
Cloud-supported self-triggered control for multi-agent circumnavigation

Clara Cavaliere∗, Dario Mariniello∗, Antonio Adaldo, Francesco Lo Iudice,
Dimos V. Dimarogonas, Karl H. Johansson, & Mario di Bernardo

Abstract— In this paper, we propose a cloud-supported con-
trol framework for multi-agent circumnavigation missions. We
consider a network of planar autonomous agents. Our objective
is for the agents to circumnavigate a target with a desired
angular speed, while forming a regular polygon around the
target. We propose self-triggered rules to schedule the bearing
measurements and the cloud accesses for each agent.

I. INTRODUCTION

The problem of tracking and circumnavigating a target
with a network of autonomous agents finds numerous appli-
cations in mobile robotics. This problem has been studied for
a single agent in [1], [2], while the case of taking a network
of autonomous agents to a circling formation is the subject
of a vast body of work, including, for example, [3]–[7].
Recently, these two problems have been merged in [8], [9].
The vast majority of the existing works on circumnavigation
are based on the underlying assumption that each agent may
perform measurements and/or exchange information with
the other agents in a continuous-time fashion. However, in
reality, both the measurements and the exchange of infor-
mation happen through wireless communication channels
with limited bandwidth capacity. Therefore, the frequency
with which the agents may perform these actions is lim-
ited. In this paper we propose a control framework for
multi-agent circumnavigation where bearing measurements
and communication are event-triggered and self-triggered,
respectively [10]. These schemes are applied to multi-agent
systems to achieve the desired coordination while reducing
the amount of information exchanged among different agents
[11]. Moreover, instead of letting the agents communicate
directly with each other, we let them transfer data over
a shared information repository hosted on a cloud [12]–
[15]. The effectiveness of the proposed algorithms is verified
analytically where possible or by numerical simulations.

C. Cavaliere, D. Mariniello, F. lo Iudice, and M. di
Bernardo are with the Department of Electrical Engineering
and Information Technology, University of Naples, Italy.
Emails: {clar.cavaliere,da.mariniello}@studenti.unina.it,
{francesco.loiudice2,mario.dibernardo}@unina.it.

A. Adaldo, D. V. Dimarogonas, and K. H. Johansson are with the
Department of Automatic Control, School of Electrical Engineering and
Computer Science, KTH Royal Institute of Technology. Osquldas väg 10,
10044, Stockholm, Sweden. Emails: {adaldo,dimos,kallej}@kth.se

This work has received funding from the European Union Horizon
2020 Research and Innovation Programme under the Grant Agreement
No. 644128, AEOROWORKS; from the Swedish Foundation for Strategic
Research; from the Swedish Research Council; and from the Knut och Alice
Wallenberg foundation.

C. Cavaliere and D. Mariniello wish to thank the EU for providing
funding to visit KTH under the Erasmus program.

∗ These two authors have contributed equally to this work.

II. PRELIMINARIES

Given two scalars, i and j, we denote by i%j the remain-
der of the division i/j. Given two vectors u, v ∈ R2, the
angle between u and v computed counterclockwise from u
to v is denoted ∠(u, v). For any vector u ∈ R2, rot(u, θ)
denotes the vector obtained rotating u by θ radians counter-
clockwise. For brevity, we denote u⊥ = rot(u,−π/2).

Let us consider a digraph G(V, E), where V := {1, . . . , N}
is the set of the N graph vertices, and E ⊆ V ×V is the set
of the graph edges. The i, j-th element Lij of the Laplacian
matrix L ∈ RN×N of the graph G is obtained as

Lij =

−1 if (j, i) ∈ E ,∑
k 6=i−Lik if i = j,

0 otherwise.
(1)

Let E = {ei, e2, . . . eM}. Then, we can define the incidence
matrix of the digraph G as the matrix B ∈ RN×M such that
its i, k-th element is defined as

Bi,k :=

1 if ek = (j, i) for some j ∈ V,
−1 if ek = (i, j) for some j ∈ V,
0 otherwise.

(2)

We define the in-incidence matrix B� ∈ RN×M as the
matrix obtained from B by substituting zero to each of its
negative entries. A directed path is a sequence of edges
{ek1 , ek2 , . . . , ekL} such that if ekl = (i, j) for some vertices
i and j, then ekl+1

= (j,m) for some vertex m. A spanning
tree (if it exists) of the graph G is a subgraph GT (V, T)
of G encompassing N − 1 edges and a node, say r, such
that there exists a directed path from r to any other node in
V . Assume G has a spanning tree GT . Accordingly, without
loss of generality, we can partition the network edges in the
set T = {e1, e2, . . . , eN−1} and T̄ = {eN+1, e2, . . . , eM}.
Accordingly, we have that B = [BT BT̄], and B� =
[B�T B�T̄]. Finally, as BT is full column rank, it has a left
pseudo-inverse B†T we have that the reduced edge Laplacian

Lr := Bᵀ
T (B�T +B�T̄ (B†T BT̄)ᵀ) (3)

is positive definite [16]. The following Lemma 1 is used to
prove our main result.

Lemma 1: Let N distinct vectors ϕ1, . . . , ϕN ∈ R2 be
such that ∠(ϕi, ϕi+1) = ∠(ϕj , ϕj+1) for any two i, j ∈
{1, . . . , N}, where we have denoted ϕN+1 = ϕ1. Then, for
all i ∈ {1, . . . , N}, we have minj 6=i∠(ϕi, ϕj) = 2π/N . �

Proof: Let β̄ = ∠(ϕi, ϕi+1) and θi =
minj 6=i∠(ϕi, ϕj). Denote as νi the index j that attains

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 5090

the minimum ∠(ϕi, ϕj). Then, we have ∠(ϕi, ϕi+1) =
β̄ = ∠(ϕνi , ϕνi+1), and, consequently, ∠(ϕi+1, ϕνi+1) =
∠(ϕi, ϕνi) = θi. However, since ϕνi+1 must precede ϕνi+1

when proceeding counterclockwise from ϕi, we have θi+1 =
∠(ϕi+1, ϕνi+1

) ≤ ∠(ϕi, ϕνi) = θi, where we have denoted
θN+1 = θ1. Since the indexes are circular, we must conclude
that θi = θj for all i, j ∈ {1, . . . , N}.

III. SYSTEM MODEL

We consider a network of N autonomous vehicles mod-
eled as planar, first-order integrators, described by

ẏi(t) = ui(t), i ∈ {1, . . . , N}, (4)

where yi(t) ∈ R2 is the position of the agent, and ui(t) ∈ R2

is the decentralized control action exerted on the agent, thus
having the dimensions of a velocity. The agents are required
to locate and circumnavigate a target, whose position is
denoted by x, while forming a balanced circular formation
around the target. We define the counterclockwise angle
between two agents i and j as the angle βji (t) subtended
at x by yi(t) and yj(t), evaluated counterclockwise from the
yi(t) to yj(t). To simplify the notation, we let

βi(t) := βi%N+1
i (t). (5)

In other words, βi(t) denotes the counterclockwise angle
between agent i and the agent with the consecutive index
(i+ 1) in a circular fashion. Finally, we denote as ϕi(t) the
bearing of the target with respect to the position yi(t) of
agent i. Namely, we set

ϕi(t) :=
x− yi(t)
‖x− yi(t)‖

. (6)

Note that, for any two agents i and j, we have βji (t) =
∠(ϕi(t), ϕj(t)). The bearing vector is well defined if and
only if yi(t) 6= x. Therefore, we need to make sure that
our control law guarantees that the agents do not travel
indefinitely close to the target. Also, the initial positions of
the agents must not coincide with the position of the target.

Assumption 1: For all agents i ∈ {1, . . . , N}, yi(0) 6= x.
�

Our objective is to design a decentralized control action
ui(t), with i ∈ {1, . . . , N} such that

lim
t→∞
‖x− yi(t)‖ = D?, i ∈ {1, . . . , N}, (7a)

lim
t→∞

(βi(t)− βj(t)) = 0, i, j ∈ {1, . . . , N}, (7b)

where D? > 0 is a desired distance. Note that, by Lemma 1
the control objective (7) implies that the agents tend to
become equally spaced on the circle with center x and radius
D∗.

To reach the control objective (7), we assume that the
agents can measure the bearing of the target and that they
can exchange data over a shared repository hosted on a cloud
server. However, since the bearing measurements and the
exchange of information over the cloud rely on wireless com-
munication, we do not assume that they can be executed con-
tinuously. Instead, we model these communication instances

i τi,li(t) ϕ̂i(τi,li(t)) ωi(τi,li(t)) τi,li(t)+1

1 τ1,l1(t) ϕ̂1(τ1,l1(t)) ω1(τ1,l1(t)) τ1,l1(t)+1

2 τ2,l2(t) ϕ̂2(τ2,l2(t)) ω2(τ2,l2(t)) τ2,l2(t)+1

...
...

...
...

...
N τN,lN (t) ϕ̂1(τN,lN (t)) ω1(τN,lN (t)) τN,lN (t)+1

TABLE I: Information contained in the cloud at a generic time
instant.

as instantaneous events, that are triggered by appropriately
designed conditions. We let ti,k denote the time when agent i
measures the bearing of the target for the k-th time. Similarly,
we let τi,k denote the time when agent i accesses the cloud
repository for the k-th time.

The distributed control law that we propose takes the
following form:

ωi,k =κ(α+ β̂i,k), (8a)

ui(t) =D∗ωi,kϕ̂i(t)
⊥, t ∈ (τi,k, τi,k+1), (8b)

where κ and α are positive constants, while ϕ̂i(t) and β̂i,k
are local estimates of ϕi(t) and βi(t), respectively. As we
shall see in the following, ωi > 0 represents the angular
speed with which agent i rotates around its current estimate
of the position of the target.

For the control law (8) to be completely defined, we need
to specify how the estimates ϕ̂i(t) and β̂i,k are computed.

A. Estimate of the bearing vectors

The estimates ϕ̂i(t) of the bearing vectors are obtained as
follows. For all t ∈ (ti,k, ti,k+1), we let

x̂i(t) =yi(ti,k) +D∗ϕi(ti,k), (9a)

ϕ̂i(t) =
x̂i(t)− yi(t)
‖x̂i(t)− yi(t)‖

. (9b)

The estimation law (9) can be interpreted as follows: be-
tween two consecutive bearing measurements ϕi(ti,k) and
ϕi(ti,k+1), agent i assumes that the target is located on the
direction defined by the most recent bearing measurement
ϕi(ti,k), at a distance D∗ from the position yi(ti,k) of the
agent at the measurement time. Note that, differentiating (9b)
and using (4) and (8), we find easily

˙̂ϕi(t) = ωi,kϕ̂i(t)
⊥, t ∈ (τi,k, τi,k+1), t /∈ {ti,k}k∈N. (10)

B. Estimate of the counterclockwise angles

To define the estimates of the counterclockwise angles, we
need first to define the pattern by which the agents exchange
information over the cloud repository. To this aim, let li(t)
denote the cardinality of the most recent access to the cloud
of agent i before time t. In other words, let

li(t) = max{k ∈ N : τi,k < t}. (11)

The information contained in the cloud repository at a
generic time instant is illustrated in Table I. From Table I, we
can see that each row contains information about one agent.
Namely, the i-th row contains: the time τi,li(t) of the most
recent access of agent i to the cloud; the estimated bearing

5091

vector ϕ̂i(τi,li(t)) of agent i at said time; the angular velocity
ωi(τi,li(t)) applied to agent i at said time, and; the time of
the following access τi,li(t)+1. Whenever agent i accesses
the cloud repository, it downloads the information relative to
agent i%N+1, and computes the angular speed ωi,k and the
time τi,k+1 of its next access; then, it uploads the quadruple
(τi,k, ϕ̂i(τi,k), ωi(τi,k), τi,k+1). This quadruple overwrites
the corresponding row in the repository, so that the cloud
contains updated information about agent i. In this way, the
amount of information contained in the repository does not
grow over time, and the capacity of the repository can be
proportional to the number of agents in the network. The
estimates of the counterclockwise angles are generated as
follows. Let

β̂ji,k = ∠(ϕ̂i(τi,k), rot(ϕj(τj,lj(τi,k)),

ωj(τj,lj(τi,k))(τi,k − τj,lj(τi,k))), (12)

and, in particular, β̂i,k = β̂i%N+1
i,k .

Simply put, β̂i,k is an estimate of βi(τi,k) based on the
data available in the cloud. (In fact, β̂i,k = βi(τi,k) if
the estimates of the bearing vectors contained in the cloud
coincide with the actual bearing vectors at the access times.)
Note that β̂i,k can be computed by agent i using only
information downloaded from the cloud at time τi,k.

Remark 1: In order to compute β̂i,k, agent i needs to
download only the information related to agent i%N + 1.
�

To conclude the definition of our control law, we must
now give the rules that trigger the measurements of the
bearing vector and the accesses to the cloud. In the following
Sections IV and V we illustrate appropriate scheduling rules
to attain the control objective (7).

IV. TRIGGERING OF THE BEARING MEASUREMENTS

The bearing measurements are scheduled according to the
following recursive rule:

ti,k+1 = inf{t ≥ ti,k : ∠(ϕ̂i(t), ϕ(ti,k)) ≥ π/2}. (13)

Theorem 1: Consider a generic agent i with kinematics
(4) and under the control law (8). Let the bearing mea-
surements be scheduled as prescribed by (13). Then, under
Assumption 1, we have yi(t) 6= x for all t ≥ 0 and
limt→∞ x̂i(t) = x. Moreover, the interval ti,k+1 − ti,k
between two consecutive bearing measurements is lower-
bounded. �

Proof: First note that ϕ̂i(t) rotates with angular speed
ωi,k, which is upper-bounded by κ(α + 2π). Hence, the
interval between two consecutive measurements is lower-
bounded by (π/2)/(α + 2π). Let us consider the discrete
time system obtained by integrating (4) over the time interval
between two consecutive measurements ti,k and ti,k+1 of
the bearing vector ϕi(t). Substituting in (4) the expression
of ui(t) given in (8), and noting that α > 0 by design, and
βi(t) is nonnegative by definition, we have that, at any time
instant, agent i rotates about its current estimate of the target

x yi(ti,k)

yi(ti,k+1)

x̂i(ti,k)

x̂i(ti,k+1)
D?

D?‖x̃i,k‖

D?

‖x̃i,k+1‖

Fig. 1: Illustration of eq. (16)

with strictly positive (counterclockwise) angular velocity, and
thus ti,k+1 is finite for all k ∈ N. Hence,

yi(ti,k+1) = x̂i(ti,k) + (yi(ti,k)− x̂i(ti,k))⊥. (14)

Substituting in (14) the expressions of x̂i(t) and ϕ̂i(t) in
(9), we obtain

yi(ti,k+1) = yi(ti,k) + ϕi(ti,k)D? − ϕ(ti,k)⊥D?. (15)

Now, consider the estimation error x̃i,k := x̂i(ti,k+1) − x,
and the distance between the agent and the target zi,k =
yi(ti,k)−x. From Figure 1, and leveraging (15), we see that

‖x̃i,k‖ =

√
‖x̃i,k‖2 +D?2 −D? (16)

‖zi,k+1‖ =

√
‖x̃i,k‖2 +D?2 (17)

From (17), we can see that, as long as zi,0 6= 0, we have
zi,k 6= 0 for all k ∈ N. Since under Assumption 1 we have
zi,0 = yi(0)−x 6= 0, we can conclude that zi,k = yi(ti,k)−
x 6= 0 for all k ∈ N. Moreover, subtracting ‖x̃i,k‖ from both
sides in (16), we have

‖x̃i,k+1‖−‖x̃i,k‖ =

√
‖x̃i,k‖2 +D?2− (‖x̃i,k‖+D?).

(18)

From (18), we can see that ‖x̃i,k+1‖ − ‖x̃i,k‖ ≤ 0, and
‖x̃i,k+1‖−‖x̃i,k‖ = 0 if and only if ‖x̃i,k‖ = 0. Hence, from
LaSalle’s invariance principle for discrete systems [17], we
know that ‖x̃i,k‖ must converge to zero for k →∞. Hence,
x̂i(t) must converge to x, which concludes the proof.

Theorem 1 ensures the control law in (8) is capable of
achieving the control goal in (7a), that is, ensuring the agents
circumnavigate the target. This is evident if the reader recalls
that the agents are modeled as simple integrators, and thus
ui(t) is the velocity of agent i. Then, if x̂i(t) converges to
x, from (6) and (9b) we have that ϕ̂i tends to ϕi and thus
from (8) we have that agent i rotates about x at a distance
D? with positive (counterclockwise) angular velocity.

V. TRIGGERING OF THE ACCESS TO THE CLOUD

Having taken care of the circumnavigation task, we can
now turn our attention to ensuring that the agents achieve a
balanced circular formation; that is, the control goal in (7b).

5092

Achieving such a goal is intrinsically tied to the selection of
the rule that triggers accesses to the cloud.

We start by noting that accessing the cloud to download
the information to compute β̂i,k only affects the goal of
achieving a balanced circular formation. By Theorem 1, we
know all agents converge to the circle of radius D∗ centered
in the position of the target, regardless of the particular values
assumed by the angular speed ωi,k. Therefore, we can as well
study the triggering of the cloud accesses at an instant In this
case, from (8) we have that the planar velocities ui(t) of the
agents are substantially tangential to the circle Hence, we can
reason directly on the angular speeds, which we have denoted
as ωi,k. Note that, since β̂i,k ≥ 0 by definition, we have that
each agent circumnavigates the target counterclockwise.

Without loss of generality, let t ∈ (τi,k, τi,k+1), and let
j = i%N + 1, h = lj(τi,k). With this notation, when
agent i accesses the cloud at time τi,k, it downloads the
quadruple (τj,h, ϕ̂j(τj,h), ωj,h, τj,h+1). When all agents
have reached the desired circle, we have ϕ̂i(t) = ϕi(t) for
all i ∈ {1, . . . , N}. Hence, from (10), we have β̇i(t) =
ωj,lj(t) − ωi,k, which, using (8a), becomes

β̇i(t) = κ(β̂j,lj(t) − β̂i,k). (19)

Denoting ei(t) = β̂i,li(t) − βi(t), (19) becomes

β̇i(t) = κ(βj(t)− βi(t)) + κ(ej(t)− ei(t)). (20)

From (20), it is clear that βi(t) evolves according to a
diffusive coupling (over a ring graph) with additive distur-
bances ei(t). Since a ring graph has a spanning tree, the
variables βi(t) will reach consensus as long as the additive
disturbances vanish quickly enough.

Rule A

Our first rule is inspired by the results in [14], and takes
explicitly into account that part of the error ei(t) arises from
the possible existence, in the time interval (τi,k τi,k+1), of a
smaller interval (τj,h+1 τi,k+1) in which the angular speed of
agent j is different from ωj,h downloaded by agent i from
the cloud. This indeed happens if τj,h+1 ∈ (τi,k, τi,k+1).
Namely, Rule A is defined by the following set of equations:

τi,k+1 = inf{t > τi,k : σi,k(t) ≥ ςi(t)}, (21)

where

σi,k(t) =κ

(
‖ωi,k(t− τi,k)− ωj,h(min{t, τj,h+1} − τi,k)‖

+

∫ max{t,τj,h+1}

τj,h+1

µj(τ)dτ

)
,

(22)

ςi(t) = ςi,0e
−λς , (23)

µi(t) = γiη(t) + ςi(t), (24)

η(t) =δ

(
η0e
−κλt+

+ ‖BT ‖
∫ t

0

e−κλ(t−τ)‖ς(τ)‖dτ
)
,

(25)

η0 ≥ ‖Bᵀ
T β(0)‖, (26)

γi = κ‖{B�T +B�c (B†T BC)ᵀ}i‖, (27)

and where ς(t) = [ς1(t), . . . , ςN (t)]ᵀ, β(t) =
[β1(t), . . . , βN (t)]ᵀ, ςi,0 > 0 for all i ∈ {1, . . . , N},
λ = min(real(eig(Lr))), λς ∈ (0, λ), and δ = ‖V ‖ ‖V −1‖,
with V being the matrix of the eigenvectors of Lr.

Taken altogether, (21)-(27) indicate that an access to the
cloud performed by agent i is scheduled as soon as σi,k(t)
reaches the threshold ςi(t). The rationale behind Rule A is
that σi,k(t) constitutes an upper bound for ei(t) that agent i
can compute at time τi,k. Hence, by ensuring that σi,k(t) ≤
ςi(t), one automatically ensures that ei(t) converges to zero
exponentially, with a rate of at least λς . It is also possible to
show that, under this scheduling rule, the interval between
two consecutive cloud accesses is lower-bounded.

Lemma 2: The scheduling proposed in (21)-(27) guaran-
tees that the dynamics of βi(t) in (20) satisfy the control
objective (7b). Moreover, the interval τi,k+1 − τi,k between
two consecutive cloud accesses is lower-bounded. �

The proof of Lemma 2 is similar to that of Theorem V.2
in [14], where the angles βi(t) are used as the consensus
variables and is therefore omitted for brevity.

Rule B

In section VI we will provide a formal proof ensuring the
agents achieve the control objective in (7b) under Rule A.
However, as we will numerically show in section VII, this
comes at the price of having the agents access the cloud at
a relatively high frequency. To reduce such frequency we
propose the following heuristic rule triggering the accesses
to the cloud:

τi,k+1 := inf{t > τi,k : (t− τi,k)ωi,k = β̂i,k} (28)

Roughly speaking, Rule B prescribes that agent i accesses
the cloud whenever it sweeps, around its current estimate of
the target x̂, an angle equal to β̂i,k.

VI. MAIN RESULT

The main theoretical result of this paper can be formalized
as follows.

Theorem 2: Consider a network of agents with kinemat-
ics (4) and under the control law (8). Let the bearing mea-
surements ti,k be scheduled according to (13) and the cloud
accesses τi,k be scheduled according to (21)–(27). Then,
the agents reach the control objective in (7b). Moreover,
the interval ti,k+1 − ti,k between two consecutive bearing
measurements and the interval τi,k+1 − τi,k between two
consecutive accesses to the cloud are lower-bounded. �

Proof: The proof follows directly from Theorem 1 and
Lemma 2 and is omitted here for the sake of brevity.

VII. SIMULATIONS AND PRELIMINARY EXPERIMENTS

A. Comparison between Rule A and Rule B

To demonstrate the effectiveness of our approach, for each
of the two rules proposed in Section V, we carried out
extensive numerical simulations involving a set of N = 5

5093

agents. Specifically, we performed 100 simulations of the
duration of T = 25s each. As the asymptotic convergence
of the agents to the circle of radius D? centered in x is
guaranteed regardless of the rule triggering the accesses to
the cloud we assumed the agents have already converged onto
the circle surrounding the target and started all simulations
accordingly. Therefore, we focused on their angular speed
ωi,k = κ(α + β̂i,k) and, throughout our simulations, we
have set κ = 1 and α = 0.5. To ensure the comparison
between Rule A and Rule B is independent of the initial
conditions, we randomly selected a set of 100 different values
of the vector y(0) and assigned the i-th initial condition
to both the i-th simulation performed under Rule A, and
the i-th simulation performed under Rule B. As for the
parameters of Rule A, we have γi = 1 i = 1, . . . , 4, γ5 = 2,
and λ = min(real(eig(Lr))) = 0.69. Moreover, we set
λς = 0.68, ςi,0 = 10, η0 = 2.12, and δ = 2.24.

In all simulations performed under Rule B we have
observed convergence of the angles βi i = 1, . . . , n, in a time
tc computed as the first time instant such that an agent ac-
cesses the cloud and |βi(t)− 2π/N | ≤ 0.01(2π/N). Having
provided numerical evidence demonstrating the effectiveness
of Rule B in allowing the agents to achieve the control goal
in (7b), we next compare the performances of the two rules
regulating the accesses to the cloud. We start by highlighting
that, as is the case for the two simulations with identical
initial conditions shown in Figs. 2 and 3, Rule A ensures
faster convergence than Rule B. Namely, we find that the
observed average convergence time under the former, 〈tc,A〉
is equal to 6.32s, while 〈tc,B〉 = 14.98. The results of an
hypothesis test on the difference between 〈tc,A〉 and 〈tc,B〉
confirms the observed difference in the convergence time
is statistically significant. Conversely, we find that under
Rule A, the total number of accesses to the cloud before
convergence is achieved averages at 316 accesses against
the average of 103 observed under Rule B. Again, we find
that this difference is statistically significant. Moreover, we
observe that the frequency of the total accesses to the cloud
under Rule A averages to 50Hz, while the frequency under
Rule B to 7Hz. Finally, as expected, we observe a substantial
difference in the frequency of the accesses after convergence
is achieved. Namely, under Rule A such frequency averages
at 203Hz, while under Rule B it averages at 7Hz.

B. ROS Implementation and experimental evaluation

To demonstrate the use of the proposed control algorithm
when the agents have to approach the target, we run a
simulation in the ROS [18] environment, where each agent
is simulated as a different ROS node. Each agent is a ROS
node itself and interacts with an additional ROS node that
represents the cloud repository by means of ROS messages
and services. In this simulation, we consider N = 5 agents,
with α = 0.4 and κ = 0.2, and the cloud accesses are
scheduled according to Rule B. The results of the simulation
are summarized in Figure 4, where we can see that the
agents converge to the desired circle around the target while
reaching a regular formation, and that each agent accesses

0 10 20
0

1

2

Fig. 2: Plot of βi(t) i = 1, . . . , 5 for a simulation performed under
Rule A. The black dashed line denotes the target value for βi(t),
that is 2π/5.

0 10 20
0

1

2

Fig. 3: Plot of βi(t) i = 1, . . . , 5 for a simulation performed under
Rule B. The black dashed line denotes the target value for βi(t),
that is 2π/5.

the cloud at approximately 0.3Hz. Although the ROS imple-
mentation requires some overhead, it presents the following
significant advantages: as each agent is implemented as a
ROSnode, the distributed nature of the algorithm is repro-
duced in the simulation; the code used to implement the
controller in the simulation can be re-used tout-court in the
experimental implementations.

In order to further test the proposed control strategies,
we have performed some experiments in the flying arena
of the Smart Mobility Lab at KTH. In the experiments, the
networked agents are three Bitcraze CrazyFlie 2.0, which
are open-source and open-hardware nano quadcopters. We
implemented the control and communication features in ROS,
exploiting its modularity and robot-aimed tools. We used a
custom USB radio dongle called CrazyRadio through which
we sent setpoints consisting in thrust and attitude (roll, pitch
and yaw angles); these were then transformed into commands
for the four propellers by an on-board micro-controller. The
real-time positions and orientations of quadrotors are tracked
by a motion capture system with an update rate of 100Hz,
capable of detecting the position of some reflective spherical
markers that we applied on the quadcopters.

The logical structure of the control architecture is de-

5094

Fig. 4: Results of the simulation described in Section VII-B. From left to right: trajectories of the agents; angles βi(t), cloud access times
for each agent.

Fig. 5: Logical structure of the implemented control solutions
for experiments. The dashed arrows correspond to ROS services,
the continue ones correspond to ROS topics. The orange nodes
represent features that are replicated for each agent of the network;
the green node is the cloud and is able to get information from
every network agent; the plotter, in white, gets informations both
about the agents and the designed task. It represents the interface
for the human user. The blue nodes are related to the actuation of
the control and to the acquisition of the feedback from the ground.

scribed in Figure 5. As a preliminary implementation, we
integrate the velocity command ui(t) generated by the
controller according to (8), producing a certain number of
intermediate goal positions that are fed to a PID flight
controller, as shown in figure (5). In these experiments, both
Rule A and Rule B were able to achieve the desired target
behavior. Convergence was achieved despite some limitations
of the experimental set-up, whose improvement will be the
subject of future work. Moreover, the PID controller used
on-board as a flight controller could not always cope with
the unmodelled dynamics leading to possible instabilities that
made the experimental results worse that the numerical ones.
A video of a representative experiment is on Zenodo [19].

REFERENCES

[1] I. Shames, S. Dasgupta, B. Fidan, and B. D. O. Anderson, “Circum-
navigation Using Distance Measurements Under Slow Drift,” IEEE
Transactions on Automatic Control, vol. 57, no. 4, pp. 889–903, 2012.

[2] M. Deghat, I. Shames, B. D. O. Anderson, and L. Fellow, “Localization
and Circumnavigation of a Slowly Moving Target Using Bearing

Measurements,” IEEE Transactions on Automatic Control, vol. 59,
no. 8, pp. 2182–2188, 2014.

[3] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of
vehicles in cyclic pursuit,” IEEE Transactions on Automatic Control,
vol. 49, no. 11, pp. 1963–1974, 2004.

[4] J. A. Marshall, M. E. Broucke, and B. A. F. Macdonald, “Pursuit
formations of unicycles,” Automatica, vol. 42, pp. 3–12, 2006.

[5] R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar
collective motion: All-to-all communication,” IEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 811–824, 2007.

[6] T.-H. Kim and T. Sugie, “Cooperative control for target-capturing task
based on a cyclic pursuit strategy ,” Automatica, vol. 43, pp. 1426–
1431, 2007.

[7] I. Shames, B. Fidan, and B. D. O. Anderson, “Close target reconnais-
sance with guaranteed collision avoidance,” International Journal of
Robust and Nonlinear Control, vol. 21, pp. 1823–1840, 2011.

[8] J. O. Swartling, I. Shames, K. H. Johansson, and D. V. Dimarogonas,
“Collective Circumnavigation,” Unmanned Systems, vol. 2, no. 3, pp.
219–229, 2014.

[9] A. Boccia, A. Adaldo, D. V. Dimarogonas, M. di Bernardo, and K. H.
Johansson, “Tracking a mobile target by multi-robot circumnavigation
using bearing measurements,” IEEE Conference on Decision and
Control, 2017.

[10] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An
Introduction to Event-triggered and Self-triggered Control,” in IEEE
Conference on Decision and Control, Maui, Hawaii, USA, 2012, pp.
3270–3285.

[11] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[12] S. L. Bowman, C. Nowzari, and G. J. Pappas, “Coordination of
multi-agent systems via asynchronous cloud communication,” in IEEE
Conference on Decision and Control, 2016, pp. 2215–2220.

[13] R. Patel, P. Frasca, J. W. Durham, R. Carli, and F. Bullo, “Dynamic
partitioning and coverage control with asynchronous one-to-base-
station communication,” IEEE Transactions on Control of Network
Systems, vol. 3, no. 1, pp. 5589–5594, 2016.

[14] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson,
“Multi-Agent Trajectory Tracking with Event-Triggered Cloud Ac-
cess,” in IEEE Conference on Decision and Control, 2016, pp. 2207–
2214.

[15] A. Adaldo, D. V. Dimarogonas, and K. H. Johansson, “Cloud-
supported effective coverage of 3D structures,” in European Control
Conference, 2018.

[16] D. Zelazo, Amirreza Rahmani, and Mehran Mesbahi, “Agreement via
the edge laplacian,” in IEEE Conference on Decision and Control,
2007, pp. 2309–2314.

[17] J. P. LaSalle, The Stability and Control of Discrete Processes, 1986.
[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Mg, “ROS: an open-source Robot
Operating System,” in IEEE International Conference on Robotics and
Automation, 2009.

[19] D. Mariniello, A. Adaldo, D. V. Dimarogonas, and K. H.
Johansson, “Cooperative circumnavigation with event-triggered
bearing measurements.” [Online]. Available: https://doi.org/10.5281/
zenodo.1067181%0A

5095

