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Abstract: A multi-vehicle search strategy based on the simplex algorithm is
proposed. The strategy is decomposed into a hierarchical scheme with three layers.
The upper layer is described by a discrete-event system. The output of this layer
is a set of way-points for the vehicles and it is used by the middle layer in order
to coordinate the motion of the vehicles. The lower layer drives each vehicle to
a way-point. The paper compares two possible discrete coordination strategies:
one minimizes the travelled distance of the vehicles and the other avoids their
trajectories to cross. Minimization of vehicle intercommunication is also studied.
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1. INTRODUCTION

In this paper we are concerned with a specific
multi-vehicle coordination and control problem.
Given a scalar field, we desire to coordinate the
motions of a group of autonomous vehicles with
sensing and very constrained communication ca-
pabilities to find its minimum in a given region. In
this paper we report our investigations concerning
a search strategy based on the fixed size simplex
algorithm (Spendley et al., 1962).

The main motivation of this study comes from the
PISCIS project, at the Underwater Systems and
Technology Laboratory (USTL), Porto University,
which offers an operational test bed consisting of
two Autonomous Underwater Vehicles (Cruz et

al., 2003). Therefore, in this paper most of the
results are depicted for a team of two vehicles.

Optimization algorithms have been used as the in-
spiration for other multi-vehicle search strategies.
Bachmayer et al. (Bachmayer and Leonard, 2002)
use a pure gradient-based method for scenarios
where a vehicle platoon searches the minimum of
general convex and smooth scalar fields. However,
the oversimplified model considered for the vehi-
cles on that work makes their results unpractical
for the vehicles we consider on this work. Burian
et al. (Burian et al., 1996) report results, for single
vehicle scenario, with several strategies, including
combination of the underlying principles of dif-
ferent optimization algorithms, and present illus-
trative examples using real data, such as depth
profiles of a lake.



The main contributions of this paper are the
definition of a new motion coordination strategy
for the vehicles performing the search operation
and a communications protocol for the distributed
implementation of the simplex algorithm.

The paper is organized as follows. Section 2.1
gives a brief description of the formulation of the
simplex algorithm. Section 2.2 introduces two ve-
hicle allocation strategies. On section 3 we discuss
communication between vehicles and present it
in the hierarchical framework. Section 4 presents
simulation results which illustrate the overall be-
havior of the system, namely the interaction be-
tween the discrete and continuous layers. Section 5
summarizes the conclusions and future work.

2. HIERARCHICAL MODEL

The motivation for employing a team of vehicles
is to improve the search operation by sharing the
measurements taken by each vehicle. However, as
pointed out in the introduction, due to communi-
cation constraints, there are limitations on how
often measurements can be exchanged between
the autonomous vehicles. We therefore propose a
control strategy in which decisions only take place
at a discrete set of events. In between these events,
the vehicles navigate independently.

The control strategy is hierarchical (Varaiya,
2000) with three layers: the upper layer is mod-
elled by a discrete-event system (DES) which com-
municates to the lower layers locations that must
be sampled. The Vehicle Allocation layer assigns
to the available vehicles the task of sampling those
points, according to some predefined strategy. The
lower layer is composed by the supervisors and
continuous-time regulation laws that ensure cor-
rect guidance of the vehicles to the desired points.
In the following we describe the layers in detail.

2.1 DES layer: simplex algorithm

The search strategy described in this paper is
based on the simplex algorithm. In this section
we formalize the simplex algorithm as a Discrete
Event System.

The simplex algorithm is a direct search method
used in many practical optimization problems. It
is usually applied in situations where the cost of
function evaluation is high and gradient calcula-
tion is difficult, as happens in this case. The cost
of function evaluation can be related to the cost of
measurement’s broadcast. The algorithm is useful
to improve an initial estimate of the solution with
few function evaluations. Its simplicity and ro-
bustness properties (Nelder and Mead, 1965; La-
garias et al., 1998) make it an interesting algo-

Fig. 1. A triangular grid over a two-dimensional
scalar field depicted by its level curves. The
solid line triangle illustrates the state z of the
discrete-event system evolving on the grid.

rithm for minimum search applications with mul-
tiple vehicles. Notice that the widely used gradient
based methods cannot cope with the existence of
noise in the field. Moreover, the main objective
in this kind of application is not an algorithm
which converges in few iterations but one which
enhances the synergy between the vehicles given
the problem constraints. The sampling sequence
determines the time taken to reach the minimum
since it depends on the total distance travelled
by the vehicles. This observation rules out opti-
mization methods which perform well on a pure
mathematical analysis but which would lead to
inefficient sampling sequences (for example, “sim-
ulated annealing” (Burian et al., 1996)).

Thus, our objective is to use the simplex algorithm
to progress towards the minimum and to get as
close as possible to it. In order to improve the
estimate of the solution obtained with the simplex
algorithm we can resort to other kind of search
strategies, which are topic of future work.

An informal description of a multi-vehicle search
strategy based on the simplex algorithm was
first presented in (Sousa and Pereira, 2002). In
(Speranzon et al., 2004), a formal description of
the system architecture and a Discrete Event Sys-
tems formulation of the simplex are presented. We
follow that formulation in this paper.

Define a field through a scalar-valued map F :
Ω → R. Let pi ∈ Ω, i = 1, 2, . . . be successive key
positions visited by the vehicles. The fixed-size
simplex coordination scheme is a discrete-event
system D = (Σ, Z,W, ξ, z0). For a reference on
discrete-event systems notation see (Cassandras
and Lafortune, 1999). The state z is a triangle of
neighboring grid points (See Figure 1)

z = {p1,p2,p3}

Let the input set W be a subset of R
3 with

wT = (F (p1), F (p2), F (p3)) ∈ W . The transition
function ξ is defined as

ξ(e, z,w) = zPwS

where Pw is the permutation matrix



Pw =



















(

e3 e2 e1

)

, if w1 > max(w2, w3)
(

e1 e3 e2

)

, if w2 > max(w1, w3)
(

e1 e2 e3

)

, otherwise

with ei ∈ R
3 being the unit vectors, and

S =





1 0 1
0 1 1
0 0 −1





The transition function hence updates the simplex
z by picking the point p, say, in z with largest
value F (p), and then reflects it in the axis between
the other two points of z. The new point replaces
the reflected one and forms the new simplex z+ =
ξ(e, z,w). In what follows, the simplified notation
z+ = S(z) is used for the discrete update and
z(k) denotes the discrete state after event ek,
k = 0, 1, . . . . The discrete evolution terminates
at step k∗ ≥ 2 if z(k∗) = z(k∗ − 2). Since
the algorithm is deterministic, it follows that a
continuation beyond step k∗ would lead to an
oscillation between the two discrete states: z(k∗)
and S(z(k∗)). We call the union of these a fixed
point of the discrete evolution since z(k∗) =
S(S(z(k∗))) and denote it χ = z(k∗) ∪ S(z(k∗)).

Remark 1. The vertex which replaces the worst
vertex (i.e., the vertex p ∈ z that solves
maxp∈z F (p)) from the simplex z will be the third
element of z+.

2.2 Vehicle allocation layer

The simplex algorithm, as described above, re-
turns points to be sampled. However, it is still
necessary to choose which vehicle will travel to
which point in order to sample it. In this section
we present two vehicle-to-sampling point alloca-
tion strategies: non-crossing and greedy.

In practice, the first simplex will be predefined
on both vehicles with a random initial vertex
allocated to each vehicle. Let’s assume that vehicle
1 (V1) is at vertex A and vehicle 2 (V2) is at vertex
B. C is the unvisited vertex.

(1) V2 samples the value at its initial vertex B
and goes to the unvisited vertex C.

(2) V1 compares F (A) with F (B). If F (A) is
worse than F (B), V1 goes to that vertex,
making it its current vertex.

(3) Eventually, V2 reaches C. If F (C) is worse
than F (B), special care has to be taken: if
F (B) is worse than F (A), V2 calculates the
new vertex and goes to there (the algorithm
advances one iteration). If F (A) is worse than
F (B), V2 will wait the result from V1 telling
it whether F (C) is worse or not than F (A).
If F (C) is worse than F (A), V2 will also
calculate and advance to next vertex.

This concludes the initialization phase, with the
vehicles at the two best vertexes of the current
simplex.

Starting from z(k) and assuming that this is not
the fixed point, it is always possible to generate
the two following simplices, z(k +1) and z(k +2),
without knowledge of 1 F (z3(k + 1)).

The set of vertexes z(k+1) is trivially obtained by
application of the simplex algorithm. If the vehicle
is at the fixed point then z3(k + 1) will be the
worst vertex of z(k + 1), pw, and the algorithm
will stop as soon as that vertex is sampled. When
that is not the case, pw will have to be one of
the two other vertexes, whose values are already
known, and hence its determination is trivial. In
this case, it is possible to “predict” z3(k + 2)
even without completing the current iteration,
i.e., without waiting for the acquisition of the
value at z3(k+1), just by reflecting pw through the
remaining vertexes of z(k + 1). Therefore, at each
step of our algorithm there are two new candidate
points to be sampled, which may be allocated to
each vehicle. It is possible to have one vehicle
travelling to the point required to complete the
current iteration and the other travelling to the
point required to perform the next iteration.

We define the permutation matrixes P+
w and P++

w

as

P+
w =







(

e1 e3 e2

)

, if w2 > max(w1, w2)
(

e2 e3 e1

)

, otherwise

P++
w =

(

e1 e3 e2

)

and

S+(z) = zP+
wS

S++(z) = zP++
w S

Thus, at each step of the simplex algorithm we
will also perform the following calculations:

ẑ(k + 2) := S+(z(k + 1))

ẑ(k + 3) := S++(z(k + 2))

The motivation for the non-crossing allocation
strategy comes from the requirement to minimize
the probability of collisions. The non-crossing
vehicle allocation strategy is defined as follows:
the vehicle with the most recently visited worst
vertex, the exploring vehicle will move to the
next vertex to be sampled. The other vehicle, the
waiting vehicle, will either stop, if its dynamics
allows it, or move towards ẑ3(k + 2) at lowest
possible speed.

In the simulations we used as reference pb, the
point between ẑ3(k+2) and ẑ3(k+3) . The choice

1 We denote with zi(k) the i-th element of the set of

vertexes z(k).



of pb is made based on the observation that the
only candidate vertexes for the waiting vehicle in
the following two iterations are those two points.
It can be seen that after exploring vehicle samples
z3(k), this vertex will be found either as:

• The worst vertex, in which case the algorithm
stops.

• The new best vertex, in which case the former
waiting vehicle starts travelling to ẑ3(k + 2)
as exploring vehicle.

• The second best vertex. In this case, as is
implicit in the strategy, both vehicles keep
their roles. The exploring vehicle starts trav-
elling to ẑ3(k+2) and the next possible point
to be sampled by the waiting vehicle will be
ẑ3(k + 3).

The greedy strategy is defined as follows: given
z3(k+1), ẑ3(k+2) and the current position of the
vehicles, the vertexes are allocated to each vehicle
in order to minimize the sum of the travel distance
of both vehicles from their current position to the
destination vertexes. The underlying idea of this
strategy is to allow the vehicles to advance as fast
as possible by taking advantage of the anticipated
simplex reflection ẑ(k + 2).

2.3 Continuous dynamics

The continuous layer represents the dynamics
of the vehicles and the continuous-time control
algorithms. Each vehicle i = 1, . . . , n is described
by a nonlinear control system

ẋi = fi(xi,ui), ui ∈ Ui

where fi : Ω×U i → Ω defines the dynamics of the
individual vehicles with continuous state xi and
admissible continuous controls in Ui. The control
ui is a state feedback that depends on both the
continuous state and a waypoint pi determined by
the supervisor, i.e.,

ui = ui(xi,pi)

When vehicle i is sufficiently close to pi, the
field measurement is communicated to the upper
layers.

3. VEHICLE INTERCOMMUNICATION

Since we are dealing with autonomous vehicles
we desire to minimize the communication between
the vehicles, in order to limit the power consump-
tion associated to communications. The execution
of the simplex algorithm requires, at each event
instance, the two vehicles to know which vertex
is to be reflected, i.e. the worst vertex, and from
there to compute the next vertex that has to be
sampled. Thus the issue is about the possibility

to infer on which is this vertex without communi-
cating measurements.

In this paper we consider the following communi-
cations scheme. Each time V2 samples a new point
it broadcasts the sampled value. V1 never broad-
casts its sampled points. Hence, by this manner,
V1 is able to take decisions at each event, since
it centralizes all data. As we’ll show below the
communication bandwidth is reduced by a factor
of almost two when compared to the case when
both vehicles broadcast their sampled values. This
factor is not exactly two because V2 has to some-
how decide which point it should sample next.
That can be done by communicating the relative
order of the three vertexes of the current simplex
from V1 to V2. This would amount to six possible
cases (the permutations of the three vertexes).
However, the possible cases can be further reduced
due to the restrictions imposed by the trajectory
coordination strategy as it will be shown below.
The following definitions will be based on the non-
crossing allocation strategy.

Remark 2. Since after the initialization phase,
both vehicles know that the remaining vertex of
the current simplex is the worst, V2 can calculate,
at iteration k, z3(k + 1) and z3(k + 2) without
knowledge of the function value of the vertexes
visited by V1 just by using the relative order
between its current vertex and V1’ last sampled
vertex.

Thus, the protocol is completed as follows. When-
ever V1 samples or receives a new vertex’s value,
z3(k), it is able to decide between the following
cases:

(1) The new vertex is the worst one. The algo-
rithm stops.

(2) V1’s last visited vertex is the best vertex.
In this case, V1 will behave as the waiting
vehicle and will signal V2 to sample the
new reflected vertex, z3(k + 1), with a goto
command.

(3) Otherwise, it means that V2’s last visited
vertex corresponds to the best vertex and
that it should become (or remain as) the
waiting vehicle. V1 emits the corresponding
signal (hold command) and starts travelling
to z3(k + 1). Upon receiving this signal, V2

will calculate and start pointing to z3(k +2).

This shows that three different codes will be
enough to indicate V2 which way to follow, with-
out transmission of any of V1’s sampled values.
Thus V1 has to transmit only 2 bit to encode
one of the two possibilities. Compare with a full
broadcast of information we reduce the total com-
munication from 32 bits (assuming data samples



of 16 bits) to 18 bits thus reducing to almost half
the total number of bits transmitted.

Figure 2 illustrates the protocol in the context
of the system architecture. In order to avoid
figure cluttering we avoided the obvious state
designations, with the exception of the automata
from the upper layer of V2: state 1 means that V2 is
in the exploring vehicle role, in response to a goto
command; state 2 corresponds to the case when
V1 is in the waiting vehicle role; the automata
transits to state 3 after V2 transmits a new sample
to V1 and remains in that state until a response is
received. This layer receives the commands goto
and hold without the reference points. For each
transition (again, this is not represented in the
figure) labelled with goto or hold, the simplex
algorithm is executed and the new simplex is
calculated and sent to the allocation layer. At that
time, the allocation layer adds the new vertex to
the received command and transmits this data to
the lower layer.

PSfrag replacements
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Fig. 2. Hierarchical Architecture.

4. SIMULATION RESULTS

Table 1 shows simulations results for both strate-
gies considering a team of two vehicles with veloc-
ity limited to a maximum of 2 m/s. We considered
a intermediate case, the greedy strategy with ve-
locity limited to 1.6 m/s. The last parameter (ac-
tuation effort) is based on approximate values of
our reference vehicles’ (Cruz et al., 2003) dynamic
coefficients and does not intend to be an absolute
estimate of the power consumption. The simula-
tion consisted of 360 runs of the simplex based

search, with both allocation strategies, using the
test function F (x, y) = x2 +2y2, as an example of
a local approximation of a phenomena showing a
slight conditioning. In each run the initial simplex
has a random location (with a distance of 800
meters from the minimum) and orientation.

There is a trade-off in setting the size of the sim-
plex in the simplex optimization algorithm: on one
hand, to ensure better accuracy it should be made
as small as possible because the size of the simplex
determines a discretization of the space; on the
other hand, the size of the simplex is limited below
by the dynamic behavior of the vehicle. For non-
holonomic vehicles, the trajectories generated by
the algorithm may become impractical if the grid
size is too small.

Table 1. Simulation Results (Aver-
age/Standard Deviation)

Allocation Non-crossing Greedy Greedy
Strategy (1.6 m/s) (2 m/s)

Completion

time (s) 699/46 673/146 532/110

Total

travelled
distance (m) 1818/121 2005/299 1984/279

Actuation

Effort (J) 55k/4k 48K/4k 74k/6k

Depending on the initial point, the greedy strat-
egy may generate trajectories similar to the non-
crossing strategy or give rise to longer ones. Fig-
ures 3(a) and 3(b) illustrate a scenario where the
strategies lead to very different resulting trajecto-
ries.

The average results show that, in spite of the
odd trajectories, in general the greedy strategy
leads to shorter completion times and with more
efficient power usage. This is explained by the fact
that with the non-crossing strategy there’s always
one vehicle stopped or moving at very low speed,
waiting for the results of the other one, while
in the greedy strategy both vehicles are always
moving to a new vertex.

Simulations were also performed for other valley
shaped functions with different levels of super-
imposed gaussian noise and we observed a direct
correspondence between the level of noise and the
final distance to the minimum, which confirms the
expected robustness of the simplex algorithm.

5. CONCLUSIONS

This work shows one possible way of taking ad-
vantage of the availability of multiple vehicles on
a search operation on a static field. It is easy to
see that the results obtained with the team of two
vehicles surpass the ones that would be obtained
for a single vehicle using the same simplex based



(a) Trajectories with greedy vehicle’s al-

location strategy.

(b) Trajectories with non-crossing vehi-
cle’s allocation strategy.

Fig. 3. Comparison of vehicles’ trajectories ob-
tained with both allocation strategy

method. The employment of more vehicles, which,
for instance, would be interesting for time varying
fields, is left as topic of future work.

Our approach explore the advantages of the sim-
plex method in what concerns easiness of distri-
bution, at expenses of suboptimal vehicles’ tra-
jectories. Notice that the vehicles must displace
through the discrete points of the grid giving rise
to sinuous trajectories. However, it is the same
discretization of the state space which leads to
the definition of the lean communication protocol,
which allows the employment of a very simple
communication scheme in one of the directions,
eventually with simplified hardware and reduced
power consumption which is of major importance
on autonomous systems. If symmetric communi-
cation poses no special problem, we think (based
on our preliminary studies) that better results
may be obtained using gradient based techniques

together with filtering. We intend to pursue this
idea on future work.

REFERENCES

Bachmayer, R. and N. E. Leonard (2002). Vehicle
networks for gradient descent in a sampled
environment. In: Proc. 41st IEEE Conference
on Decision and Control. Las Vegas, NV,
USA.

Burian, E., D. Yoerger, A. Bradley and H. Singh
(1996). Gradient search with autonomous
underwater vehicles using scalar measure-
ments. In: Proc. of the IEEE Symposium on
Autonomous Underwater Vehicle Technology.
Monterey, CA, USA. pp. 86–89.

Cassandras, C.G. and S. Lafortune (1999). Intro-
duction to Discrete Event Systems. Kluwer
Academic.

Cruz, N., A. Matos, J.B. Sousa, F.L. Pereira, J. E.
Silva, E.P. Silva, J. Coimbra and E.B. Dias
(2003). Operations with multiple autonomous
underwater vehicles: the piscis project. In:
Proc. of the Second Annual Symposium on
Autonomous Intelligent Networks and Sys-
tems. Menlo Park, CA, USA.

Lagarias, J. C., J. A. Reeds, M. H. Wright and
P. E. Wright (1998). Convergence properties
of the nedler-mead simplex in low dimensions.
SIAM Journal of Optimization 9(1), 112–147.

Nelder, J.A. and R. Mead (1965). A simplex
method for function minimization. Comput-
ing Journal 7, 308–313.

Sousa, J. B. and F. L. Pereira (2002). On coor-
dinated control strategies for networked dy-
namic control systems - an application to
auvs. In: Proc. of the Fifthteenth Interna-
tional Symposium of Mathematical Theory
of Networks and Systems (MTNS). Notre-
Dame, USA.

Spendley, W., G.R. Hext and F.R. Himsworth
(1962). Sequential applications of simplex de-
signs in optimization and evolutionary oper-
ation. Technometrics 4, 441–461.

Speranzon, A., J. E. Silva, J. B. Sousa and K. H.
Johansson (2004). On collaborative optimiza-
tion for a team of autonomous underwater ve-
hicles. In: Submitted to CDC2004.

Varaiya, P. (2000). A question about hierarchical
systems. In: System Theory: modeling, anal-
ysis and control (In T. Djaferis and I. Schick,
Eds.). Kluwer.


