
Cloud-supported effective coverage of 3D structures

Antonio Adaldo, Dimos V. Dimarogonas, and Karl H. Johansson

Abstract— In this paper, we present a distributed algorithm
for cloud-supported effective coverage of 3D structures with
a network of sensing agents. The structure to inspect is
abstracted into a set of landmarks, where each landmark
represents a point or small area of interest, and incorporates
information about position and orientation. The agents navigate
the environment following the proposed control algorithm until
all landmarks have reached a satisfactory level of coverage.
The agents do not communicate with each other directly, but
exchange data through a shared cloud repository which is
accessed asynchronously and intermittently. We show formally
that, under the proposed control architecture, the networked
agents complete the coverage mission in finite time. The results
are corroborated by simulations in ROS, and experimental
evaluation is in progress.

I. INTRODUCTION

This paper addresses a problem of the inspection of a
3D structure with a team of autonomous sensing agents.
Instead of communicating with each other, the agents upload
information on a cloud repository to keep track of the
progress of the inspection. Our problem falls within the scope
of coverage problems for networks of mobile sensing agents.
These problems have attracted a notable volume of research
in the past few decades, because they constitute a flexible
model for numerous applications, such as deployment, in-
spection and surveillance with networked robots [1].

Coverage problems can be divided in two large categories.
Static coverage problems [2]–[6] are about finding a good
placement for the sensing agents, and possibly controlling
the agents to reach their target placements. Dynamic cov-
erage problems [7]–[9] are about controlling the motion
of the agents to survey an environment continuously, until
it has been searched sufficiently well. Awareness coverage
control [10], [11] can be considered a form of dynamic
coverage where the agents are also required to learn a density
function which characterizes the importance of each point in
the environment. The problem addressed in this work falls
within the class of dynamic coverage problems.

In classical works on dynamic coverage problems [7],
the sensors have circular sensing patterns, meaning that
their sensing power is maximal at their own position, and
decays with the distance from the sensor. This model is
only appropriate to describe omnidirectional sensors, such as
temperature sensors or circular laser scans. In more recent
works [8], the sensors have anisotropic sensing patters, which
allows to model a larger variety of sensing devices, such
as monocular cameras or cone-shaped laser scans. However,

The authors are with the Department of Automatic Control, School of
Electrical Engineering, KTH Royal Institute of Technology, Osquladas väg
10, 10044, Stockholm. Emails: {adaldo,dimos,kallej}@kth.se

This work has received funding from the European Unions Horizon
2020 Research and Innovation Programme under the Grant Agreement
No.644128, AEROWORKS.

these models are still deficient in describing certain settings,
such as the inspection of structure, the surveillance of a
building, or the reconstruction of a 3D surface with depth
sensors, because they do not capture the morphology of the
structure to inspect. Conversely, in this paper we consider a
network of sensing agents with generic, anisotropic and het-
erogeneous sensing patterns, and we also take into account
the 3D geometry of the object to inspect. Moreover, clas-
sical works assume that each sensing agent is continuously
aware of the motion of all other agents, or that the agents
can communicate continuously. More recently, intermittent
inter-agent communication has been considered [9]. In this
work, inter-agent communication is completely replaced
by communication with a shared information repository,
or cloud. Connections with the cloud are event-triggered
and intermittent, and the amount of data exchanged upon
each connection is limited. Cloud-supported solutions are
becoming increasingly popular for various types of multi-
agent problems [12]–[14], thanks to the recent explosion of
cloud-based services and technologies. Note that the cloud is
not a centralized omniscient computer. In this work, the cloud
is barely a shared information repository which receives
asynchronous and partial information about the progress
of the inspection. All calculations need to be performed
locally and online by the individual agents. Finally, most
existing work on effective coverage address the problem of
inspecting a planar, continuous area. Conversely, we consider
the inspection of a 3D structure abstracted into a finite set of
landmarks, where each landmark carries information about
the local curvature of the surface. This setup is not only
more general with respect to considering a planar continuous
environment, but also computationally more tractable, and
allows the proposed control algorithm to be implemented on
small embedded processors.

The algorithm is formally shown to complete the inspec-
tion in finite time, and it is demonstrated by simulating
a team of sensing agents in the ROS framework [15],
paving the way to experimental evaluation. Each agent is
simulated as a different ROS node, effectively reproducing
the distributed nature of the algorithm.

II. PRELIMINARIES

The null vector in Rn, with n ∈ N, is denoted by 0n. A
vector in Rn is also intended as the corresponding column
vector in Rn×1. The cross product between two vectors
u, v ∈ Rn is denoted by u×v. The skew operator is denoted
by S(·) (i.e., S(u)v = u × v). The identity matrix in Rn×n

is denoted by In. The transpose of a vector or matrix is
denoted by (·)ᵀ. The Euclidean norm of a vector is denoted
by ‖·‖. The set S2 = {u ∈ R3 : ‖u‖ = 1} is called the unit
sphere; a vector u ∈ S2 represents a direction in R3 and its

2018 European Control Conference (ECC)
June 12-15, 2018. Limassol, Cyprus

978-3-9524-2699-9 ©2018 EUCA 95



kinematics can be described as

u̇ = −S(u)ω, (1)

where ω is called the angular velocity of the vector. Since
S(ω)u = ω × u is orthogonal to u, a vector u ∈ S2 which
evolves according to (1) remains forever in S2. Moreover,
since S(u)u = 0, the kinematics (1) is invariant with respect
to variations of ω along the direction of u; in other words,
S(ω + αu)u = S(ω)u for all α ∈ R. The gradient of a
function f(x) with respect to a variable x ∈ R3 is denoted
by ∂f(x)/∂x ∈ R3. Gradients are also considered column
vectors. Set closure is denoted by Cl(·).

A hybrid automaton [16] is a tuple H = (Q,X, I, F,D,
E,G,R), where: Q = {q1, q2, . . .} is a set of discrete states;
X ⊂ Rn is a continuous state space; I ⊆ Q × X is a set
of possible initial states; F : Q×X → X is a set of vector
fields, with f(q, x) being the dynamics of x under state q;
D : Q → 2X is a set of domains, with D(q) being the
domain under state q; E :⊆ Q × Q is a set of edges, with
(q1, q2) ∈ E signifying a possible transition from state q1

to state q2; G : E → 2X is a set of guards, meaning that
x ∈ G1,2 triggers a transition from q1 to q2; R : E×X → 2X

is a set of reset maps, meaning that, upon a transition from
q1 to q2, the continuous state x of the system is reset to
a value in R1,2(x). A hybrid automaton can be represented
as a graph, where each node represents a discrete state and
each edge represents a transition. Each node is labeled with
the corresponding vector field, while each edge is labeled
with the corresponding guard and reset map. If the reset
map for an edge (q1, q2) is not specified, it is implied that
R1,2(x) = x for all x ∈ G1,2. Initial discrete states are
labeled with a “start” flag. Each controller introduced in this
paper is given as a hybrid automaton, and it is presented in its
graph form. The set of the initial states is omitted whenever
it is clear from the context.

III. PROBLEM STATEMENT

In this paper, we consider a set of N sensing agents
indexed as 1, . . . , N , and we denote N = {1, . . . , N}. The
ith agent is characterized by its position pi(t) ∈ R3 and
its orientation ni(t) ∈ S2, and it is denoted as Ai(t) =
(pi(t), ni(t)). A sensing agent is an abstraction of a mobile
sensor, such as a camera or a laser scan. The orientation of
the agent defines the direction that the agent is looking at.
For example, if the sensor is a camera, the orientation of the
agent corresponds to the direction that the camera is pointing
to. The kinematics of the agents is given by

ṗi(t) =vi(t), (2a)
ṅi(t) =− S(ni(t))ωi(t) (2b)

for all i ∈ N . Here vi and ωi are control inputs; vi is called
the linear velocity of the agent, while ωi is called the angular
velocity of the agent.

The agents are required to inspect a surface which is
abstracted into a set of M landmarks indexed as 1, . . . ,M ,
where each landmark corresponds to a point on the surface,
and we denote M = {1, . . . ,M}. Like a sensing agent,
the jth landmark is defined by its position qj ∈ R3 and its

orientation mj ∈ S2—where this time the orientation mj

corresponds to the outward normal to the surface evaluated
at qj—and it is denoted as Lj = (qj ,mj). However, the
positions and orientations of the landmarks are constant.

The perception of a generic landmark L attained by a
generic agent A = (p, n) is a function of the position and
orientation of the landmark with respect to the agent. We
denote this function as per(A,L), and we let it take values
in [0, 1], where per(A,L) = 0 means that the landmark L is
not visible at all by agent A, while per(A,L) = 1 denotes
the best possible perception. We require the further three
properties for the perception function:
P1 per(A,L) is continuously differentiable with respect to

both p and n;
P2 there exists R > 0 such that, if ‖p − q‖ > R,

then per(A,L) = 0, ∂ per(A,L)/∂p = 03 and
S(n)(∂ per(A,L)/∂n) = 03;

P3 for each L ∈ R3×S2, there exists A∗L ∈ R3×S2
such that per(A∗L, L) = 1, ∂ per(A∗L, L)/∂p = 03 and
S(n)(∂ per(A∗L, L)/∂n) = 03.

Property P1 is a technical assumption needed to prove our
main result. Property P2 entails that a landmark cannot be
perceived by a sensor if it is too fat. Property P3 entails
that for any pose of a landmark there exists a sensor pose
that yields the best possible perception, and such sensor pose
constitutes a local optimum of the perception function.

For each landmark Lj , we define the instantaneous cov-
erage γj(t) as the sum of the perceptions of that landmark
attained by the N sensors:

γj(t) =

N∑
i=1

per(Ai(t), Lj). (3)

Moreover, we define the cumulated coverage Γj(t) as the
integral of the instantaneous coverage:

Γj(t) =

∫ t

0

γj(τ) dτ . (4)

Note that, since γj(t) ≥ 0, Γj(t) is a nondecreasing function
of the time.

The control objective is that the cumulated coverage of
each landmark reaches a desired value C∗. This objective
can be formalized as follows:

Definition 1: The inspection is completed successfully
when Γj(t) ≥ C∗ for all j ∈M.
Correspondingly, we introduce the landmark coverage errors

ej(t) = max{0, C∗ − Γj(t)}, (5)

and the total coverage error

E(t) =

M∑
j=1

ej(t), (6)

so that the control objective corresponds to driving all the
landmark coverage errors to zero, or equivalently, driving the
total coverage error to zero. Note that the coverage errors
ej(t) are by definition nonnegative and nonincreasing.

96



q0start q0

G0,1

Fig. 1: Pose controller for a single agent. The vector fields
under See (7).

IV. HYBRID CONTROL OF AN AGENT’S KINEMATICS TO
REACH A DESIRED POSITION AND ORIENTATION

Before we delve into the proposed control strategy, we
shall show that the agent kinematics (2) can be controlled
to reach any desired position and orientation A∗ = (p∗, n∗)
asymptotically. To this aim, consider a generic agent Ai(t) =
(pi(t), ni(t)) with kinematics (2) and under the hybrid
controller defined in Figure 1, with:

vi(t) = p∗ − pi(t), (7a)

q0 : ωi(t) = zi, (7b)

q1 : ωi(t) = S(ni(t))n
∗, (7c)

G0,1 : ni(t)
ᵀn∗ ≥ −ς, (7d)

and where ς ∈ (0, 1) is a control parameter, and zi ∈ S2 is
any unit vector orthogonal to ni(0).

Lemma 1: Consider a generic agent Ai(t) = (pi(t), ni(t))
with kinematics (2). Under controller (7), the agent reaches
(p∗, n∗) asymptotically.

Proof: Since the kinematics of pi(t) and ni(t) are
decoupled, they can be analyzed separately. Since vi(t) =
p∗− pi(t) regardless of the discrete state qi, pi(t) converges
trivially to p∗. As for ni(t), consider the candidate Lyapunov
function V (t) = 1−ni(t)ᵀn∗, and distinguish the two cases
(i) ni(0)ᵀn∗ ≥ −ς and (ii) ni(0)ᵀn∗ < −ς . In Case (i), the
controller switches immediately to state q1, and we have

V̇ (t) =− ṅi(t)ᵀn∗ = −(−S(ni(t))ωi(t))
ᵀn∗

=− (−S(ni(t)) S(ni(t))n
∗)ᵀn∗

=− ‖S(ni(t))n
∗‖2 ≤ 0.

(8)

Note that, from (8), we have that ni(t)ᵀn∗ is nondecreasing
and that V̇ (t) = 0 if and only if ni(t) = ±n∗. However,
since ni(0)ᵀn∗ ≥ −ς , we conclude that V̇ (t) = 0 if and
only if ni(t) = n∗. Hence, V (t) is a Lyapunov function
and ni(t) converges to n∗ asymptotically. In Case (ii), the
controller is initially in state q0, and ni(t) rotates around
zi with constant angular speed. After ni(t) has described a
rotation of at most 2 arccos(ς), we have ni(t)

ᵀn∗ ≥ −ς ,
which causes the controller to switch to state q1, and we can
reason as in Case (i).

An important consequence of Lemma 1 is that, if the
initial conditions Ai(0) and the target A∗ are chosen out
of a compact set I, then the agent reaches any arbitrarily
small neighborhood of A∗ = (p∗, n∗) in finite time. (Note
that, since S2 is compact, the condition that Ai(0) and A∗

should lie in a compact set reduces to pi(0) and p∗ being in a
compact set.) In particular, if A∗ is such that per(A∗, L) = 1
for some landmark L, we have the following corollary.

Corollary 1: Let a sensing agent Ai(t) with kinematics
(2) be controlled by Controller 1, with A∗ = A∗L is such that

per(A∗, L) = 1. Then, for any ε′ < 1, there exists a finite
time TI,ε′ such that per(Ai(t), L) ≥ ε′ for all t ≥ TI,ε′ .

V. EFFECTIVE COVERAGE CONTROL FOR ONE AGENT

In this section, we describe a controller that lets a single
sensing agent attain the effective coverage of a set of
landmarks. This controller will serve as a stepping stone to
introduce our multi-agent cloud-supported control scheme in
Section VI.

First, note that when the coverage mission is performed by
a single agent, the coverage of each landmark only depends
on the motion of that agent. Therefore, the agent can keep
track of the coverage error associated to each landmark with
only local information. Denoting the position and orientation
of the agent as Ai(t) = (pi(t), ni(t)), the derivative of the
total coverage error is

Ė(t) = −
∑

j=1,...,M
ej(t)>0

per(Ai(t), Lj) ≤ 0. (9)

Since the control objective is to drive E(t) to zero, we can
control Ai(t) according to a gradient descent of Ė(t), so that
the decay of E(t) is as fast as possible.

The proposed single-agent controller is a hybrid controller
that switches between a gradient descent of Ė(t) and con-
troller (7), the latter being used as a backup when the gradient
of E(t) is too small. The gradient-descent controller can be
written as follows:

vi(t) =− ∂Ė(t)

∂pi
, (10a)

ωi(t) = S(ni(t))
∂Ė(t)

∂ni
. (10b)

Writing Ë(t) = (∂Ė/∂pi)
ᵀṗi(t) + (∂Ė/∂ni)

ᵀṅi(t), and
using (2), we can see that under Controller (10) we have

Ë(t) = −‖vi(t)‖2 − ‖ωi(t)‖2 ≤ 0. (11)

However, Ë(t) is not defined for t such that, for some j ∈
{1, . . . ,M}, ej(t) = 0 and ej(τ) > 0 in a left neighborhood
of t. In these time instants, instead, Ė(t) istantaneously
increases by per(Ai(t), Lj), because Lj has been completely
inspected and stops contributing to the decay in the total
coverage error.

The controller starts in the gradient-descent mode (10).
The condition to switch to (7) is

Ė(t) > −ε ∩ E(t) > 0, (12)

where ε ∈ (0, 1) is a constant threshold. Condition (12)
means that the inspection is not complete, but the decay of
E(t) is close to zero. When switching to (7), one landmark
Lι is selected among those with a positive coverage error,
and the reference pose is set as A∗Lι . Note that, when
this transition happens, at least one landmark with positive
coverage error must exist, since E(t) > 0. The condition to
switch back to (10) is

eι(t) = 0 ∪ Ė(t) ≤ −ε′, (13)

97



q0startq1 q2

G0,1, R0,1

G1,0

G0,2

Fig. 2: Effective-coverage controller for a single agent.
States: q0 runs (2) and (10); q1 runs (2) and (7) with A∗ =
A∗Lι ; q

2 terminates. Guards: G0,1 is (12); G1,0 is (13); G0,2 is
E(t) = 0. Reset maps: R0,1 is ι :∈ {1, . . . ,M : eι(t) > 0}.

where ε′ ∈ (ε, 1). Condition (13) means that either Lι has
been completely inspected (eι(t) = 0) or the decay of
the coverage error is faster (Ė(t) ≤ −ε′). The inspection
terminates when the condition E(t) = 0 is detected.

The proposed switching controller is given in Figure 2
in the form of a hybrid automaton, and it is referred to as
Controller 2 in the rest of the paper.

Now we can prove that a sensing agent with kinematics
(2) controlled by Controller 2 completes the inspection in
finite time.

Theorem 1: Consider an agent Ai(t) = (pi(t), ni(t)) with
kinematics (2), and let it be controlled by Controller 2. Let
I ⊂ R3×S2 be a compact set that encloses the initial pose
Ai(0) of the sensor and all the landmarks L1, . . . , LM . Then,
there exists T > 0 such that E(t) = 0 for all t ≥ T .

Proof: First note that, when Controller 2 is in state
q0, we have Ė(t) ≤ −ε. Since E(t) ∈ [0, C∗] by definition,
Controller 2 can be in state q0 for a time not larger than
C∗/ε. However, under state q0, Ė(t) is nonincreasing. There-
fore, the only way to trigger a transition to state q1 is that
the coverage error ej(t) of some landmark Lj reaches zero,
causing Ė(t) to istantaneously increase by per(Ai(t), Lj).
However, from Corollary 1, we know that, once Controller 2
is in state q1, after a time not larger than TI,ε′ , we will have
per(Ai(t), Lι) ≥ ε′, which implies Ė(t) ≤ −ε′. Therefore,
Controller 2 can only remain in state q1 of TI,ε′ for each
landmark. Since there are M landmarks, Controller 2 can
be in state q1 for at most a time of MTI,ε′ before the
inspection is complete. Hence, the theorem is proved with
T = C∗/ε+MTI,ε′ .

Remark 1: A sensible choice of ε and ε′ is needed to avoid
a slow inspection and frequent switching between states q0

and q1 in Controller 2. For example, a larger ε′ reduces
the switching frequency, but may slow down the inspection,
because the agent spends more time focusing on a single
landmark rather than on the gloabal coverage error. �

VI. CLOUD-SUPPORTED EFFECTIVE COVERAGE CONTROL
FOR MULTIPLE AGENTS

In this section, we consider the case that the inspection is
performed by a team of N agents aided by a shared informa-
tion repository (cloud). In this scenario, each individual agent
does not know the coverage error ej(t) associated to each
landmark, or the total coverage error E(t). Therefore, for
each agent i and each landmark j, we introduce the estimated
coverage error êij(t), which is initialized as êi(0) = C∗ and

evolves as
˙̂eij(t) = −per(Ai(t), Lj). (14)

Similarly, we let Êi(t) =
∑M
j=1 ê

i
j(t). Each agent can

intermittently communicate with the cloud to upload and
download information about the progress of the inspection.
The cloud substitutes inter-agent communication, and allows
the agents to gather their contributions to the inspection. For
each landmark, the cloud maintains an estimate êcloudj (t)
of the coverage error associated to that landmark, which
is initialized as êcloudj (0) = C∗. Hence, the amount of
information contained in the cloud scales linearly with the
number M of landmarks, and does not grow over time.
We denote as ti,k the time when agent i connects with
the cloud for the kth time. (Conventionally, ti,0 = 0 for
all agents.) Cloud accesses are considered as instantaneous
events. This assumption is mild because the time scale of
wireless communication is arguably orders of magnitude
faster than the time scale of the physical motion of the agents.
Only one agent at a time can access the cloud: if it happens
that ti,k = tj,h for some agents i, j and some integers k, h,
the two accesses happen one after the other in any order.
Between two consecutive connections to the cloud, an agent
needs to keep track only of its own contribution to the
coverage. This contribution can be captured simply with a
nonnegative scalar cijk defined as

cijk =

∫ ti,k

ti,k−1

per(Ai(t), Lj) dt . (15)

When agent i connects to the cloud at time ti,k, the estimated
coverage errors are updated as

êcloudj (t+i,k) = êij(t
+
i,k) = max{0, êcloudj (t−i,k)− cijk}. (16)

This update means that the contribution cijk is incorporated
in the coverage error estimated by the cloud and coverage
error estimated by the agent is immediately updated to match
the one estimated by the cloud. In this way, the contribution
given to the coverage by each agent is collected in the cloud,
and can be accessed later by other agents. Comparing (5)
with (16), we can see that estimates of the coverage errors
have the following remarkable properties:

êij(t
+
i,k) ≤ êij(t−i,k); (17a)

ej(t) ≤ min{êcloudj (t), êij(t)}. (17b)

Property (17a) means that a connection with the cloud
can only cause the local estimates of the coverage errors
to decrease. Property (17b) means that the estimates of
the coverage errors are always overestimates; in particular,
Êi(t) = 0 implies E(t) = 0. This gives a natural stopping
condition for the agents: when Êi(t) = 0, agent i knows that
the inspection is complete. Between two consecutive cloud
accesses, each agent is controlled on the base of its estimated
coverage errors. Namely, (10) is replaced with

vi(t) =− ∂
˙̂
Ei(t)

∂pi
, (18a)

ωi(t) = S(ni(t))
∂

˙̂
Ei(t)

∂ni
. (18b)

98



q0startq1 q2

G0,1, R0,1

G1,0

G0,2, R0,2

G0,0, R0,0G1,1, R1,1

Fig. 3: Cloud-supported effective-coverage controller for a
multi-agent team. States: q0 runs (2) and (18); q1 runs (2)
and (7); q2 terminates. Guards: G0,1 is (12); G1,0 is (13);
G0,2 is Êi(t) = 0; G0,0 and G1,1 are (19). Updates: R0,1 is
ι ∈ {1, . . . ,M : eι(t) > 0}; R0,0, R1,1 and R0,2 are (16).

The cloud accesses are triggered according to the following
recursive rule:

ti,k+1 = inf{t > ti,k : Ci,k(t) ≥ ς(Mi(t) + 1)

or Êi(t) = 0}, (19)

where

Ci,k(t) =

M∑
j=1

∫ t

ti,k

per(Ai(τ), Lj)dτ, (20)

Mi(t) =|{j ∈ {1, . . . ,M} : êj(t) > 0}|, (21)

and where ς is a positive constant. This rule has the intuitive
meaning that a cloud access is triggered when the agent has
accumulated enough coverage contribution to share with the
other agents (Ci,k(t) ≥ ς(Mi(t)+1)) or when the inspection
is complete (Êi(t) = 0). The value of ς represents a tradeoff
between how often the agents access the cloud and how
promptly they upload their contributions on the cloud. The
proposed controller is formalized as a hybrid automaton in
Figure 3 and is referred to as Controller 3. Note that the
looping transitions in q0 and q1 represent the connections
to the cloud. Upon these connections, agent i shares its
contributions cijk, so that the estimated coverage errors êij
and êcloudj can be update according to (16). In the following
Theorem 2 we prove formally that a team of sensing agents
controlled by Controller 3 completes the inspection in finite
time.

Theorem 2: Consider a team of mobile sensing agents
with poses Ai(t) = (pi(t), ni(t)), with i ∈ {1, . . . , N} and
let the agents be controlled by Controller 3. Let I ⊂ R3×S2
be a compact set that encloses the initial poses Ai(0) of all
the agents and all the landmarks L1, . . . , LM . Then, there
exists T > 0 such that E(t) = 0 for all t ≥ T .

Proof: First note that, under the proposed controller, the
estimated errors Êi(t) are nonincreasing. In fact, the motion
of the agents imposes ˙̂

Ei(t) ≤ 0, while, from (19) we can
see that the cloud accesses impose êij(t

+
i,k) ≤ êij(t

−
i,k), which

summing over the landmarks yields Êi(t+i,k) ≤ Êi(t−i,k).
Similarly to the proof of Theorem 1, note that when Con-
troller 3 is in state q0, we have ˙̂

Ei(t) ≤ −ε. Since Êi(t) ∈
[0, C∗] by definition, and since Êi(t) has been shown to
be nonincreasing, the controller can only remain in q0 for
a time of at most C∗/ε. However, since, under (18), ˙̂

Ei(t)

Fig. 4: Contour plot of f(p, n, q) for p = 03, n = (1, 0, 0)
and q ∈ [x, y, 0] with x ∈ [0, 3], y ∈ [−2, 2].

is nonincreasing, the only way for Controller 3 to transit
to state q1 is that the estimated error êij(t) of a landmark

reaches zero, causing ˙̂
Ei(t) to drop by per(Ai(t), Lj). Since

there are M landmarks, the controller can only transit to
state q1 for at most M times. Once the controller is in state
q1, by Corollary 1, it will take at most a time TI,ε′ to have
˙̂
Ei(t) ≤ −ε′ and transit back to q0. Hence, the controller can
only remain in q1 for at most a time of MTI,ε′ . We must
conclude that Êi(t) reaches zero in at most MTI,ε′ +C∗/ε.
Since E(t) ≤ Êi(t) by design, this result also implies that
E(t) reaches zero in at most MTI,ε′ + C∗/ε.

VII. SIMULATION

In this section, we present a simulation of the proposed
cloud-supported distributed controller. We consider a net-
work of N = 4 agents and a set of M = 100 landmarks
sampled from a suface with the shape of an extruded
sinusoid. The desired coverage for all landmarks is set to
C∗ = 100. The sensing pattern of the agents is chosen as
follows:

per(Ai, Lj) = f(pi, ni, qj)bnimjc, (22)

where

bxc = max{x, 0}, (23)

g(p, n, q) =

⌊
1− ‖q − p− rn‖

2

R2

⌋
, (24)

h(p, n, q) =

⌊
1− ((q − p− rn)n)2

r2

− ‖q − p− rn‖
2 − ((q − p− rn)n)2

R2

⌋
,

(25)

f(p, n, q) =

{
g(p, n, q) (q − p− rn)n > 0,

h(p, n, q) (q − p− rn)n < 0,
(26)

and where 0 < r < R. A contour plot of f(p, n, q) is given
in Figure 4. One can verify that (22) satisfies the properties
of a perception function as listed in Section III.

Figure 6 shows the total coverage error estimated by the
cloud and the trajectories followed by the agents. Figure 5
shows the number of cloud accesses for each agent over time
and details which controller is active for each agent. Finally,
Figure 7 shows four snapshots of the configuration of the

99



Fig. 5: (Left) Number of cloud accesses for each agent during
the simulation. (Right) Discrete state in Controller 3 for
each agent: pose for q1, corresponding to (7); cov for q0,
corresponding to (18).

Fig. 6: (Left) Coverage error estimated by the cloud. (Right)
Trajectories followed by the agents.

agents and the landmarks during the simulation. In these
snapshots, each agent is represented as an arrow located in
pi and pointing in the direction of ni, while each landmark
is represented as a dot located in qj . The orientation of the
landmarks is not represented to avoid cluttering the pictures.
The color of the landmarks varies from red to blue to
represent the value of êcloudj from C∗ to zero. From Figure 7,
we can see how the agents adjust their orientation to follow
the local curvature of surface.

VIII. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have proposed a distributed control algorithm for the
inspection of a 3D surface with a team of mobile sensing

Fig. 7: Position and orientations of the agents during the
simulation. Times from left to right: 0, 20, 40, 60.

agents with generic, heterogeneous sensing patterns. The
controller is based on intermittent connections of the agents
with a cloud repository, which eliminates the need for inter-
agent communication. We have shown that the controller
guarantees that the inspection is completed in finite time,
and we have validated it by simulation. We are currently
working on incorporating a collision avoidance scheme in
the proposed controller and on its experimental evaluation
on a network of aerial robotic sensors.

REFERENCES

[1] C. G. Cassandras and W. Li, “Sensor networks and cooperative
control,” European Journal of Control, vol. 11, no. 4-5, pp. 436–463,
2005.

[2] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[3] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete Partitioning
and Coverage Control for Gossiping Robots,” IEEE Transactions on
Robotics, vol. 28, no. 2, pp. 364–378, 2012.

[4] Y. Stergiopoulos, M. Thanou, and A. Tzes, “Distributed Collaborative
Coverage-Control Schemes for Non-Convex Domains,” IEEE Trans-
actions on Automatic Control, vol. 60, no. 9, pp. 2422–2427, 2015.

[5] Y. Stergiopoulos and A. Tzes, “Spatially distributed area coverage op-
timisation in mobile robotic networks with arbitrary convex anisotropic
patterns,” Automatica, vol. 49, no. 1, pp. 232–237, 2013.

[6] A. Adaldo, D. V. Dimarogonas, and K. H. Johansson, “Hybrid cov-
erage and inspection control for anisotropic mobile sensor teams,” in
IFAC World Congress, 2017.

[7] I. I. Hussein and D. M. Stipanovic, “Effective Coverage Control for
Mobile Sensor Networks With Guaranteed Collision Avoidance,” IEEE
Transactions on Control Systems Technology, vol. 15, no. 4, pp. 642–
657, 2007.

[8] D. Panagou, D. M. Stipanovic, and P. G. Voulgaris, “Distributed
dynamic coverage and avoidance control under anisotropic sensing,”
IEEE Transactions on Control of Network Systems, 2016.

[9] Y. Wang and I. I. Hussein, “Awareness coverage control over large-
scale domains with intermittent communications,” IEEE Transactions
on Automatic Control, vol. 55, no. 8, pp. 1850–1859, 2010.

[10] C. Song, G. Feng, Y. Fan, and Y. Wang, “Decentralized adaptive
awareness coverage control for multi-agent networks,” Automatica,
vol. 47, pp. 2749–2756, 2011.

[11] C. Song, L. Liu, G. Feng, Y. Wang, and Q. Gao, “Persistent awareness
coverage control for mobile sensor networks,” Automatica, vol. 49, pp.
1867–1873, 2013.

[12] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson,
“Cloud-supported formation control of second-order multi-agent sys-
tems,” IEEE Transactions on Control of Network Systems, 2017.

[13] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Dynamic partitioning
and coverage control with asynchronous one-to-base-station commu-
nication,” IEEE Transactions on Control of Network Systems, vol. 3,
no. 1, pp. 5589–5594, 2016.

[14] M. T. Hale and M. Egerstedty, “Differentially private cloud-based
multi-agent optimization with constraints,” in Proceedings of the
American Control Conference, Chicago, IL, USA, 2015.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Mg, “ROS: an open-source Robot
Operating System,” in IEEE International Conference on Robotics and
Automation, 2009.

[16] J. Lygeros, K. Johansson, S. Simic, and S. Sastry, “Dynamical prop-
erties of hybrid automata,” IEEE Transactions on Automatic Control,
vol. 48, no. 1, pp. 2–17, 2003.

100


