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a b s t r a c t

Two robust model predictive control (MPC) schemes are proposed for tracking unicycle robots with input
constraint and bounded disturbances: tube-MPC and nominal robust MPC (NRMPC). In tube-MPC, the
control signal consists of a control action and a nonlinear feedback law based on the deviation of the
actual states from the states of a nominal system. It renders the actual trajectory within a tube centered
along the optimal trajectory of the nominal system. Recursive feasibility and input-to-state stability are
established and the constraints are ensured by tightening the input domain and the terminal region. In
NRMPC, an optimal control sequence is obtained by solving an optimization problem based on the current
state, and then the first portion of this sequence is applied to the real system in an open-loop manner
during each sampling period. The state of the nominal system model is updated by the actual state at
each step, which provides additional feedback. By introducing a robust state constraint and tightening
the terminal region, recursive feasibility and input-to-state stability are guaranteed. Simulation results
demonstrate the effectiveness of both strategies proposed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Tracking control of nonholonomic systems is a fundamen-
tal motion control problem and has broad applications in many
important fields such as unmanned ground vehicle navigation
(Simanek, Reinstein, & Kubelka, 2015), multi-vehicle cooperative
control (Wang & Ding, 2014) and formation control (Lafferriere,
Williams, Caughman, & Veerman, 2005). So far, many techniques
have been developed for control of nonholonomic robots (Ghom-
mam, Mehrjerdi, Saad, & Mnif, 2010; Jiang & Nijmeijer, 1997; Lee,
Song, Lee, & Teng, 2001;Marshall, Broucke, & Francis, 2006; Yang &
Kim, 1999). However, these techniques either ignore the mechani-
cal constraints, or require the persistent excitation of the reference
trajectory, i.e., the linear and angular velocity must not converge
to zero (Gu & Hu, 2006). Model predictive control (MPC) is widely
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used for constrained systems. By solving a finite horizon open-
loop optimization problem on-line based on the current system
state at each sampling instant, an optimal control sequence is
obtained. The first portion of the sequence is applied to the system
at each actuator update (Mayne, Rawlings, Rao, & Scokaert, 2000).
MPC of four-wheel vehicles was studied in Frasch et al. (2013),
Shakouri andOrdys (2011, 2014) and Tashiro (2013), inwhich real-
time control for application was emphasized. MPC for tracking of
noholonomic systems was studied in Chen, Sun, Yang, and Chen
(2010), Gu and Hu (2006), Sun and Xia (2016) and Wang and Ding
(2014), where the robots were considered to be perfectlymodeled.
However, when the system is uncertain or perturbed, stability and
feasibility of suchMPCmay be lost. StochasticMPC and robustMPC
are two main approaches to deal with uncertainty (Mayne, 2016).
In stochastic MPC, it usually ‘‘soften’’ the state and terminal con-
straints to obtain a meaningful optimal control problem (see Dai,
Xia, Gao, Kouvaritakis, & Cannon, 2015; Grammatico, Subbara-
man, & Teel, 2013; Hokayem, Cinquemani, Chatterjee, Ramponi,
& Lygeros, 2012; Zhang, Georghiou, & Lygeros, 2015). This paper
focuses on robust MPC and will present two robust MPC schemes
for a classical unicycle robot tracking problem.

There are several design methods for robust MPC. One of the
simplest approaches is to ignore the uncertainties and rely on the
inherent robustness of deterministic MPC, in which an open-loop
control action computed on-line is applied recursively to the sys-
tem (Marruedo, Alamo, & Camacho, 2002b; Scokaert & Rawlings,
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1995). However, the open-loop control and the uncertainty may
degrade the control performance, or even render the systemunsta-
ble. Hence, feedback MPC was proposed in Kothare, Balakrishnan,
andMorari (1996), Lee and Yu (1997) andWan and Kothare (2002),
inwhich a sequence of feedback control laws is obtained by solving
an optimization problem. The determination of a feedback policy
is usually prohibitively difficult. To overcome this difficulty, it is
intuitive to focus on simplifying approximations by, for instance,
solving a min–max optimization problem on-line. Min–max MPC
provides a conservative robust solution for systems with bounded
disturbances by considering all possible disturbances realizations
(Lee & Yu, 1997; Limón, Alamo, Salas, & Camacho, 2006; Wan &
Kothare, 2002). It is in most cases computationally intractable to
achieve such feedback laws, since the computational complexity
of min–max MPC grows exponentially with the increase of the
prediction horizon.

Tube-MPC taking advantage of both open-loop and feedback
MPC approaches was reported in Fleming, Kouvaritakis, and Can-
non (2015), Langson, Chryssochoos, Raković, and Mayne (2004),
Mayne, Kerrigan, VanWyk, and Falugi (2011), Mayne and Langson
(2001), Mayne, Seron, and Raković (2005) and Yu, Maier, Chen, and
Allgöwer (2013). Here the controller consists of an optimal control
action and a feedback control law. The optimal control action steers
the state to the origin asymptotically, and the feedback control law
maintains the actual state within a ‘‘tube’’ centered along the op-
timal state trajectory. Tube-MPC for linear systems was advocated
in Langson et al. (2004) and Mayne and Langson (2001), where the
center of the tube was provided by employing a nominal system
and the actual trajectorywas restricted by an affine feedback law. It
was shown that the computational complexity is linear rather than
exponential with the increase of prediction horizon. The authors
of Mayne et al. (2005) took the initial state of the nominal system
employed in the optimization problem as a decision variable in
addition to the traditional control sequence, and proved several
potential advantages of such an approach. Tube-MPC for nonlinear
systems with additive disturbances was studied in Mayne et al.
(2011) and Yu et al. (2013), where the controller possessed a
similar structure as in the linear case but the feedback law was re-
placed by anotherMPC to attenuate the effect of disturbances. Two
optimization problems have to be solved on-line, which increases
the computation burden.

In fact, tube-MPC provides a suboptimal solution because it has
to tighten the input domain in the optimization problem, which
may degrade the control performance. It is natural to inquire if
nominal MPC is sufficiently robust to disturbances. A robust MPC
via constraint restriction was developed in Chisci, Rossiter, and
Zappa (2001) for discrete-time linear systems, in which asymp-
totic state regulation and feasibility of the optimization problem
were guaranteed. In Marruedo, Alamo, and Camacho (2002a), a
robust MPC for discrete-time nonlinear systems using nominal
predictions was presented. By tightening the state constraints and
choosing a suitable terminal region, robust feasibility and input-to-
state stability were guaranteed. In Richards and How (2006), the
authors designed a constraint tightened in a monotonic sequence
in the optimization problem such that the solution is feasible
for all admissible disturbances. A novel robust dual-mode MPC
scheme for a class of nonlinear systems was proposed in Li and Shi
(2014b), the system of which is assumed to be linearizable. Since
the procedure of this class of robust MPC is almost the same as
nominal MPC, we call this class nominal robust MPC (NRMPC) in
this paper.

Robust MPC for linear systems is well studied but for nonlinear
systems is still challenging since it is usually intractable to design a
feedback law yielding a corresponding robust invariant set. Espe-
cially, the study of robust MPC for nonholonomic systems remains
open. Consequently, this paper focuses on the design of robustMPC

for the tracking of unicycle robots with coupled input constraint
and bounded additive disturbance, which represents a particular
class of nonholonomic systems. We discuss the two robust MPC
schemes introduced above. First, a tube-MPC strategy with two
degrees of freedom is developed, in which the nominal system is
employed to generate a central trajectory and a nonlinear feedback
is designed to steer the system trajectory within the tube for all
admissible disturbances. Recursive feasibility and input-to-state
stability are guaranteed by tightening the input domain and ter-
minal constraint via affine transformation and all the constraints
are ensured. Since tube-MPC sacrifices optimality for simplicity,
an NRMPC strategy is presented, in which the state of the nominal
system is updated by the actual one in each step. In such away, the
control action applied to the real system is optimal with respect
to the current state. Input-to-state stability is also established in
this case by utilizing the recursive feasibility and the tightened
terminal region.

The remainder of this paper is organized as follows. In Section 2,
we outline the control problem and some preliminaries. Tube-MPC
and NRMPC are developed in Sections 3 and 4, respectively. In
Section 5, simulation results are given. Finally, we summarize the
paper in Section 6.

Notation: R denotes the real space and N denotes the collection
of all nonnegative integers. For a given matrix M , ∥M∥ denotes its
2-norm. diag{x1, x2, . . . , xn} denotes the diagonal matrix with en-
tries x1, x2, . . . , xn ∈ R. For two vectors x = [x1, x2, . . . , xn]T and
y = [y1, y2, . . . , yn]T, x < ymeans {x1 < y1, x2 < y2, . . . , xn < yn}
and |x| ≜ [|x1|, |x2|, . . . , |xn|]T denotes its absolute value. ∥x∥ ≜√
xTx is the Euclidean norm. P-weighted norm is denoted as ∥x∥P ≜√
xTPx, where P is a positive definite matrix with appropriate

dimension. Given two sets A and B, A ⊕ B ≜ {a + b|a ∈ A, b ∈ B},
A ⊖ B ≜ {a|{a} ⊕ B ⊂ A} and MA ≜ {Ma|a ∈ A}, where M is a
matrix with appropriate dimensions.

2. Problem formulation and preliminaries

In this section, we first introduce the kinematics of the non-
holonomic robot and deduce the coupled input constraint from
its mechanical model. Then, we formulate the tracking problem
as our control objective, and finally give some preliminaries for
facilitating the development of our main results.

2.1. Kinematics of the unicycle robot

Consider a nonholonomic robot described by the following
unicycle-modeled kinematics:

ξ̇ (t) = f (ξ (t), u(t)) =

⎡⎣cos θ (t) 0
sin θ (t) 0

0 1

⎤⎦ u(t), (1)

where ξ (t) = [pT(t), θ (t)]T ∈ R2
× (−π, π] is the state, consisting

of position p(t) = [x(t), y(t)]T and orientation θ (t), and u(t) =

[v(t), ω(t)]T is the control input with the linear velocity v(t) and
the angular velocity ω(t).

The unicycle robot is shown in Fig. 1, where ρ > 0 is half of
the wheelbase, vL and vR are the velocities of the left and the right
driving wheels, respectively. It is assumed that the two wheels
possess the same mechanical properties and the magnitudes of
their velocities are bounded by |vL

| ≤ a and |vR
| ≤ a, where a ∈ R

is a known positive constant. The linear and angular velocities of
the robot are then

v = (vL
+ vR)/2,

ω = (vR
− vL)/2ρ. (2)
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Fig. 1. Unicycle robot.

As a consequence, the control input u should be bounded by the set

U = {[v, ω]
T

:
|v|

a
+

|ω|

b
≤ 1} (3)

with b = a/ρ, i.e., u ∈ U.

2.2. Control objective

Our control objective is to track a reference trajectory using
separation-bearing control (Das et al., 2002; Desai, Ostrowski, &
Kumar, 2001). We formulate this problem in a relative coordi-
nate system. The reference trajectory, which can be viewed as a
virtual leader, is described by a reference state vector ξr (t) =

[pTr (t), θr (t)]
T

∈ R2
× (−π, π] with pr (t) = [xr (t), yr (t)]T and a

reference control signal ur (t) = [vr (t), ωr (t)] ∈ U. The reference
state vector ξr (t) and the reference control signal ur (t) aremodeled
as a nominal unicycle robot

ξ̇r (t) = f (ξr (t), ur (t)). (4)

The robot to be controlled is defined as a follower and is also
a unicycle with kinematics (1). As the existence of nonholonomic
constraint, we consider its head position, which is the point that
lies a distance ρ along the perpendicular bisector of the wheel
axis ahead of the robot. Furthermore, the robot is assumed to be
perturbed by a disturbance caused by sideslip due to the road ride.
Therefore, we consider disturbances acting on the linear velocity
while neglecting disturbances acting on the angular velocity. The
perturbed head position kinematics is then formulated as follows:

ξ̇f (t) = fh(ξf (t), uf (t)) + d(t), uf (t) ∈ U, (5)

where ξf (t) = [pTf (t), θf (t)]
T is the state with head position

pf (t) = [xf (t), yf (t)]T, and uf (t) = [vf (t), ωf (t)]T is the control
input. Here, the nonlinear function fh is given by fh(ξf (t), uf (t)) =

[(M(θf (t))uf (t))T, ωf (t)]T with M(θf ) =

[
cos θf −ρ sin θf
sin θf ρ cos θf

]
. In addi-

tion, d(t) = [dTp(t), 0]
T

⊆ R3 with dp(t) = [dx(t), dy(t)]T is the
external disturbances, which is bounded by

∥d(t)∥ ≤ η. (6)

Construct Frenet–Serret frames rO and fO for the virtual leader
and the follower, respectively. They are moving coordinate sys-
tems fixed on the robots (see Fig. 2). The desired position is pd =

[xd, yd]T, which is defined with respect to the Frenet–Serret frame
rO. At the same time, the tracking error pe = [xe, ye]T is defined
with respect to the Frenet–Serret frame fO and is given by

pe(t) = R(−θf (t))(pr (t) − pf (t)) + R(θe)pd, (7)

θe(t) = θr (t) − θf (t), (8)

where R(θ ) =

[
cos θ − sin θ

sin θ cos θ

]
is the rotation matrix.

Fig. 2. Leader–follower configuration.

Taking the derivative of the tracking error yields

ṗe(t) =

[
0 ωf

−ωf 0

][
xe
ye

]
+

[
−vf + (vr − xdωr ) cos θe − xdωr sin θe

−ρωf + (vr − xdωr ) sin θe + ydωr cos θe

]
+ R(θf )dp. (9)

Wewill design robustMPC strategies to drive the tracking error
pe to a neighborhood of the origin. Note that the tracking system
(9) involves the disturbances but the future disturbances cannot
be predicted in advance. We will formulate the MPC problem only
involving the nominal system.

To distinguish the variables in the nominal system model from
the real system, we introduce ·̃ as a superscript for the variables in
the nominal system. From the perturbed system (5), the nominal
dynamics can be obtained by neglecting the disturbances as

˙̃
ξ f (t) = fh(ξ̃f (t), ũf (t)), ũf (t) ∈ U, (10)

where, similarly, ξ̃f (t) = [p̃Tf (t), θ̃f (t)]
T is the state of the nominal

system with the position p̃f = [x̃f (t), ỹf (t)]T and orientation θ̃f (t),
and ũf (t) = [ṽf (t), ω̃f (t)]T is the control input of the nominal
system. The tracking error dynamics based on the nominal system
is then given by

˙̃pe(t) =

[
0 ωf (t)

−ωf (t) 0

][
x̃e(t)
ỹe(t)

]
+ ũe(t), (11)

where ũe(t) is the input error and is given by

ũe(t) =

[
−ṽf + (vr − xdωr ) cos θ̃e − xdωr sin θ̃e

−ρω̃f + (vr − xdωr ) sin θ̃e + ydωr cos θ̃e

]
.

Define {tk : k ∈ N, tk+1 − tk = δ}, with δ > 0, as the
time sequence at which the open-loop optimization problems are
solved. The MPC cost to be minimized is given by

J(p̃e(tk), ũe(tk)) =

∫ tk+T

tk

L(p̃e(τ |tk), ũe(τ |tk))dτ

+ g(p̃e(tk + T |tk)), (12)

in which L(p̃e(τ |tk), ũe(τ |tk)) = ∥p̃e(τ |tk)∥2
Q + ∥ũe(τ |tk)∥2

P rep-
resents the stage cost with the positive definite matrices P =

diag{p1, p2} andQ = diag{q1, q2}, g(p̃e(τ |tk)) =
1
2∥p̃e(τ |tk)∥2 is the

terminal penalty, and T is the prediction horizon satisfying T = Nδ,
N ∈ N.

2.3. Preliminaries

Some definitions and lemmas used in the following sections are
summarized as follows.



Z. Sun et al. / Automatica 90 (2018) 172–184 175

Definition 1. For the nominal tracking error system (11), the
terminal region Ω and the terminal controller ũκ

f (·) are such that
if p̃e(tk + T |tk) ∈ Ω , then, for any τ ∈ (tk + T , tk+1 + T ], by
implementing the terminal controller ũf (τ |tk+1) = ũκ

f (τ |tk+1), it
holds that

p̃e(τ |tk) ∈ Ω, (13)

ũf (τ |tk) ∈ U, (14)

ġ(p̃e(τ |tk)) + L(p̃e(τ |tk), ũe(τ |tk)) ≤ 0. (15)

Definition 2 (Sontag, 2008). System (9) is input-to-state stable
(ISS) if there exist a KL function β(·, ·) : R≥0 × R≥0 → R and a
K function γ (·) such that, for t ≥ 0, it holds that

∥pe(t)∥ ≤ β(∥pe(t0)∥, t) + γ (η), (16)

where t0 is the initial time and η is the bound of disturbance given
by (6).

Definition 3 (Sontag, 2008). A function V (·) is called an ISS-
Lyapunov function for system (9) if there exist K∞ functions α1(·),
α2(·), α3(·) and a K function σ (·) such that for all pe ∈ R2

α1(∥pe(tk)∥) ≤ V (pe(tk)) ≤ α2(∥pe(tk)∥), (17)

V (pe(tk+1)) − V (pe(tk)) ≤ −α3(∥pe(tk)∥) + σ (η), (18)

where η is the bound of the disturbance given by (6).

Remark 1. If Definition 2 or 3 holds, then it implies that the
tracking error vanishes if there is no disturbance.

The following lemma provides a terminal controller and the
corresponding terminal region for the nominal error system (11).

Lemma 1. For the nominal tracking system (11), let ũf ∈ λfU with

λf ∈ (0, 1], ∥ur∥ < a
√
2∥D∥

λf with D =

[
1 −xd
0 yd

]
, and λr =

√
2∥D∥

a max ∥ur∥. Then Ω = {p̃e : k̃1|x̃e| + k̃2|ỹe| < a(λf − λr )} is
a terminal region for the controller

ũκ
f (τ |tk) =

⎡⎣ k̃1x̃e + (vr − xdωr ) cos θ̃e − xdωr sin θ̃e
1
ρ
(k̃2ỹe + (vr − xdωr ) sin θ̃e + ydωr cos θ̃e)

⎤⎦ ,

τ ∈ [tk + T , tk+1 + T ), (19)

with the parameters satisfying piqi < 1
4 and

k̃i ∈

(
1−

√
1−4piqi
2pi

,
1+

√
1−4piqi
2pi

)
, i = 1, 2. Here, pi and qi are the

entries of P and Q , respectively, given by (12).

The proof of Lemma 1 is provided in Appendix.
Nominal system (10) is Lipschitz continuous and a correspond-

ing Lipschitz constant is given by the following lemma (see Ap-
pendix for the detailed proof).

Lemma 2. System (10) with u ∈ U is locally Lipschitz in ξ with
Lipschitz constant a, where a is the max wheel speed.

3. Tube-MPC

In this section, a tube-MPC policy is developed. It consists of an
optimal control action obtained by solving an optimization prob-
lem and a feedback law based on the deviation of the actual state
from the nominal one. The controller forces the system state to
stay within a tube around a sensible central trajectory. The central
trajectory is determined by the following optimization problem.

Problem 1.

min
ũf (τ |tk)

J(p̃e(tk), ũe(tk)), (20)

s.t. pf (tk) ∈ p̃f (tk|tk) ⊕ Pfe, (21)
˙̃
ξ f (τ |tk) = fh(ξ̃f (τ |tk), ũf (τ |tk)), (22)

ũf (τ |tk) ∈ Utube, (23)

p̃e(tk + T |tk) ∈ Ωtube, (24)

where Pfe =

{
pfe(t) : |pfe| ≤ [−

η

k1
, −

η

k2
]
T
}
, Utube = {[ṽf , ω̃f ]

T
:

|ṽf |

a +
|ω̃f |

b ≤ λtube} with λtube =

√
2
2 −

η
√
2

a , and Ωtube = {p̃e :

k̃1|x̃e| + k̃2|ỹe| < a(λtube − λr )}.

Remark 2. Problem 1 is a nonlinear programming problem. Nu-
merical solutions can be found by several algorithms, such as inte-
rior pointmethod (Wächter & Biegler, 2006), trust region reflective
algorithm (Coleman & Li, 1996), branch-and-bound optimization
(Narendra & Fukunaga, 1977), etc.

Solution of Problem 1 yields the minimizing control sequence
for the nominal follower system over the interval [tk, tk + T ):

ũ∗

f (tk) =
{
ũ∗

f (τ |tk) : τ ∈ [tk, tk + T )
}
, (25)

as well as the corresponding optimal trajectory:

ξ̃∗

f (tk) =
{
[p̃∗T

f (τ |tk), θ̃∗

f (τ |tk)]T : τ ∈ [tk, tk + T )
}
. (26)

Applying the control in (25), for t ∈ [tk, tk+1), to the actual
system may not drive the state along the optimal trajectory (26)
due to the external disturbance. We denote the deviation of the
actual trajectory from the optimal trajectory as

pfe(t) = pf (t) − p̃∗

f (t|tk). (27)

Taking the derivative of (27) yields

ṗfe(t) = M(θf (t))uf (t) − M(θ̃∗

f (t|tk))ũ
∗

f (t|tk) + dp(t). (28)

The robust controller for the follower over the interval t ∈ [tk, tk+1)
is then

uf (t) = M−1(θf (t))[M(θ̃∗

f (t|tk))ũ
∗

f (t|tk) + Kpfe(t)], (29)

where K = diag{k1, k2}, k1 < 0 and k2 < 0, is the feedback gain,
ũ∗

f (τ |tk), p̃∗

f (τ |tk) and θ̃∗

f (τ |tk), τ ∈ [tk, tk+1), are the first portion of
the optimal control, trajectory and orientation, respectively, and
M(θ ) is given in (5).

Remark 3. Due to the system nonlinearity, the optimal control
signal and the feedback law are different here compared to linear
systems (Langson et al., 2004; Mayne & Langson, 2001; Mayne
et al., 2005), in which the controllers have the form u = u∗

+

K (x−x∗). The control in (29) is derived by feedback linearization of
(28). The scheme leads to challenges in determining the tightened
input constraint set Utube such that uf ∈ U holds. The scheme
is also different from existing works on nonlinear systems as in
Gao, Gray, Carvalho, Tseng, and Borrelli (2014), Gao, Gray, Tseng,
and Borrelli (2014), Mayne et al. (2011) and Yu et al. (2013). Our
off-line feedback law is replaced with an online computation of
another MPC in Mayne et al. (2011) and Yu et al. (2013), which
increases the online computational burden. In Gao, Gray, Carvalho,
et al. (2014) and Gao, Gray, Tseng, et al. (2014), the authors take
the nonlinear part of the system and the external disturbance as a
total uncertainty to design feedback laws, which is similar to the
case of linear systems, but feasibility cannot be guaranteed.
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Based on this control strategy, the procedure of tube-MPC is
summarized in Algorithm 1.

Algorithm 1 Tube-MPC
1: At time tk, measure the actual system state pf (tk) and establish

the initial condition pf (tk) ∈ p̃f (tk|tk) ⊕ Pfe.
2: Solve Problem1based on nominal system to obtain the optimal

control sequence ũ∗

f (tk) = argminuf (τ |tk) Jf (p̃e(tk), ũe(tk)).

3: Calculate the control signal uf (t) = M−1(θf (t))[M(θ̃∗

f (t|tk))
ũ∗

f (t|tk) + Kpfe(t)], t ∈ [tk, tk+1).
4: Apply uf (t) to the real system during the sampling interval

[tk, tk+1).
5: Update the time instant tk → tk+1 and go to step 1.

Remark 4. Since the optimization problem is solved on-line at
each step and the first optimal control action is employed to
generate the control policy together with the feedback law, the
computational complexity is determined by the nominal system.
Hence, the scheme has the same computational complexity as the
deterministic MPC.

Remark 5. The initial state p̃f (tk) in (21) of Problem 1 is taken as
a decision variable in addition to the usual control sequence. This
idea is inspired by Langson et al. (2004) and Mayne et al. (2005).
Constraint (21) can also be replaced by ξ̃f (tk|tk) = ξ̃f (tk) (see Gao,
Gray, Tseng, et al., 2014; Mayne & Langson, 2001; Rawlings &
Mayne, 2009; Yu et al., 2013), which would imply that the opti-
mization problem employs only the nominal system and thus the
predictive optimal trajectory would be independent of the actual
state except for the initial one. The central trajectory of the tube can
be calculated in a parallel or even off-line way if the initial state is
known a priori.

Before stating the main results of tube-MPC, the following
lemma is given to show that the feedback law renders the dif-
ference between the minimizing and actual trajectories bounded
while guaranteeing the satisfaction of the input constraint.

Lemma 3. For the tracking control system (9)with controller (29), it
follows that

(i) the state of the real system lies in the tube T = p̃∗

f ⊕ Pfe, where
Pfe is given in Problem 1;

(ii) the input constraint is satisfied, i.e., uf ∈ U.

Proof. Substituting (29) into (28), we can conclude that

ṗfe(t) = Kpfe(t) + dp(t), (30)

of which the solution is given by

pfe(t) = eKtpfe(0) +

∫ t

0
eK (t−τ )dp(τ )dτ . (31)

By the initialization condition (21) and upper-bound of the distur-
bances, it follows that

|pfe(t)| ≤ η

⎡⎢⎢⎣
1
k1

ek1t −
1
k1

1
k2

ek2t −
1
k2

⎤⎥⎥⎦ . (32)

Consequently, pfe(t) ∈ Pfe(t), where the set Pfe(t) is defined by

Pfe(t) =

⎧⎪⎪⎨⎪⎪⎩pfe(t) : |pfe(t)| ≤ η

⎡⎢⎢⎣
1
k1

ek1t −
1
k1

1
k2

ek2t −
1
k2

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ . (33)

Then Pfe can be given by

Pfe = lim
t→∞

Pfe(t) =

⎧⎪⎨⎪⎩pfe(t) : |pfe| ≤

⎡⎢⎣−
η

k1
−

η

k2

⎤⎥⎦
⎫⎪⎬⎪⎭ . (34)

From (27) and pfe ∈ Pfe, we have

pf ∈ p̃∗

f ⊕ Pfe, (35)

i.e., the trajectory lies in the tube T.
For (ii), redefine the control input as

ua
f = M(θf )uf , (36)

ua∗
f = M(θ̃∗

f )ũ
∗

f . (37)

It can be observed that M(·) is an affine transformation, which is
equivalent to scalingωf (ω̃∗

f ) byρ and rotate uf (ũ∗

f ) by θf (θ̃∗

f ). Thus,
to prove uf ∈ U if u∗

f ∈ Utube is equivalent to show ua
f ∈ Ua(θf )

if ua∗
f ∈ Ua

tube for every admissible θf and θ∗

f . The sets Ua(θf ) and
Ua

tube(θ̃
∗

f ) are defined as follows:

Ua(θf ) = M(θf ){[v, ω]
T

:
|v|

a
+

|ω|

b
≤ 1}, (38)

Ua
tube(θ̃

∗

f ) = M(θ̃∗

f ){[v, ω]
T

:
|v|

a
+

|ω|

b
≤ λtube}. (39)

Substituting (36) and (37) into (29) yields

ua
f = ua∗

f + Kpfe. (40)

It is obvious that⋂
θf ∈(−π,π ]

Ua(θf ) = {[v, ω]
T

: ∥[v, ω]
T
∥ ≤ a

√
2
2

}, (41)

⋃
θ∗
f ∈(−π,π ]

Ua
tube(θ̃

∗

f ) = {[v, ω]
T

: ∥[v, ω]
T
∥ ≤ aλ tube}, (42)

KPfe =

{
Kpfe(t) : |Kpfe| ≤

[
η

η

]}
⊂

{
Kpfe(t) : ∥Kpfe∥ ≤

√
2η
}

. (43)

Thus, it can be obtained that⋃
θ∗
f ∈(−π,π ]

Ua
tube ⊕ KPfe ⊂

⋂
θf ∈(−π,π ]

Ua, (44)

which implies that ua
f ∈ Ua holds for every admissible θf and θ̃∗

f ,
and thus uf ∈ U naturally holds. □

Remark 6. Note that the input domain is independent of the
feedback gain K , which differs from the results of linear systems in
Chisci et al. (2001), Langson et al. (2004) and Mayne and Langson
(2001). Meanwhile, from (i) in Lemma 3, increasing K will reduce
the difference between the actual trajectory and the optimal one,
and consequently reduce the size of tube T. It indicates that the
steady state tracking performance could be enhanced by tuning K .

The main results of tube-MPC are given in the following
theorem.

Theorem 1. For the tracking control system (9) under Algorithm 1, if
Problem 1 is feasible at time t0, then,

(i) Problem 1 is feasible for all t > t0;
(ii) the tracking control system (9) is ISS.
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Proof. From Lemma 1, Ωtube is a terminal region by letting λf =

λtube. We assume that a feasible solution exists and an optimal
solution ũ∗

f (tk) is found at the sampling instant tk. When applying
this sequence to the nominal system, the tracking error of the
nominal system is driven into the terminal regionΩtube, i.e., p̃∗

e (tk+
T |tk) ∈ Ωtube, along the corresponding open-loop trajectory ξ̃ ∗

f (tk)
over [tk, tk + T ). In terms of Algorithm 1, the control (29) over
[tk, tk+1) is applied to the actual system, and its statemeasurement
at time tk+1 satisfies pf (tk+1) ∈ p̃∗

f (tk+1|tk) ⊕ Pfe. This implies that
p̃∗

f (tk+1|tk) is a feasible initial state for Problem 1. Therefore, to
solve the open-loop optimization problem at tk+1 with this initial
condition, a feasible control sequence can be constructed by

ũf (τ |tk+1) =

{
ũ∗

f (τ |tk), τ ∈ [tk+1, tk + T ),
ũκ
f (τ |tk), τ ∈ [tk + T , tk+1 + T ),

(45)

where ũκ
f (τ |tk) is the terminal controller given by (19). Since the

terminal region Ωtube is invariant with the control ũκ
f (τ |tk), p̃∗

e (tk +

T |tk) ∈ Ωtube implies p̃e(tk+1 + T |tk+1) ∈ Ωtube. Then, result (i) can
be achieved by induction.

For (ii), we first prove that the tracking error for the nominal
system converges to the origin. Then we show that the state of the
real system converges to an invariant set along a trajectory lying
in the tube T, the center of which is the trajectory of the nominal
system. The Lyapunov function for the nominal system is chosen
as

V (tk) = J(p̃∗

e (tk), ũ
∗

e (tk)). (46)

Consider the difference of the Lyapunov function at tk and tk+1,

∆V = V (tk+1) − V (tk)
≤ J(p̃e(tk+1), ũe(tk+1)) − J(p̃∗

e (tk), ũ
∗

e (tk))

=

∫ tk+1+T

tk+1

(∥p̃e(τ |tk+1)∥2
Q + ∥ũe(τ |tk+1)∥2

P )dτ

−

∫ tk+T

tk

(∥p̃∗

e (τ |tk)∥2
Q + ∥ũ∗

e (τ |tk)∥2
P )dτ

+ ∥p̃e(tk+1 + T |tk+1)∥2
R − ∥p̃∗

e (tk + T |tk)∥2
R

= −

∫ tk+1

tk

(∥p̃∗

e (τ |tk)∥2
Q + ∥ũ∗

e (τ |tk)∥2
P )dτ

+

∫ tk+1+T

tk+T
(∥p̃e(τ |tk+1)∥2

Q + ∥ũe(τ |tk+1)∥2
P )dτ

+ ∥p̃e(tk+1 + T |tk+1)∥2
R − ∥p̃∗

e (tk + T |tk)∥2
R. (47)

By integrating (15) from tk + T to tk+1 + T , it follows that

∥p̃e(tk+1 + T |tk+1)∥2
R − ∥p∗

e (tk + T |tk)∥2
R

+

∫ tk+1+T

tk+T
L(p̃e(τ ), ũe(τ ))dτ ≤ 0. (48)

Substituting (48) into (47), we have ∆V ≤ 0, which implies that
the tracking error for the nominal system converges to the origin
asymptotically.

Due to the asymptotic stability of the nominal system, there
exists a KL function β(·, ·), such that

∥p̃∗

e (t)∥ ≤ β(∥p̃∗

e (t0)∥, t), ∀t > t0. (49)

Furthermore, because of pfe ∈ Pfe for all t > t0, there exists a K
function γ (·) such that

∥pfe(t)∥ ≤ γ (η), ∀t > t0. (50)

It follows from pe(t) = R(θf )(p̃∗
e (t) + pfe(t)) and pfe(0) = 0 that

∥pe(t)∥ ≤ β(∥pe(t0)∥, t) + γ (η). (51)

Therefore, the solution of system (9) is asymptotically ultimately
bounded with Algorithm 1 and the closed-loop system is ISS. □

4. NRMPC

In this section, an NRMPC strategy is developed. The state of the
nominal system is updated by actual state at each sampling instant.
Unlike tube-MPC, the control sequence obtained is optimal with
respect to the current actual state, and only the first portion of the
control is applied to the real system. The optimization problem of
the NRMPC strategy is defined as follows:

Problem 2.

min
ũf (τ |tk)

J(p̃e(tk), ũe(tk)), (52)

s.t. ξ̃f (tk|tk) = ξf (tk), (53)
˙̃
ξ f (τ |tk) = fh(ξ̃f (τ |tk), ũf (τ |tk)), (54)

ũf (τ |tk) ∈ U, (55)

∥p̃e(τ |tk)∥ ≤
rT

τ − tk
, (56)

p̃e(tk + T |tk) ∈ Ωε, (57)

where r =
a(1−λr )√
k̃21+k̃22

, Ωε = {p̃e : ∥p̃e∥ ≤ ε}, and ε < r .

Problem 2 yields a minimizing control sequence over the inter-
val [tk, tk + T ) of the same form as in (25) as well as a minimizing
trajectory as in (26). The control input over [tk, tk+1) is chosen as

uf (t) = ũ∗

f (t|tk), t ∈ [tk, tk+1). (58)

The NRMPC strategy is then described in Algorithm 2.

Algorithm 2 NRMPC
1: At time tk, initialize the nominal system state by the actual one

ξ̃f (tk) = ξf (tk).
2: Solve Problem 2 based on the nominal system to obtain the

minimizing control sequence ũ∗

f (tk) = argminũf (τ |tk) J(p̃e(tk),
ũe(tk)).

3: Apply the first portion of the sequence to the real system, i.e.,
uf (t) = ũ∗

f (t|tk), during the interval t ∈ [tk, tk+1).
4: Update the time instant tk → tk+1 and go to step 1.

Remark 7. For Problem 2, the state of nominal system is updated
by the actual one at each step. As a result, the optimization problem
has to be solved on-line. However, such an updating strategy yields
an optimal control with respect to the current state. The scheme
has the same computational burden as the deterministic MPC.

Remark 8. Note that the input domain of NRMPC is larger than
that of tube-MPC. NRMPC may therefore have better tracking ca-
pability.

Remark 9. As shown in Algorithm2, an open-loop control action is
applied to the real systemduring each sampling interval. However,
the existence of disturbances may lead to an error between the
actual trajectory and the optimal prediction. This increases the dif-
ficulty of analyzing the recursive feasibility using the conventional
methods for MPC.

The following two lemmas guarantee recursive feasibility of
Problem 2. Lemma 4 states the existence of the control sequence
that is able to drive the state of the nominal system into Ωε in
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prediction horizon T , and Lemma 5 shows that the state constraint
is satisfied by employing that control sequence to the nominal
system.

Lemma 4. For the tracking control system (9), assume that there
exists an optimal control sequence ũ∗

f (tk) at instant tk such that p̃e(tk+
T |tk) ∈ Ωε , and apply the first control of the sequence to the perturbed
system (5). Then, there exists a control sequence ũf (tk+1) at tk+1 such
that p̃e(tk+1 + T |tk+1) ∈ Ωε , if

η ≤
e−aT

δ
(r − ε) , k̃δ ≥ ln

r
ε
, (59)

where k̃ = min{k̃1, k̃2}, r and ε are defined in Problem 2.

Proof. Since Problem 2 is feasible at tk, applying the first portion of
the control ũ∗

f during the interval [tk, tk+1) to the real system may
lead to a difference of the trajectory between the actual system and
the nominal system. At tk+1, this difference is bounded by

∥ξf (tk+1) − ξ̃ ∗

f (tk+1|tk)∥

= ∥ ξf (tk) +

∫ tk+1

tk

[
fh(ξf (τ ), ũ∗

f (·)) + d(τ )
]
dτ

− ξ̃ ∗

f (tk|tk) −

∫ tk+1

tk

fh(ξ̃ ∗

f (τ |tk), ũ∗

f (·))dτ ∥

≤ ηδ + a
∫ tk+1

tk

∥ξf (τ ) − ξ̃ ∗

f (τ |tk)∥dτ

≤ ηδeaδ. (60)

We construct a feasible control sequence at tk+1 for the nominal
system as follows:

ũf (τ |tk+1) =

{
ũ∗

f (τ |tk), τ ∈ [tk+1, tk + T ),
ũκ
f (τ |tk), τ ∈ [tk + T , tk+1 + T ).

(61)

First, consider the interval τ ∈ [tk+1, tk + T ). Since the state of the
nominal system is updated by ξ̃ (tk+1|tk+1) = ξ (tk+1), we have

∥ξ̃f (τ |tk+1) − ξ̃ ∗

f (τ |tk)∥

= ∥ ξf (tk+1) +

∫ τ

tk+1

fh(ξ̃f (s|tk+1), ũ∗

f (s|tk))ds

− ξ̃ ∗

f (tk+1|tk) −

∫ τ

tk+1

fh(ξ̃ ∗

f (s|tk), ũ
∗

f (s|tk))ds ∥ .

≤ ηδeaδ + a
∫ τ

tk+1

∥ξ̃f (s|tk+1) − ξ̃ ∗

f (s|tk)∥ds. (62)

Applying Grönwall–Bellman inequality yields

∥ξ̃f (τ |tk+1) − ξ̃ ∗

f (τ |tk)∥ ≤ ηδea(τ−tk+1+δ). (63)

Substituting tk + T into (63) leads to

∥ξ̃f (tk + T |tk+1) − ξ̃ ∗

f (tk + T |tk)∥ ≤ ηδeaT . (64)

Due to the fact ∥p̃e(tk +T |tk+1)− p̃∗
e (tk +T |tk)∥ ≤ ∥ξ̃f (tk +T |tk+1)−

ξ̃ ∗

f (tk + T |tk)∥ and the application of triangle inequality, we arrive
at

∥p̃e(tk + T |tk+1)∥ ≤ ∥p̃∗

e (tk + T |tk)∥ + ηδeaT . (65)

Since p̃∗
e (tk+T |tk) ∈ Ωε , i.e. ∥p̃∗

e (tk+T |tk)∥ ≤ ε, and η ≤
e−aT

δ
(r−ε),

we obtain

∥p̃e(tk + T |tk+1)∥ ≤ r, (66)

which implies p̃e(tk + T |tk+1) ∈ Ω .

Next, consider the interval τ ∈ [tk + T , tk+1 + T ), during which
the local controller ũκ

f (τ |tk) is applied to the nominal system

d
dτ

∥p̃e(τ |tk+1)∥2
= −2(k̃1x̃2e + k̃2ỹ2e )

≤ −2k̃∥p̃e(τ |tk+1)∥2.

Applying the comparison principle yields

∥p̃e(tk+1 + T |tk+1)∥ ≤ ∥p̃e(tk + T |tk+1)∥e−δk̃.

It follows from k̃δ ≥ ln r
ε
that

∥p̃e(tk+1 + T |tk+1)∥ ≤ ε. (67)

This proves the existence of a control sequence at tk+1 which is able
to drive the tracking error of the nominal system into the terminal
region Ωε . □

Lemma 5. For the tracking control system (9), assume that there
exists an optimal control sequence ũ∗

f (tk) at instant tk such that the
trajectory constraint is satisfied, i.e., p̃∗

e (τ |tk) ≤
rT

τ−tk
, and apply the

first control of the sequence to the perturbed system (5). Then, at tk+1,
by the control sequence (61), the trajectory constraint is also satisfied
if the parameter ε satisfies

ε ≥
r(T − δ)

T
. (68)

Proof. To prove ∥p̃e(τ |tk+1)∥ ≤
rT

τ−tk+1
over the interval τ ∈

[tk+1, tk+1 + T ), we first consider the interval τ ∈ [tk+1, tk + T ).
From (63), it follows that

∥p̃e(τ |tk+1)∥ ≤ ∥p̃∗

e (τ |tk)∥ + ηδeaT . (69)

Due to (59) and p̃∗
e (τ |tk) ≤

T
τ−tk

, we obtain

∥p̃e(τ |tk+1)∥ ≤
rT

τ − tk
+ (r − ε). (70)

From (68), we have

r − ε ≤
δr

T − δ
≤

δrT
(τ − tk+1)(τ − tk)

. (71)

Substituting (71) into (70), we obtain

∥p̃e(τ |tk+1)∥ ≤
rT

τ − tk+1
, (72)

which proves that the state constraint is satisfied over the interval
τ ∈ [tk+1, tk + T ).

Next, consider the interval τ ∈ [tk + T , tk+1 + T ). By Lemma 4,
it holds that ∥p̃e(tk + T |tk+1)∥ ≤ r once ∥p̃∗

e (tk + T |tk)∥ ≤ ε. Since
rT

τ−tk+1
≥ r , ∥p̃e(τ |tk+1)∥ ≤

rT
τ−tk+1

is naturally satisfied over the
interval τ ∈ [tk + T , tk+1 + T ), thereby completing the proof. □

Theorem 2. For the tracking control system (9), suppose that Prob-
lem 1 is feasible at time t0 and the parameters satisfy the conditions
in Lemmas 4 and 5. Then,

(i) Problem 1 is feasible for all tk > t0;
(ii) the tracking control system (9) is ISS if

qε2 >
1
2
ηeaT (r + ε) +

q2η2δ

2a
(e2aT − e2aδ)

+
2q2ηr
√
2a

(
T 2

δ
− T )

1
2 (e2aT − e2aδ)

1
2 , (73)

where q = min{q1, q2}.
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Proof. (i) Assume Problem2 is feasible at instant tk, then feasibility
of Problem 2 at tk+1 implies the existence of a control sequence
that is able to drive the state of the nominal system to the terminal
regionΩε while satisfying all the constraints. In terms of Algorithm
2, the first control of the optimal control sequence is applied to the
system. From Lemma 4, at tk+1, a feasible control sequence in (61)
renders p̃e(tk+1 + T |tk+1) ∈ Ωε while satisfying ũf (τ |tk+1) ∈ Ω for
τ ∈ [tk+1, tk+1 + T ). Meanwhile, from Lemma 5, by applying the
control sequence (61) to the nominal system (10), the trajectory
constraint is satisfied, i.e., ∥p̃e(τ |tk+1)∥ ≤

rT
τ−tk+1

, implying the
feasibility of Problem2 at tk+1. Hence, the feasibility of Problem2 at
the initial time t0 results in the feasibility for all t > t0 by induction.

(ii) Choose a Lyapunov function as follows

V (pe(tk)) = J(p̃∗

e (tk), ũ
∗

e (tk)). (74)

According to Riemann integral principle, there exists a constant
0 < c1 ≤ δ such that

V (pe) ≥ c1L(pe, ue) ≜ α1(∥pe∥), (75)

where α1(·) is obviously a K∞ function. On the other hand, from
(15), we have

V (pe(tk)) ≤ g(pe(tk)) + g(pe(tk + T |tk)), ∀pe ∈ Ωε.

Due to the decreasing property of g(·) in Ωε with respect to time,
it follows that

V (pe(tk)) ≤ 2g(pe(tk)), ∀pe ∈ Ωε. (76)

Because the origin lies in the interior of Ωε and 2g(pe(t)) ≤ ε,
∀pe ∈ Ωε , it holds that 2g(pe(t)) ≥ ε if pe ∈ R2×2

\ Ωε . Due to
the feasibility of Problem 2, there exists an upper-bound c2 > ε

for V (pe(t)). Thus α2(∥pe∥) =
c2
ε
g(pe(t)) is a K∞ function such

that α2(∥pe∥) ≥ c2 thereby satisfying α2(∥pe(t)∥) ≥ V (pe(t)). This
proves the existence of K∞ functions α1(·) and α2(·) satisfying

α1(∥pe(t)∥) ≤ V (pe(t)) ≤ α2(∥pe(t)∥). (77)

The difference of the Lyapunov function at tk and tk+1 satisfies

∆V = V (pe(tk+1)) − V (pe(tk))

≤ J(p̃e(tk+1), ũe(tk+1)) − J(p̃∗

e (tk), ũ
∗

e (tk))

≜ ∆V1 + ∆V2 + ∆V3, (78)

in which

∆V1 =

∫ tk+T

tk+1

(∥p̃e(τ |tk+1)∥2
Q − ∥p̃∗

e (τ |tk)∥2
Q )dτ ,

∆V2 =

∫ tk+1+T

tk+T
(∥p̃e(τ |tk+1)∥2

Q + ∥ũe(τ |tk+1)∥2
P )dτ

+ ∥p̃e(tk+1 + T |tk+1)∥2
R − ∥p̃∗

e (tk + T |tk)∥2
R,

∆V3 = −

∫ tk+1

tk

(∥p̃∗

e (τ |tk)∥2
Q + ∥ũ∗

e (τ |tk)∥2
P )dτ .

For ∆V1, it holds that

∆V1 ≤

∫ tk+T

tk+1

(∥p̃e(τ |tk+1) − p̃∗

e (τ |tk)∥Q )

× (∥p̃e(τ |tk+1)∥Q + ∥p̃∗

e (τ |tk)∥Q )dτ . (79)

By (63), we have

∆V1 ≤

∫ tk+T

tk+1

[q2ηδea(τ+δ−tk+1)(2∥p̃∗

e (τ |tk)∥

+ ηδea(τ+δ−tk+1))]dτ

=

∫ tk+T

tk+1

[2q2ηδea(τ+δ−tk+1)∥p̃∗

e (τ |tk)∥

+ q2η2δ2e2a(τ+δ−tk+1)]dτ

≤

∫ tk+T

tk+1

2q2ηδea(τ+δ−tk+1)∥p̃∗

e (τ |tk)∥dτ

+
q2η2δ2

2a
(e2aT − e2aδ). (80)

Applying Hölder inequality to the first term of the last inequality
yields

∆V1 ≤

(∫ tk+T

tk+1

∥p̃∗

e (τ |tk)∥2dτ

) 1
2 2q2ηδ

√
2a

(e2aT − e2aδ)
1
2

+
q2η2δ2

2a
(e2aT − e2aδ)

≤
2q2ηδr
√
2a

(
T 2

δ
− T )

1
2 (e2aT − e2aδ)

1
2

+
q2η2δ2

2a
(e2aT − e2aδ). (81)

Rewrite ∆V2 as

∆V2 =

∫ tk+1+T

tk+T
(∥p̃e(τ |tk+1)∥2

Q + ∥ũe(τ |tk+1)∥2
Pd)τ

+ ∥p̃e(tk+1 + T |tk+1)∥2
R − ∥p̃∗

e (tk + T |tk)∥2
R

+ ∥p̃e(tk + T |tk+1)∥2
R − ∥p̃e(tk + T |tk+1)∥2

R. (82)

Integrating (15) from tk +T to tk+1 +T and substituting it into (82)
leads to

∆V2 ≤ ∥p̃e(tk + T |tk+1)∥2
R − ∥p̃∗

e (tk + T |tk)∥2
R

≤ (
1
2
∥p̃e(tk + T |tk+1) − p̃∗

e (tk + T |tk)∥)

×
(
∥p̃e(tk + T |tk+1)∥ + ∥p̃∗

e (tk + T |tk)∥
)

≤
1
2
ησ eaT (ε + r). (83)

For ∆V3, we first assume ∥p̃e(tk+1|tk)∥ > ε, which implies
∥p̃e(τ |tk)∥ > ε, τ ∈ [tk, tk+1), and thus we obtain

∆V3 < −

∫ tk+1

tk

∥p̃∗

e (τ |tk)∥2
Q dτ ≤ −qδε2. (84)

In combination with (81), (83) and (84), the inequality (78) thus
satisfies

∆V < −qδε2
+

1
2
ηδeaT (r + ε) +

q2η2δ2

2a
(e2aT − e2aδ)

+
2q2ηδr
√
2a

(
T 2

δ
− T )

1
2 (e2aT − e2aδ)

1
2 . (85)

From (73), ∆V < 0 holds. It follows from Theorem 2 of Michalska
andMayne (1993) that ∥p̃∗

e (tk|tk)∥ ≤ ε for tk ≥ tf , where tf > t0 is a
finite time instant.When the tracking error enters into the terminal
region, i.e., pe(tk) ∈ Ωε , reconsider ∆V1 and ∆V3:

∆V1 ≤

∫ tk+T

tk+1

2q2ηδεea(τ−tk+2)dτ +
q2η2δ2

2a
(e2aT − e2aδ)

=
2q2ηδε

a
(eaT − eaδ) +

q2η2δ2

2a
(e2aT − e2aδ).
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Fig. 3. Tracking trajectories by using tube-MPC.

Due to the decreasing property of ∥p̃∗
e (τ |tk)∥2

Q in Ωε , it follows that

∆V3 ≤ −qδ∥p∗

e (tk+1|tk)∥2.

Since ∥p̃∗
e (τ |tk+1)∥ ≤ ∥p̃∗

e (τ |tk)∥ + ηδeaT , we have ∥pe(tk+1)∥2
≤

∥p∗
e (tk+1|tk)∥2

+ η2δ2e2aδ + 2εηδeaδ . Consequently,

∆V3 ≤ −qδ∥pe(tk+1)∥2
+ qη2δ3e2aδ + 2qεηδ2eaδ.

As a result, it holds that

∆V ≤ −qδ∥pe(tk+1)∥2
+ σ (η), (86)

where σ (η) =
2q2ηδε

a (eaT − eaδ)+ q2η2δ2

2a (e2aT − e2aδ)+ 1
2ησ eaT (ε +

r) + qη2δ3e2aδ + 2qεηδ2eaδ is obviously a K function with respect
to η. Hence, the theorem is proved. □

5. Simulation results

The simulation is implemented on a PC equipped with a dual-
core 3.20 GHz Intel i5 CPU, 7.88 GB RAM and 64-bit Windows 10
operating system. The optimization problem is transcribed by Tool
Box ICLOCS (Imperial College London Optimal Control Software,
see Falugi, Kerrigan, & Wyk, 0000), 1.2 version, and solved by NLP
(Nonlinear Programming) solver IPOPT (Interior Point OPTimizer,
see Wächter & Biegler, 2006), 3.11.8 version.

The mechanism parameters of the two homogeneous robots
used in the simulation are taken from an educational robot named
E-puck (Mondada et al., 2009), and are given by a = 0.13 m/s,
ρ = 0.0267 m and b = a/ρ = 4.8598 rad/s. The trajectory to
be tracked is a circular motion with linear velocity vr = 0.015m/s,
angular velocity ωr = 0.04 rad/s and initial configuration ξr (t0) =

[0, 0, π
3 ]

T. The initial configuration of the follower is set to be
ξf (t0) = [0.2, −0.2, − π

2 ]
T and its desired separation with respect

to the frame fixed on the leader is set to be pd = [−0.1, −0.1]T. The
disturbances are bounded by η = 0.004. For the tracking objective,
the prediction horizon and the sampling period are set to be T =

2 s and δ = 0.2 s, respectively. The positive definite matrices P
and Q are chosen, according to Lemma 1, as P = diag{0.4, 0.4}
and Q = diag{0.2, 0.2}, respectively. The feedback gains for the
terminal controller are set to be k̃1 = k̃2 = 1.2 to satisfy the
requirements given by Lemma 1. First, let us design tube-MPC
according to Lemma 3 and Theorem 1. We set the feedback gain
to be K = diag{−2.3, −2.3}. The control input constraint for
Problem 1 is Utube = λtubeUwith λtube = 0.6636, and the terminal
region is given by Ωtube = {p̃e : |x̃e| + |ỹe| ≤ 0.0542}. Applying

Fig. 4. Tracking errors by using tube-MPC.

Fig. 5. The error between actual and nominal states lies in a tube.

Algorithm 1 to the tracking system yields the tracking trajectory as
shown in Fig. 3. To evaluate the tracking performance, we take the
tracking error pe and the real position deviation from the center
of the tube pfe as indexes. As shown in Fig. 4, the tracking error
converges to a neighborhood of the origin. Fig. 5 indicates that the
trajectory of the follower lies in tube T = p̃∗

f ⊕ Pfe with Pfe =

{|pfe| ≤ [0.0017, 0.0017]T}, which is obtained from Lemma 3. Fig. 6
shows the control input performance of the follower. We also take
|v|/a + |ω|/b as an index to evaluate the input constraint. The
fluctuated control signal indicates the effectiveness of the feedback
part of the controller which reduces the tracking error caused by
the disturbances. Furthermore, the input constraint Utube for the
nominal system is active over the interval t ∈ [0, 3], while the
constraint U for the real system is not active, which indicates the
weak control ability.

To show the effect of different choices of the feedback gain K
on the tracking performance, we set K = diag{−1, −1} and K =

diag{−4, −4}, respectively, to observe the difference between the
actual trajectory and the optimal one. As shown in Fig. 7, increasing
of K reduces the difference of the actual position and the center of
the tube and therefore improves the tracking performance.

Next, design NRMPC according to Lemmas 4, 5 and Theorem 2.
The input constraint of NRMPC differs from the constraint of tube-
MPC and is given by ũf ∈ U according to Algorithm 2. The terminal
region is designed as Ωε = {p̃e : ∥p̃e∥ ≤ 0.063}, and consequently
ε = 0.063, which satisfies the conditions in Lemmas 4, 5 and The-
orem 2. Fig. 8 shows the tracking trajectory and Fig. 9 presents the
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Fig. 6. Control input of tube-MPC.

Fig. 7. Real-time position deviation from the center of the tube pfe with different
feedback gains.

Fig. 8. Tracking trajectories by using NRMPC.

tracking errors by Algorithm 2. It can be observed that the tracking
error converges to a neighborhood of the origin. To compare the
influence level by disturbances of the two strategies proposed, we
define pfe(tk) = pf (tk) − p̃∗

f (tk) in NRMPC. It can be seen that the
tracking performance is directly influenced by disturbances due to
the open-loop control during each sampling period. This indicates

Fig. 9. Tracking errors by using NRMPC.

Fig. 10. Tracking errors of tube-MPC and NRMPC with δ = 0.1 s.

that NRMPC has worse steady state performance than tube-MPC,
since the latter can work locally for its feedback. To further verify
this conclusion, we shorten the sampling time as δ = 0.1 s. As
shown in Fig. 10, the shorter sampling interval can enhance the
steady state performance of NRMPC but the performance is still
not better than tube-MPC for the same sampling period. Fig. 11
shows the control input under NRMPC. According to Algorithm 2,
the control signal at each time instant is optimal corresponding to
its current state, which indicates its robustness. We also note that
the input constraint is active over the interval t ∈ [0, 3], which
demonstrates a better tracking capability.

To further compare tube-MPC with NRMPC, we take cost func-
tion J , real stage cost ∥pe∥2

Q + ∥ue∥
2
P , real state cost ∥pe∥2

Q and
real input cost ∥ue∥

2
P to evaluate the converging performance.

Their cost curves are plotted in Fig. 12. As it can be seen, the
total cost, the stage cost and the state cost decrease faster by
implementing NRMPC than by tube-MPC. However, the input cost
of NRMPC is higher than that of tube-MPC. This is explained by
the fact that the input constraint of tube-MPC is tighter than that
of NRMPC, which may degrade the control capability. This also
helps explainingwhy the tracking error decreases faster byNRMPC
than tube-MPC. Fig. 13 provides distribution of the computation
time in solving the optimization problems. It shows that there is
no significant difference between NRMPC and tube-MPC, which
implies that they have almost the same computational complexity.
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Fig. 11. Control input of NRMPC.

Fig. 12. Costs of tube-MPC and NRMPC.

However, as stated in Remark 5, the optimization problem can be
solved off-line in tube-MPC,whereas the optimization problemhas
to be solved on-line in NRMPC.

Remark 10. The optimization time in Fig. 13 is used to compare
the computational complexity of the schemes. Optimization time
is an important factor that should be considered for application,
and many approaches are proposed to reduce it. For example,
in Carvalho, Gao, Gray, Tseng, and Borrelli (2013), a customized
sequential quadratic programming algorithm is proposed using
iterative Jacobian linearization approach to transform nonlinear
programming into a quadratic programming. Feedback lineariza-
tion is used in Farina, Perizzato, and Scattolini (2015) to reduce
the computational burden. In Carrau, Liniger, Zhang, and Lygeros
(2016) and Zhang et al. (2015), approximating the stochastic MPC
problem by means of randomization is applied to reduce the com-
putational complexity. Event- and self-triggered MPC are studied
in Eqtami, Heshmati-Alamdari, Dimarogonas, and Kyriakopoulos
(2013) and Li and Shi (2014a), which aim at reducing the frequency
of solving the optimization problem. Cloud control is proposed in
Adaldo, Liuzza, Dimarogonas, and Johansson (2016) andXia (2015),
which share the computation load by virtue of powerful computing
capacity of the cloud to simplify the local control device.

Finally, we summarize the simulation study as follows:

(i) Tube-MPC has a better steady state performance than
NRMPC. This is because the control strategy of tube-MPC

Fig. 13. Distribution of computation time by tube-MPC and NRMPC.

consists of two parts: optimal control and feedback part,
while NRMPC is open-loop control during each sampling
period. The steady state performance of NRMPC can be im-
proved by shortening sampling period.

(ii) NRMPC performs better in terms of dynamic property than
tube-MPC due to the tighter input constraint of tube-MPC.

(iii) The computational complexities of tube-MPC and NRMPC
are almost the same. However, the optimization problem
in tube-MPC can be solved in a parallel way if the nominal
system update manner is taken as formulated in Remark 5,
which may enhance its real-time performance.

6. Conclusion

In this paper, two robust MPC strategies have been developed
for tracking of unicycle robots with coupled input constraint and
bounded disturbances. We first developed a tube-MPC strategy,
where the trajectory of the real system is constrained in a tube cen-
tered along the optimal nominal trajectory by a nonlinear feedback
law based on the deviation of the actual states from the optimal
states. Tube-MPC possesses robustness but sacrifices optimality,
thus we further developed the NRMPC scheme, where the state
of the nominal system is updated by the actual state at each step.
It was shown that the tracking control system is ISS under both
of the robust MPC strategies, and their optimization problems are
feasible. Simulation results illustrated the effectiveness of the two
schemes and their respective advantages.

Appendix

Proof of Lemma 1. First, consider the terminal controller

|ṽκ
f |

a
+

|ω̃κ
f |

b
=

|k̃1x̃e + vd
f |

a
+

|k̃2ỹe + ωd
f |

a

≤
1
a
(k̃1|x̃e| + k̃2|ỹe| + |vd

f | + |ωd
f |)

≤ λf − λr +

√
2
a

∥D∥∥ur∥ ≤ λf ,

where vd
f = (vr − xdωr ) cos θ̃e − xdωr sin θ̃e and ωd

f =
1
ρ
((vr −

xdωr ) sin θ̃e + ydωr cos θ̃e). This implies uκ
f ∈ λfU if p̃e ∈ Ω .

Next, choose g(p̃e(τ |tk)) as Lyapunov function. The derivative of
g(p̃e(τ |tk)) with respect to τ yields

ġ(p̃e(τ |tk)) = −(k̃1x̃2e (τ |tk) + k̃2ỹ2e (τ |tk)),
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which means that Ω is invariant by implementing the terminal
controller, i.e., p̃e(τ |tk) ∈ Ω holds for all τ > tk once p̃e(tk|tk) ∈ Ω .

Finally, for p̃e(τ |tk) ∈ Ω , it follows that

ġ(p̃e(τ |tk)) + L(p̃e(τ |tk), ũe(τ |tk))
= x̃ef ˙̃xe + ỹe ˙̃ye + q1x̃2e + q2ỹ2e + p1ṽ2

e + p2ω̃2
e

= −k̃1x̃2e − k̃2ỹ2e + q1x̃2e + q2ỹ2e + p1ṽ2
e + p2ω̃2

e

= (p1k̃21 − k̃1 + q1)x̃2e + (p2k̃22 − k̃2 + q2)ỹ2e .

Since piqi < 1
4 and k̃i ∈

(
1−

√
1−4piqi
2pi

,
1+

√
1−4piqi
2pi

)
, i = 1, 2, the

inequality ġ + L < 0 holds.
Hence, fromDefinition 1,Ω is a terminal region associatedwith

the terminal controller ũκ
f (τ |tk). □

Proof of Lemma 2. Considering the function values of fh(ξ, u) at
ξ1 and ξ2 with the same u, we have

∥fh(ξ1, u) − fh(ξ2, u)∥2

=


⎡⎣v(cos θ1 − cos θ2) + ρω(sin θ2 − sin θ1)

v(sin θ1 − sin θ2) + ρω(cos θ1 − cos θ2)
0

⎤⎦
2

= v2(cos θ1 − cos θ2)2 + ρ2ω2(sin θ2 − sin θ1)2

+ v2(sin θ1 − sin θ2)2 + ρ2ω2(cos θ2 − cos θ1)2

≤ 2(v2
+ ρ2ω2)(θ1 − θ2)2

≤ 2 max
[v,ω]T∈U

{v2
+ ρ2ω2

}(θ1 − θ2)2

= a2(θ1 − θ2)2,

where the mean value theorem and Lagrange multiplier method
are used in the last inequality. The maximum of v2

+ρ2ω2, subject
to |v|/a + |ω|/b ≤ 1, can be obtained by setting v =

a
2 and ω =

b
2 .

From the results above, we conclude that

∥fh(ξ1, u) − fh(ξ2, u)∥ ≤ a∥ξ1 − ξ2∥. □
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