − a)φ(q) dq

=
1

MWj

(
∫

Wj

qφ(q) dq − aMWj
) = CWj

− a.

Since the relative centroids are the same, the optimization
problems yield the same result. Hence, ui(k) = uj(k).

V. SIMULATION EVALUATION

In this section we illustrate how the proposed coordina-
tion algorithm performs in numerical simulations. First we
study the case with integrator vehicle dynamics and then
a more realistic setting with car-like vehicle dynamics. We
illustrate group cohesion, goal convergence and obstacle
avoidance in a setting with twenty vehicles.

A. Simulations with simple vehicle models
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Fig. 3. Four snapshots of twenty vehicles moving around irregular
obstacles. The goal is in the upper right corner. The parameters are set to
d = 1, R = 3 and k = 1.

For the first simulation we chose irregular and non-
convex obstacles to underline the advantage of not having

to make geometric assumptions about obstacle shape. In
Figure 3 the desired inter-vehicle distance was set to d = 1,
the sensing radius was R = 3 and ε was set to machine
precision, i.e., roughly 10−16 on our system. The figure
shows four snapshots. The vehicle positions are denoted
by stars for the first and third snapshots and by points for
the second and fourth snapshots. The twenty vehicles first
perform a split-rejoin maneuver and then gather around
the goal, marked by “x”. Due to the constraint in the
optimization problem, the vehicles are distributed mainly
in the third quadrant around the goal.

To explore the flocking behavior in detail, we ran a
simulation in an open area without obstacles. Figure 4
shows an almost perfect hexagonal lattice resulting from
the parameters k = 1, d = 2 and R = 3. The distances
between vehicles agree well with the desired value d = 2.
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Fig. 4. Three snapshots of twenty vehicles moving on an open field. The
goal is in the upper left corner. The parameters are set to d = 2, R = 3
and k = 1.

B. Simulations with detailed vehicle models

We have also implemented the multi-vehicle coordina-
tion algorithm in a realistic simulation environment that
consists of both physical vehicles and a graphical computer
simulator, sharing a common controller interface. The
hardware consists of redesigned radio-controlled cars, see
Figure 5(a).

Every car is equipped with a card-PC, actuators for
thrust and steering, a WLAN transceiver for short-range
communication, and a GPS receiver for navigation. The
platform is rugged enough for outdoor terrain use, although
the surface needs to be reasonably smooth. At the moment
only two cars are operational, so to better demonstrate
the flocking properties of our algorithm we have so far
only implemented it in an animated computer-simulated
environment. The environment has a high fidelity 18-DOF
car model whose actuators have the same interface as the
actuators of the physical cars. The information available to
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Fig. 5. (a) A redesigned radio-controlled car, which is the physical part of
our test environment. The car is equipped with a card-PC, a GPS receiver
and a short-range WLAN transceiver. (b) Three trajectories generated by
the car controller. The triangle shows the initial position and orientation
of the car and “x” shows the target location. In (b)a the car has sufficient
space to turn, while in (b)b the dashed line shows the boundaries of the
safe region, Wi, that must not be passed. In (b)c the target is too close
to reach in a left turn, so the car reverses before driving straight ahead.

the controller is also the same as in reality. The controller
can extract the position of the car (although there is no error
as in a GPS measurement). Inter-vehicle communication is
simulated by using a global list of positions where every
single vehicle can only get a list of its neighbors within
a specified radius. A side-effect of having a GPS receiver
on the car is that it has access to a very accurate time
estimate. This is used to synchronize all cars and make
them plan their next step simultaneously. This is crucial
for avoiding ambiguities in the Voronoi partitioning of the
available space.

We have used a control hierarchy where the lower control
layer is responsible for achieving the position changes
commanded by the coordination algorithm.

When implementing the lower layer, i.e. the car con-
troller, some care had to be taken not to make the car
leave the designated safe region Wi. (Recall that Wi is
safe, since by construction all Wi are disjoint and contain
no obstacles.) The three scenarios shown in Figure 5(b)
have been identified and resolved.

Figure 6 shows a snapshot from the detailed simulations.
A group of cars, graphically represented as the US Army
HMMWV all-purpose vehicle, is simulated in a virtual
environment. The obstacles are represented as ditches to
enable overview of the whole field and to make collisions
unrecoverable. All cars are tightly parked at the start, but
when moving towards the goal they maneuver into the
looser flock formation. Eventually they reach a stationary
configuration, gathered around the goal.

VI. DISCUSSION

The problem of combined obstacle avoidance, navigation
towards a goal point, and flocking is hard for two reasons.
Firstly, there is often a tradeoff between the three subgoals

Fig. 6. Snapshot from a detailed multi-vehicle simulation. The last cars in
the group are gathering at the entrance of a passage between two ditches.
The goal is indicated by a small tree, in the far right part of the image.

of safety, reaching the goal point, and group cohesion.
Secondly, the choice of obstacle representation is far from
obvious. In this paper, we address the tradeoff by assigning
the subgoals as constraints and cost function in an opti-
mization problem. The second issue is addressed by using
subsets of the configuration space for both obstacles and
neighboring vehicles. The vehicle subsets and control ac-
tions were derived based on Voronoi partitions, navigation
functions and mirror neighbors.
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