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Distributed Online Convex Optimization With
Time-Varying Coupled Inequality Constraints

Xinlei Yi , Xiuxian Li, Lihua Xie , and Karl H. Johansson

Abstract—This paper considers distributed online optimization
with time-varying coupled inequality constraints. The global ob-
jective function is composed of local convex cost and regularization
functions and the coupled constraint function is the sum of local
convex functions. A distributed online primal-dual dynamic mirror
descent algorithm is proposed to solve this problem, where the local
cost, regularization, and constraint functions are held privately and
revealed only after each time slot. Without assuming Slater’s con-
dition, we first derive regret and constraint violation bounds for the
algorithm and show how they depend on the stepsize sequences, the
accumulated dynamic variation of the comparator sequence, the
number of agents, and the network connectivity. As a result, under
some natural decreasing stepsize sequences, we prove that the algo-
rithm achieves sublinear dynamic regret and constraint violation
if the accumulated dynamic variation of the optimal sequence also
grows sublinearly. We also prove that the algorithm achieves sub-
linear static regret and constraint violation under mild conditions.
Assuming Slater’s condition, we show that the algorithm achieves
smaller bounds on the constraint violation. In addition, smaller
bounds on the static regret are achieved when the objective function
is strongly convex. Finally, numerical simulations are provided to
illustrate the effectiveness of the theoretical results.

Index Terms—Distributed optimization, dynamic mirror
descent, online optimization, time-varying constraints.

I. INTRODUCTION

W E CONSIDER distributed online optimization with
time-varying coupled inequality constraints, which is

a sequential decision problem. Specifically, consider a network
of n agents indexed by i = 1, . . . , n. For each i, let the local
decision set Xi ⊆ R

pi be a closed convex set with pi being
a positive integer. Let {fi,t : Xi → R}, {ri,t : Xi → R}, and
{gi,t : Xi → R

m} be arbitrary sequences of local convex cost,
regularization, and constraint functions over time t = 1, 2, . . . ,
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respectively, where m is a positive integer. At time t, each
agent i selects a decision xi,t ∈ Xi. After the selection, the
agent receives its cost function fi,t and regularization ri,t to-
gether with its constraint function gi,t, and obtains the loss
li,t(xi,t) = fi,t(xi,t) + ri,t(xi,t). Here the regularization func-
tion is used to influence the structure of the decisions. Examples
of regularization include �1-regularization ri,t(xi) = λi‖xi‖1
and �2-regularization ri,t(xi) =

λi

2 ‖xi‖ with λi > 0. At the
same moment, the agents exchange data with their neighbors
over a time-varying directed graph. The network’s objective
is to choose a global decision sequence xT = (x1, . . . , xT )
with xt = col(x1,t, . . . , xn,t) so that the accumulated global
loss

∑T
t=1 lt(xt) is competitive with the loss of any comparator

sequence yT = (y1, . . . , yT ) with yt = col(y1,t, . . . , yn,t) (i.e.,
the regret grows sublinearly in T ) and at the same time the
constraint violation grows sublinearly in T , where T is the total
number of iterations and lt(xt) =

∑n
i=1 li,t(xi,t) is the global

loss function.
Specifically, the regret of a global decision sequence xT with

respect to a comparator sequence yT is defined as

Reg(xT ,yT ) =

T∑

t=1

lt(xt)−
T∑

t=1

lt(yt).

In the literature, there are two commonly used comparator
sequences. One is the optimal dynamic decision sequence yT =
x∗
T = (x∗1, . . . , x

∗
T ) solving the following constrained convex

optimization problem when the sequences of cost, regulariza-
tion, and constraint functions are known a priori:

min
xt∈X

T∑

t=1

lt(xt)

s.t. gt(xt) ≤ 0m, ∀t = 1, . . . , T, (1)

where X = X1 × · · · × Xn ⊆ R
p is the global decision set,

p =
∑n
i=1 pi, and gt(xt) =

∑n
i=1 gi,t(xi,t) is the coupled

constraint function. In order to guarantee that problem (1)
is feasible, we assume that for any T ∈ N+, the set of
all feasible decision sequences XT = {(x1, . . . , xT ) : xt ∈
X, gt(xt) ≤ 0m, t = 1, . . . , T} is non-empty. With this stand-
ing assumption, an optimal dynamic decision sequence to (1)
always exists. In this case Reg(xT ,x

∗
T ) is called the dynamic

regret for xT . Another comparator sequence is yT = x̌∗
T =
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(x̌∗T , . . . , x̌
∗
T ), where x̌∗T is the optimal static decision solving

min
x∈X

T∑

t=1

lt(x)

s.t. gt(x) ≤ 0m, ∀t = 1, . . . , T. (2)

Similar to above, in order to guarantee that problem (2)
is feasible, we assume that for any T ∈ N+, the set of
all feasible static decision sequences X̌T = {(x, . . . , x) : x ∈
X, gt(x) ≤ 0m, t = 1, . . . , T} ⊆ XT is non-empty. In this case
Reg(xT , x̌

∗
T ) is called the static regret. It is straightforward

to see that Reg(xT ,yT ) ≤ Reg(xT ,x
∗
T ), ∀yT ∈ XT , and that

Reg(xT , x̌
∗
T ) ≤ Reg(xT ,x

∗
T ). For a decision sequencexT , the

commonly used constraint violation measure is
∥
∥
∥
∥
∥

[
T∑

t=1

gt(xt)

]

+

∥
∥
∥
∥
∥
,

i.e., the accumulation of constraint violations. This definition
implicitly allows constraint violations at some times to be com-
pensated by strictly feasible decisions at other times. This is
appropriate for constraints that have a cumulative nature such as
energy budgets enforced through average power constraints.

This paper develops a distributed online algorithm to solve the
problem of distributed online optimization with time-varying
coupled inequality constraints with guaranteed performance
measured by the regret and constraint violation. We are satisfied
with low regret and constraint violation, by which we mean
that both Reg(xT ,yT ) and ‖[∑T

t=1 gt(xt)]+‖ grow sublinearly
withT , i.e., there existκ1, κ2 ∈ (0, 1) such thatReg(xT ,yT ) =
O(Tκ1) and ‖[∑T

t=1 gt(xt)]+‖ = O(Tκ2). This implies that
the upper bound of the time averaged difference between the
accumulated cost of the decision sequence and the accumulated
cost of any comparator sequences tends to zero as T goes to
infinity. The same thing holds for the upper bound of the time
averaged constraint violation. The novel algorithm we design
explores the stepsize sequences in a way that allows the trade-off
between how fast these two bounds tend to zero.

A. Motivating Example

As a motivating example, consider a multi-target tracking
problem in which n agents follow n targets. Let zi(s), z̃i(s) de-
note the positions of agent i and target i at time s, respectively. To
model agent and target paths, we introduce a parameterization:

zi(s) =

pi∑

k=1

xi,t[k]ck,t(s),

z̃i(s) =

pi∑

k=1

ξi,t[k]ck,t(s), s ∈ [t, t+ 1),

where ck,t(s) are vector functions that parameterize the space
of possible trajectories over time [t, t+ 1) and satisfy

∫ t+1

t

〈ck,t(s), cl,t(s)〉ds =
{
1, if k = l

0, else.

The action spaces of agent i and target i are given
by xi,t = [xi,t[1], . . . , xi,t[pi]]

� ∈ Xi ⊆ R
pi and ξi,t =

[ξi,t[1], . . . , ξi,t[pi]]
� ∈ R

pi , respectively. At time t, agent
i repositions itself by selecting an action xi,t such that it could
stay as close as possible to target i during time [t, t+ 1) and
at the same time it wants the selection cost 〈πi,t, xi,t〉 to be as
small as possible, where πi,t ∈ R

pi
+ is the price vector. This

goal can be captured by defining a local cost function

fi,t(xi,t) = ζi,1〈πi,t, xi,t〉+ ζi,2

∫ t+1

t

‖zi(s)− z̃i(s)‖2ds

= ζi,1〈πi,t, xi,t〉+ ζi,2‖xi,t − ξi,t‖2,
where ζi,1 and ζi,2 are nonnegative constants to trade-off the
two subgoals. Here, target i’s action ξi,t and the price vector πi,t
are observed only after the selection. Agents need to coopera-
tively take into account energy and communication constraints.
For simplicity, we introduce linear local constraint functions
gi,t(xi,t) = Di,txi,t − di,t, whereDi,t ∈ R

m×pi anddi,t ∈ R
m

are time-varying and unknown at time t. These coupling con-
straints determine the limits on the available resources to be
shared among the agents. Section V shows how this multi-target
tracking problem can be solved by the algorithm proposed in
this paper.

B. Literature Review

The problem of distributed online optimization with time-
varying coupled inequality constraints is related to two bod-
ies of literature: centralized online convex optimization with
time-varying inequality constraints (n = 1) and distributed on-
line convex optimization with time-varying coupled inequality
constraints (n ≥ 2). Depending on the characteristics of the
constraint, there are two important special cases: optimization
with static constraints (gi,t ≡ 0 for all t and i) and time-invariant
constraints (gi,t = gi for all t and i). Below, we provide an
overview of the related works.

Centralized online convex optimization with static set
constraints was first studied by Zinkevich [1]. Specifically,
he developed a projection-based online gradient descent
algorithm and achieved O(

√
T ) static regret bound for an

arbitrary sequence of convex objective functions with bounded
subgradients. It was later shown that this is a tight bound up
to constant factors [2]. The regret bound can be reduced under
more stringent strong convexity conditions on the objective
functions [2]–[5] or by allowing to query the gradient of the
objective function multiple times [6]. When the static con-
strained sets are characterized by inequalities, the conventional
projection-based online algorithms are difficult to implement
and may be inefficient in practice due to high computational
complexity of the projection operation. To overcome these
difficulties, some researchers proposed primal-dual algorithms
for centralized online convex optimization with time-invariant
inequality constraints, e.g., [7]–[10]. The authors of [11] showed
that the algorithms proposed in [7], [8] are general enough to
handle time-varying inequality constraints. The authors of [12]
used the modified saddle-point method to handle time-varying
constraints. The papers [13], [14] used a virtual queue,
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which essentially is a modified Lagrange multiplier, to handle
stochastic and time-varying constraints and the authors of [15]
extended the algorithm proposed in [14] with bandit feedback.
The authors of [16] studied online convex optimization with
time-varying constraints in the continuous-time setting and
showed that the static regret in continuous-time can be bounded
by a constant independent of the time horizon, as opposed
to the sublinear static regret observed in the discrete-time
setting.

Distributed online convex optimization has been extensively
studied, so here we only list some of the most relevant work.
Firstly, the authors of [17]–[22] proposed distributed online
algorithms to solve convex optimization problems with static
set constraints and achieved sublinear regret. For instance, the
authors of [21] proposed a decentralized variant of the dynamic
mirror descent algorithm proposed in [23]. Mirror descent gen-
eralizes classical gradient descent to Bregman divergences and is
suitable for solving high-dimensional convex optimization prob-
lems. The weighted majority algorithm in machine learning [24]
can be viewed as a special case of mirror descent. Secondly,
the paper [25] extended the adaptive algorithm proposed in [8]
to a distributed setting to solve an online convex optimization
problem with a static inequality constraint. Finally, the authors
of [26], [27] proposed distributed primal-dual algorithms to
solve an online convex optimization with static coupled in-
equality constraints. To the best of our knowledge, no exist-
ing papers considered distributed online convex optimization
with time-varying constraints in the discrete-time setting. In
the continuous-time setting, the authors of [28] extended the
online saddle point algorithm proposed in [16] to a distributed
version.

C. Main Contributions

Compared to the literature the contributions of this paper are
summarized as follows.

1) We propose a novel distributed online primal-dual dy-
namic mirror descent algorithm. In this algorithm, each agent
i maintains two local sequences: the local decision sequence
{xi,t} ⊆ Xi and the local dual variable sequence {qi,t} ⊆ R

m
+ .

An agent averages its local dual variable with its in-neighbors in
a consensus step, and takes into account the estimated dynamics
of the optimal sequences. The proposed algorithm uses different
non-increasing stepsize sequences {αt > 0} and {γt > 0} for
the primal and dual updates, respectively, and a non-increasing
sequence {βt > 0} to design penalty terms such that the dual
variables are not growing too large. These sequences give some
freedom in the regret and constraint violation bounds, as they
allow the trade-off between how fast these two bounds tend to
zero. The algorithm uses the subgradients of the local cost and
constraint functions at the previous decision, but the total number
of iterations or any other parameters related to the objective or
constraint functions are not used.

2) Without assuming Slater’s condition, i.e., that the feasible
region has an interior point, we derive regret and constraint
violation bounds for the algorithm and show how they depend
on the stepsize sequences, the accumulated dynamic variation

of the comparator sequence, the number of agents, and the
network connectivity. The same regret bound was achieved by
the centralized dynamic mirror descent proposed in [23] for
static set constraints. With the stepsize sequences αt = 1/tc,
βt = 1/tκ, γt = 1/t(1−κ), where c, κ ∈ (0, 1) are user-defined
trade-off parameters, we prove that our algorithm simultane-
ously achieves sublinear dynamic regret and constraint violation
if the accumulated dynamic variation of the optimal sequence
grows sublinearly. Moreover, if c = κ we show that the algo-
rithm achieves the same sublinear static regret and constraint vi-
olation bounds as in [8], i.e., Reg(xT , x̌∗

T ) = O(Tmax{1−κ,κ})
and ‖[∑T

t=1 gt(xt)]+‖ = O(T 1−κ/2). Compared with [7], [8],
[10], [11], [27], which assumed the same assumption on the cost
and constraint functions as this paper, the proposed algorithm
has the following advantages. The parameter κ enables the user
to trade-off static regret bound for constraint violation bound,
while recovering the O(

√
T ) static regret bound and O(T 3/4)

constraint violation bound from [7], [11] as special cases. The
algorithms proposed in [7], [8], [11] are centralized and the
constraint functions in [7], [8] are time-invariant. Moreover,
in [7], [11] the total number of iterations and in [7], [8], [11] the
upper bounds of the objective and constraint functions and their
subgradients need to be known in advance to design the step-
sizes. The proposed algorithm achieves smaller static regret and
constraint violation bounds than [27], although time-invariant
coupled inequality constraints were considered. The algorithm
proposed in [10] achieved a better constraint violation bound
than ours, but their algorithm is centralized and the constraint
function is time-invariant.

3) Assuming Slater’s condition and the stepsize sequences
above with c = 1− κ, we show that the dynamic regret bound
is similar to the bound without assuming Slater’s condi-
tion, but the constraint violation bound can be reduced to
O(Tmax{1−κ,κ}). Our results are superior to [12] in the sense
that the accumulated variation of constraints, V ({gt}Tt=1) =∑T
t=1 maxx∈X ‖[gt+1(x)− gt(x)]+‖, appears in their bounds

and more assumptions are needed. We show that our algorithm
simultaneously achieves sublinear dynamic regret and constraint
violation, if the accumulated variation of the optimal sequence
grows sublinearly. Moreover, the static regret and constraint
violation bounds grow as O(

√
T ), which is better than the

results for the centralized algorithm in [14]. The authors of [26]
achieved the same bounds, but they assumed that the coupled
inequality constraints are time-invariant and they explicitly as-
sumed boundedness of the dual variable sequence. The con-
ditions to guarantee this assumption are not so obvious since
the dual variable sequence is generated by the algorithm. In
this paper, we show that the dual variable sequence is indeed
bounded.

4) When the local objective functions are assumed to be
strongly convex, we show that, also without Slater’s con-
dition, the proposed algorithm achieves O(Tκ) static regret
bound and O(T 1−κ/2) constraint violation bound. Moreover,
we find that the constraint violation bound can be reduced to
O(Tmax{1−κ,κ}) when Slater’s condition holds.

The comparison between this paper and the literature is sum-
marized in Table I.
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TABLE I
COMPARISON OF THIS PAPER TO SOME RELATED WORKS ON ONLINE CONVEX OPTIMIZATION

D. Outline

The rest of this paper is organized as follows. Section II
introduces the preliminaries. Section III provides the distributed
primal-dual dynamic mirror descent algorithm. Section IV
analyses the bounds of the regret and constraint violation for
the algorithm. Section V gives numerical simulations. Finally,
Section VI concludes the paper. Proofs are given in the
Appendix.

Notations: All inequalities and equalities are understood
componentwise. Rn and R

n
+ stand for the set of n-dimensional

vectors and nonnegative vectors, respectively. N+ denotes the
set of positive integers. [n] represents the set {1, . . . , n} for any
n ∈ N+. ‖ · ‖ (‖ · ‖1) denotes the Euclidean norm (1-norm) for
vectors and the induced 2-norm (1-norm) for matrices. 〈x, y〉
represents the standard inner product of two vectors x and
y. x� is the transpose of the vector or matrix x. In is the
n-dimensional identity matrix. 1n (0n) denotes the column one
(zero) vector of dimensionn. col(z1, . . . , zk) is the concatenated
column vector of vectors zi ∈ R

ni , i ∈ [k]. [z]+ represents the
component-wise projection of a vector z ∈ R

n onto R
n
+. �·� and

�·� denote the ceiling and floor functions, respectively. log(·) is
the natural logarithm. Given two scalar sequences {αt, t ∈ N+}
and {βt > 0, t ∈ N+}, αt = O(βt) means that there exists a
constant a > 0 such that αt ≤ aβt for all t, while αt = o(t)
means that there exist two constants a > 0 and κ ∈ (0, 1) such
that αt ≤ atκ for all t.

II. PRELIMINARIES

In this section, we present some definitions, properties, and
assumptions related to graph theory, projections, subgradients,
and Bregman divergence.

A. Graph Theory

Interactions between agents are modeled by a time-varying
directed graph. Specifically, at time t, agents communicate with
each other according to a directed graph Gt = (V, Et), where
V = [n] is the agent set and Et ⊆ V × V is the edge set. A
directed edge (j, i) ∈ Et means that agent i can receive data
broadcasted by agent j at time t. Let N in

i (Gt) = {j ∈ [n] |
(j, i) ∈ Et} and N out

i (Gt) = {j ∈ [n] | (i, j) ∈ Et} be the sets
of in- and out-neighbors, respectively, of agent i at time t. A
directed path is a sequence of consecutive directed edges, and
a graph is called strongly connected if there is at least one
directed path from any agent to any other agent in the graph.
The adjacency matrix Wt ∈ R

n×n at time t fulfills [Wt]ij > 0
if (j, i) ∈ Et or i = j, and [Wt]ij = 0 otherwise.

The following mild assumption is made on the graph.
Assumption 1: For any t ∈ N+, the graph Gt satisfies the

following conditions:
1) There exists a constant w ∈ (0, 1), such that [Wt]ij ≥ w

if [Wt]ij > 0.
2) The adjacency matrix Wt is doubly stochastic, i.e.,∑n

i=1[Wt]ij =
∑n
j=1[Wt]ij = 1, ∀i, j ∈ [n].

3) There exists an integer ι > 0 such that the graph
(V,∪l=0,...,ι−1Et+l) is strongly connected.

B. Projections

For a set S ⊆ R
p, PS(·) is the projection operator

PS(y) = argmin
x∈S

‖x− y‖2, ∀y ∈ R
p.

This projection always exists and is unique when S is closed and
convex [29]. For simplicity, we use [·]+ to denote PS(·) when
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S = R
p
+, which satisfies

‖[x]+ − [y]+‖ ≤ ‖x− y‖, ∀x, y ∈ R
p. (3)

Moreover, if a function f : Dom → R is convex, then [f ]+ is
also convex.

C. Subgradients

Definition 1: Let f : Dom → R be a function with Dom ⊂
R
p. A vector g ∈ R

p is called a subgradient of f at x ∈ Dom if

f(y) ≥ f(x) + 〈g, y − x〉, ∀y ∈ Dom . (4)

The set of all subgradients of f at x, denoted ∂f(x), is called
the subdifferential of f at x.

When the function f is convex and differentiable, then its
subdifferential at any point x only has a single element, which is
exactly its gradient, denoted ∇f(x). With a slight abuse of the
notation, we use ∇f(x) to denote the subgradient of f at x also
when f is not differentiable. Then, ∂f(x) = {∇f(x)}. If f is
a closed convex function, then ∂f(x) is non-empty for any x ∈
Dom [30]. Similarly, for a vector function f = [f1, . . . , fm]� :
Dom → R

m, its subgradient at x ∈ Dom is denoted as

∇f(x) =

⎡

⎢
⎢
⎢
⎢
⎣

(∇f1(x))�
(∇f2(x))�

...

(∇fm(x))�

⎤

⎥
⎥
⎥
⎥
⎦
∈ R

m×p.

We make the following standing assumption on the cost,
regularization, and constraint functions.

Assumption 2:
1) The set Xi is convex and compact for all i ∈ [n].
2) {fi,t}, {ri,t}, and {gi,t} are convex and uniformly

bounded on Xi, i.e., there exists a constant F > 0 such
that

|fi,t(x)| ≤ F, |ri,t(x)| ≤ F,

‖gi,t(x)‖ ≤ F, ∀t ∈ N+, ∀i ∈ [n], ∀x ∈ Xi. (5)

3) {∇fi,t}, {∇ri,t}, and {∇gi,t} exist and they are uni-
formly bounded on Xi, i.e., there exists a constant G > 0
such that

‖∇fi,t(x)‖ ≤ G, ‖∇ri,t(x)‖ ≤ G,

‖∇gi,t(x)‖ ≤ G, ∀t ∈ N+, ∀i ∈ [n], ∀x ∈ Xi. (6)

D. Bregman Divergence

Each agent i ∈ [n] uses the Bregman divergence Dψi
(x, y) to

measure the distance between x ∈ Xi and y ∈ Xi, where

Dψi
(x, y) = ψi(x)− ψi(y)− 〈∇ψi(y), x− y〉, (7)

and ψi : Xi → R is a differentiable and strongly convex func-
tion with convexity parameter σi > 0. Then, we have ψi(x) ≥
ψi(y) + 〈∇ψi(y), x− y〉+ σi

2 ‖x− y‖2. Thus,

Dψi
(x, y) ≥ σ

2
‖x− y‖2, (8)

where σ = min{σ1, . . . , σn}. Hence, Dψi
(·, y) is a strongly

convex function with convexity parameter σ for all y ∈ Xi.

Additionally, (7) implies that for all i ∈ [n] and x, y, z ∈ Xi,

〈y − x,∇ψi(z)−∇ψi(y)〉
= Dψi

(x, z)−Dψi
(x, y)−Dψi

(y, z). (9)

Two well-known examples of Bregman divergence are
Euclidean distance Dψi

(x, y) = ‖x− y‖2 (with Xi an arbi-
trary convex and compact set in R

pi ) generated from ψi(x) =
‖x‖2, and the Kullback-Leibler (KL) divergence Dψi

(x, y) =
−∑p

j=1 xj log
yj
xj

between two pi-dimensional standard unit
vectors (with Xi the pi-dimensional probability simplex
in R

pi ) generated from ψi(x) =
∑p
j=1(xj log xj − xj). One

mild assumption on the Bregman divergence is stated as
follows.

Assumption 3: For all i ∈ [n] and y ∈ Xi, Dψi
(·, y) : Xi →

R is Lipschitz, i.e., there exists a constant K > 0 such that

|Dψi
(x1, y)−Dψi

(x2, y)| ≤ K‖x1 − x2‖, ∀x1, x2 ∈ Xi.
(10)

This assumption is satisfied whenψi is Lipschitz onXi. From
Assumptions 2 and 3 it follows that

Dψi
(x, y) ≤ d(X)K, ∀x, y ∈ Xi, ∀i ∈ [n], (11)

where d(X) is a positive constant such that

‖x− y‖ ≤ d(X), ∀x, y ∈ X. (12)

To end this section, we introduce a generalized definition of
strong convexity.

Definition 2: (Definition 2 in [31]) A convex function f :
Dom → R is μ-strongly convex over the convex set Dom with
respect to a strongly convex and differentiable function ψ with
μ > 0 if for all x, y ∈ Dom,

f(x) ≥ f(y) + 〈x− y,∇f(y)〉+ μDψ(x, y).
This definition generalizes the usual definition of strong con-

vexity by replacing the Euclidean distance with the Bregman
divergence.

III. DISTRIBUTED ONLINE PRIMAL-DUAL DYNAMIC MIRROR

DESCENT ALGORITHMS

In this section, we propose a distributed online primal-dual
dynamic mirror descent algorithm for solving the problem of
distributed online optimization with time-varying coupled in-
equality constraints. In the next section, we derive regret and
constraint violation bounds for this algorithm.

The augmented Lagrangian function associated with the con-
sidered problem at each time t is

At(xt, ut) = ft(xt) + rt(xt) + u�t gt(xt)−
βt+1

2
‖ut‖2,

(13)

where {ut ∈ R
m
+} is the dual variable or Lagrange multiplier

vector sequence and {βt > 0} is the regularization sequence.
Inspired by the dynamic mirror descent [23], which is a general-
ization of the composite objective mirror descent algorithm [32],

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 12,2020 at 22:51:19 UTC from IEEE Xplore.  Restrictions apply. 



736 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

a centralized online primal-dual dynamic mirror descent algo-
rithm to solve the considered problem is

x̃t+1 = argmin
x∈X

{αt+1(〈x,∇ft(xt) + (∇gt(xt))�ut〉

+ rt(xt)) +Dψ(x, xt)}, (14a)

ut+1 = [ut + γt+1(gt(xt)− βt+1ut)]+, (14b)

xt+1 = Φt+1(x̃t+1), (14c)

where {αt > 0} and {γt > 0} are the stepsize sequences used
in the primal and dual updates, respectively; ψ is a strongly
convex function to define the Bregman divergence Dψ(·, ·);
and Φt : X → X is a dynamic model and characterizes a prior
knowledge of the considered problem, akin to developing a state
space model for stochastic filters [23], and if the prior knowledge
is lacking then Φt is simply set to the identity mapping. When
rt is a constant mapping and Φt is the identity mapping, then
the centralized online algorithm (14) is Algorithm 1 in [11]. The
potential drawback of that algorithm is that the upper bounds
of the objective and constraint functions and their subgradients
need to be known in advance to choose the stepsize sequences.
In order to avoid using these upper bounds, inspired by the
algorithm proposed in [14], we slightly modify the dual update
equation (14b) as

ut+1 = [ut + γt+1(gt(xt) +∇gt(xt)(xt+1 − xt)

− βt+1ut)]+. (15)

Then we modify the centralized online primal-dual dynamic
mirror descent algorithm (14a), (15), and (14c) to a distributed
manner, which is given in pseudo-code as Algorithm 1. The key
difficulty caused by the distributed setting is that each agent
does not know the global dual variable. In order to overcome
this, the consensus step (16) is introduced such that each agent
has an estimation of the global dual variable. In Algorithm 1, the
sequences {αt, βt, γt} play a key role in deriving the regret and
constraint violation bounds. They allow the trade-off between
how fast these two bounds tend to zero, as will be seen in the next
section. With some modifications, all the results in this paper still
hold if the coordinated sequences αt, βt, γt are replaced by un-
coordinated ones αi,t, βi,t, γi,t. The minimization problem (18)
is the composite objective mirror descent [32] and is strongly
convex, so it is solvable at a linear convergence rate and closed-
form solutions are available in special cases. For example, if
ri,t is a constant mapping and Euclidean distance is used as the
Bregman distance, i.e., Dψi

(x, y) = ‖x− y‖2, then (18) can be
solved by the projection x̃i,t = PXi

(xi,t−1 − αt

2 ai,t).
In order to execute Algorithm 1, at each iteration t, each

agent i needs to know the regularization function at the previous
time t− 1, i.e., ri,t−1(·). This is in many situations a mild
assumption since regularization functions are normally prede-
fined to influence the structure of the decision. Furthermore,
gi,t−1(xi,t−1), ∇fi,t−1(xi,t−1), and ∇gi,t−1(xi,t−1) rather than
the full knowledge of fi,t−1(·) and gi,t−1(·) are needed, similar
to the assumption on most online algorithms in the literature,
cf., [7], [8], [10], [11], [27]. Note that the total number of
iterations or any parameters related to the objective or constraint

Algorithm 1: Distributed Online Primal-Dual Dynamic
Mirror Descent.

1: Input: non-increasing sequences {αt}, {βt},
{γt} ⊆ (0, 1]; differentiable and strongly convex
functions {ψi, i ∈ [n]}.

2: Initialize: xi,1 ∈ Xi and qi,1 = 0m, ∀i ∈ [n].
3: for t = 2, . . . , T do
4: for i = 1, . . . , n in parallel do
5: Observe ∇fi,t−1(xi,t−1), ∇gi,t−1(xi,t−1),

gi,t−1(xi,t−1), and ri,t−1(·);
6: Determine Φi,t(·);
7: Update

q̃i,t =

n∑

j=1

[Wt−1]ijqj,t−1, (16)

ai,t = ∇fi,t−1(xi,t−1)

+ (∇gi,t−1(xi,t−1))
�q̃i,t, (17)

x̃i,t = argmin
x∈Xi

{αt〈x, ai,t〉+ αtri,t−1(x)

+Dψi
(x, xi,t−1)}, (18)

bi,t = ∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1)

+ gi,t−1(xi,t−1), (19)

qi,t = [q̃i,t + γt(bi,t − βtq̃i,t)]+, (20)

xi,t = Φi,t(x̃i,t); (21)

8: Broadcast qi,t to N out
i (Gt) and receive [Wt]ijqj,t

from j ∈ N in
i (Gt).

9: end for
10: end for
11: Output: xT .

functions, such as upper bounds of the objective and constraint
functions or their subgradients, are not used in the algorithm.
Also note that no local information related to the primal is
exchanged between the agents, but only local dual variables.

The dynamic mapping Φi,t used in (21) plays the role of a
prediction, which is a decentralized variant of the dynamical
model Φt introduced in [23] and a generalization of the time-
invariant linear mappingA used in [21]. If the optimal sequence
of agent i has the dynamics x∗i,t = Φ∗

i,t(x
∗
i,t−1) for some true

dynamic mapping Φ∗
i,t : Xi → Xi, then Φi,t can be viewed as

an estimate of Φ∗
i,t. If Φi,t is equal or close enough to Φ∗

i,t, then
x∗i,t − Φi,t(x

∗
i,t−1) = Φ∗

i,t(x
∗
i,t−1)− Φi,t(x

∗
i,t−1) is small. Φi,t

is chosen as the identity mapping if at time t agent i has no
knowledge about the dynamics of the optimal sequence.

To end this section, an assumption on the dynamic mapping
Φi,t is introduced.

Assumption 4: For any t ∈ N+ and i ∈ [n], the dynamic
mapping Φi,t is nonexpansive, i.e.,

Dψi
(Φi,t(x),Φi,t(y)) ≤ Dψi

(x, y), ∀x, y ∈ Xi. (22)
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The assumption is used to exclude the situation that any
poor prediction made at one step could be exacerbated as the
algorithm moves forward. The same assumption can also be
found in [21], [23]. An example of the mappingΦi,t that satisfies
his assumption is the identity mapping.

IV. REGRET AND CONSTRAINT VIOLATION BOUNDS

This section presents the main results on regret and constraint
violation bounds for Algorithm 1, but first some preliminary
results are given.

A. Preliminary Results

Firstly, we present two results on the regularized Bregman
projection.

Lemma 1: Suppose that ψ : Rp → R
p is a strongly convex

function with convexity parameter σ > 0 and h : Dom → Dom
is a convex function with Dom being a convex and closed set in
R
p. Moreover, assume that ∇h(x), ∀x ∈ Dom, exists and there

existsGh > 0 such that ‖∇h(x)‖ ≤ Gh, ∀x ∈ Dom. Given z ∈
Dom, the regularized Bregman projection

y = argmin
x∈Dom

{h(x) +Dψ(x, z)}, (23)

satisfies the following inequalities

〈y − x,∇h(y)〉 ≤ Dψ(x, z)−Dψ(x, y)
−Dψ(y, z), ∀x ∈ Dom, (24)

‖y − z‖ ≤ Gh
σ
. (25)

Proof: See Appendix A. �
Note that (24) extends Lemma 6 in [21] and (25) presents an

upper bound on the deviation of the optimal point from a fixed
point for the regularized Bregman projection. Next we state some
results on the local dual variables.

Lemma 2: Suppose Assumptions 1–2 hold. For all i ∈ [n]
and t ∈ N+, q̃i,t and qi,t generated by Algorithm 1 satisfy

‖qi,t‖ ≤ F

βt
, ‖q̃i,t+1‖ ≤ F

βt
, (26)

‖q̃i,t+1 − q̄t‖ ≤ nτB1

t−1∑

s=1

γs+1λ
t−1−s, (27)

Δt+1

2γt+1
≤ n(B1)

2

2
γt+1 + [q̄t − q]�gt(xt) + E1(t)

+ E2(t) + n

(
G2αt+1

σ
+
βt+1

2

)

‖q‖2,
(28)

where q̄t =
1
n

∑n
i=1 qi,t, τ = (1− w/2n2)−2 > 1, λ = (1−

w/2n2)1/ι,

Δt =
n∑

i=1

‖qi,t − q‖2 − (1− βtγt)
n∑

i=1

‖qi,t−1 − q‖2, (29)

B1 = 2F +Gd(X), q is an arbitrary vector in R
m
+ , E1(t) =

n2τB1F
∑t
s=1 γs+1λ

t−s, and

E2(t) =
σ

4αt+1

n∑

i=1

‖x̃i,t+1 − xi,t‖2

+
n∑

i=1

[q̃i,t+1]
�∇gi,t(xi,t)(x̃i,t+1 − xi,t).

Proof: See Appendix B. �
An upper bound of the local dual variables is given in (26)

even without Slater’s condition. (27) is a standard estimate from
the consensus protocol with perturbations and time-varying
communication graphs [26] and presents an upper bound on
the deviation of the local estimate from the average value of
the local dual variables at each iteration. (28) gives an upper
bound on the regularized drift of the local dual variables Δt,
which extends Lemma 3 in [23] from a centralized setting to a
distributed one. Next, we provide an upper bound on the regret
for one update step.

Lemma 3: Suppose Assumptions 1–4 hold. For all i ∈ [n],
let {xt} be the sequence generated by Algorithm 1 and {yt} be
an arbitrary sequence in X , then

[q̄t]
�gt(xt) + lt(xt)− lt(yt)

≤ [q̄t]
� 4nG2αt+1

σ
+

K

αt+1

n∑

i=1

‖yi,t+1 − Φi,t+1(yi,t)‖

+ gt(yt) + 2E1(t)− E2(t) + E3(t), ∀t ∈ N+, (30)

where

E3(t) =
1

αt+1

n∑

i=1

[Dψi
(yi,t, xi,t)−Dψi

(yi,t+1, xi,t+1)] .

Proof: See Appendix C. �
Finally, we derive regret and constraint violation bounds for

Algorithm 1.
Lemma 4: Suppose Assumptions 1–4 hold. For anyT ∈ N+,

let xT be the sequence generated by Algorithm 1. Then, for any
comparator sequence yT ∈ XT ,

Reg(xT ,yT )

≤ KVΦ(yT )

αT
− 1

2

T∑

t=1

n∑

i=1

[
1

γt
− 1

γt+1
+ βt+1

]

‖qi,t‖2

+ C1,1

T∑

t=1

γt+1 + C1,2

T∑

t=1

αt+1 +
T∑

t=1

E3(t), (31)

and

‖
[
T∑

t=1

gt(xt)

]

+

‖2

≤ E4(T )

{

2nFT +
KV ∗

Φ

αT
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− 1

2

T∑

t=1

n∑

i=1

(
1

γt
− 1

γt+1
+ βt+1

)

‖qi,t − qc‖2

+C1,1

T∑

t=1

γt+1 + C1,2

T∑

t=1

αt+1 +
T∑

t=1

E3(t)

}

, (32)

where VΦ(yT ) =
∑T−1
t=1

∑n
i=1 ‖yi,t+1 − Φi,t+1(yi,t)‖ is the

accumulated dynamic variation of the sequence yT with re-
spect to {Φi,t}, C1,1 = 3n2τB1F

1−λ + n(B1)
2

2 , C1,2 = 4nG2

σ are

constants independent of T , V ∗
Φ = minyT∈XT

VΦ(yT ) is the
minimum accumulated dynamic variation of all feasible se-
quences, E4(T ) = 4n[ 1

γ1
+
∑T
t=1(

G2αt+1

σ + βt+1

2 )], and qc =
2[
∑T

t=1 gt(xt)]+
E4(T ) .

Proof: See Appendix D. �
Note that the dependence on the stepsize sequences, the

accumulated dynamic variation of the comparator sequence, the
number of agents, and the network connectivity is characterized
in (31) and (32). The accumulated variation of constraints or the
point-wise maximum variation of consecutive constraints de-
fined in [12] do, however, not appear in (31) and (32). This regret
bound is the same as the regret bound achieved by the centralized
dynamic mirror descent in [23], while [23] only considered static
set constraints. The term V ∗

Φ in (32) can be replaced by VΦ(yT )
since V ∗

Φ ≤ VΦ(yT ). Moreover, if all {Φt,i} are the identity
mapping, then V ∗

Φ = minyT∈X̌T
VΦ(yT ) = VΦ(x̌

∗
T ) = 0.

In order to obtain sublinear regret and constraint violation
bounds, the sequences {αt}, {βt}, {γt} should be properly cho-
sen. Firstly, note that αt appears in both the denominator and
numerator of (31) and (32), so we should let αt = O( 1

tc ) with
c ∈ (0, 1) because otherwise one of the terms that contained
αt will grow linearly or superlinearly. Then, note that the dual
sequence is not upper-bounded, so we should let 1

γt+1
− 1

γt
−

βt+1αt+1 ≤ 0. In the next section, we characterize the regret
and constraint violation bounds based on such sequences.

B. Dynamic Regret and Constraint Violation Bounds

This section states the main results on dynamic regret and
constraint violation bounds for Algorithm 1. The succeeding
theorem characterizes the bounds based on some natural de-
creasing stepsize sequences.

Theorem 1: Suppose Assumptions 1–4 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with

αt =
1

tc
, βt =

1

tκ
, γt =

1

t1−κ
, ∀t ∈ N+, (33)

where κ ∈ (0, 1) and c ∈ (0, 1) are constants. Then,

Reg(xT ,x
∗
T ) ≤ C1 T

max{1−c,c,κ} + 2KT cVΦ(x
∗
T ),

(34)
∥
∥
∥
∥
∥

[
T∑

t=1

gt(xt)

]

+

∥
∥
∥
∥
∥

2

≤ C2T
max{2−c,2−κ}

+KC2,1T
max{1,1+c−κ}V ∗

Φ, (35)

where C1 =
C1,1

κ +
C1,2

1−c + 2nd(X)K, C2 = C2,1(2nF +

C1), and C2,1 = 2n( 2 G2

(1−c)σ + 1
1−κ + 2) are constants

independent of T .
Proof: See Appendix E. �
Sublinear dynamic regret and constraint violation is thus

achieved if VΦ(x∗
T ) grows sublinearly. If, in this case, there

exists a constant ν ∈ [0, 1), such that VΦ(x∗
T ) = O(T ν), then

setting c ∈ (0, 1− ν) in Theorem 1 givesReg(xT ,x∗
T ) = o(T )

and ‖[∑T
t=1 gt(xt)]+‖ = o(T ). VΦ(x∗

T ) depends on the dy-
namic mapping Φi,t. In practice, agents may not know what
is a good estimate of Φi,t and Φi,t may change stochastically.
It is for future research how to estimate Φi,t from a finite or
parametric class of candidates.

From (35), we can see that the constraint violation bound
is strictly greater than O(

√
T ) since max{2− c, 2− κ} > 1.

In the following we show that an O(
√
T ) bound on constraint

violation can be achieved if all {Φi,t} are the identity mapping
and the constraint functions {gi,t} satisfy Slater’s condition,
which was also assumed in [12], [14].

Assumption 5: (Slater’s condition) There exists a constant
ε > 0 and a vector xc ∈ X , such that

gt(xc) ≤ −ε1m, t ∈ N+. (36)

Theorem 2: Suppose Assumptions 1–5 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with all
{Φi,t} being the identity mapping, and

αt =
1

t1−κ
, βt =

1

tκ
, γt =

1

t1−κ
, ∀t ∈ N+, (37)

where κ ∈ (0, 1). Then,

Reg(xT ,x
∗
T ) ≤ C1 T

max{1−κ,κ} + 2KT 1−κVI(x∗T ), (38)
∥
∥
∥
∥
∥

[
T∑

t=1

gt(xt)

]

+

∥
∥
∥
∥
∥
≤ C3T

max{1−κ,κ}, (39)

where VI(x∗T ) =
∑T−1
t=1 ‖x∗t+1 − x∗t‖ is the accumulated vari-

ation of the optimal sequence x∗
T , C3 = n[2B2 +

B2

1−κ +
G2(B2+2)

√
m

σκ ], B2 = max{2ε+ 2
√
ε2 + nd(X)K, 2B3

ε }, and
B3 = 2F + C1,1 are constants independent of T .

Proof: See Appendix F. �
From (39), we note that under Slater’s condition the constraint

violation bound is not affected by the optimal sequences or
the point-wise maximum variation of consecutive constraints,
which is different from the bounds obtained in [12]. From (38),
it follows that sublinear dynamic regret could be achieved if
VI(x

∗
T ) grows sublinearly with a known upper bound. Then,

there exists a constant ν ∈ [0, 1), such thatVI(x∗
T ) = O(T ν), so

settingκ ∈ (ν, 1) in Theorem 2 givesReg(xT ,x∗
T ) = o(T ) and

‖[∑T
t=1 gt(xt)]+‖ = o(T ). Under the additional assumption

that the accumulated variation of constraints grows sublinearly
with a known upper bound, similar results have been achieved by
the modified centralized online saddle-point method proposed
in [12]. However, [12] assumed not only that the time-varying
constraint functions satisfy Slater’s condition but also that the
slack constant is larger than the point-wise maximum variation
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of consecutive constraints. The latter assumption is not always
satisfied. Moreover, in [12] the total number of iterationsT needs
to be known in advance.

C. Static Regret and Constraint Violation Bounds

This section states the main results on static regret and con-
straint violation bounds for Algorithm 1. When considering
static regret, {Φi,t} should be set to the identity mapping since
the static optimal sequence is used as the comparator sequence.
In this case, replacingx∗

T by the static sequence x̌∗
T in Theorem 1

gives the following results on the bounds of static regret and
constraint violation.

Corollary 1: Under the same conditions as stated in Theo-
rem 1 with all {Φi,t} being the identity mapping and c = κ, it
holds that

Reg(xT , x̌
∗
T ) ≤ C1 T

max{1−κ,κ}, (40)
∥
∥
∥
∥
∥

[
T∑

t=1

gt(xt)

]

+

∥
∥
∥
∥
∥
≤

√
C2T

1−κ/2. (41)

Proof: Substituting c = κ in Theorem 1 gives the results. �
From Corollary 1, we know that Algorithm 1 achieves the

same static regret and constraint violation bounds as in [8]. As
discussed in [8], κ ∈ (0, 1) is a user-defined parameter which
enables the trade-off between the static regret bound and the con-
straint violation bound. Corollary 1 recovers the O(

√
T ) static

regret bound and O(T 3/4) constraint violation bound from [7],
[11] when κ = 0.5. Moreover, the result extends the O(T 2/3)
bound for both static regret and constraint violation achieved
in [7] for linear constraint functions. However, the algorithms
proposed in [7], [8], [11] are centralized and the constraint
functions considered in [7], [8] are time-invariant. Moreover,
in [7], [11] the total number of iterations and in [7], [8], [11] the
upper bounds of the objective and constraint functions and their
subgradients need to be known in advance to choose the stepsize
sequences. Furthermore, Corollary 1 achieves smaller static
regret and constraint violation bounds than [27], although [27]
considered time-invariant coupled inequality constraints. How-
ever, [27] did not require the time-varying directed graph to
be balanced. Although the algorithm proposed in [10] achieved
more strict constraint violation bound than our Algorithm 1, that
algorithm assumed time-invariant constraint functions and the
centralized computations.

Similarly, replacing x∗
T by the static sequence x̌∗

T in
Theorem 2 gives the following results on the bounds of static
regret and constraint violation.

Corollary 2: Under the same conditions as stated in
Theorem 2, it holds that

Reg(xT , x̌
∗
T ) ≤ C1 T

max{1−κ,κ}, (42)
∥
∥
∥
∥
∥

[
T∑

t=1

gt(xt)

]

+

∥
∥
∥
∥
∥
≤ C3T

max{1−κ,κ}. (43)

Settingκ = 0.5 in Corollary 2 givesReg(xT , x̌∗
T ) = O(

√
T )

and ‖[∑T
t=1 gt(xt)]+‖ = O(

√
T ). Hence, Algorithm 1 achieves

stronger results than [14] and the same results as [13], [26].

However, the algorithms proposed in [13], [14] are central-
ized and in [13] it is assumed that the constraint functions
are independent and identically distributed. Moreover, in [26]
the coupled inequality constraints are time-invariant and the
boundedness of the dual variable sequence generated by the
proposed algorithm is explicitly assumed.

The static regret bounds in Corollaries 1 and 2 can be reduced,
if a generalized strong convexity of the local objective functions
fi,t + ri,t is assumed. We put the strong convexity assumption
on the local cost functions fi,t so ri,t can be simply convex, such
as an �1-regularization.

Assumption 6: For any i ∈ [n] and t ∈ N+, {fi,t} are μi-
strongly convex over Xi with respect to ψi with μi > 0.

Theorem 3: Suppose Assumptions 1–6 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with

αt =
1

tmax{1−κ,κ} , βt =
1

tκ
, γt =

1

t1−κ
, ∀t ∈ N+, (44)

where κ ∈ (0, 1). Then,

Reg(xT , x̌
∗
T ) ≤ max{C1, C4}Tκ, (45)

∥
∥
∥
∥
∥

[
T∑

t=1

gt(xt)

]

+

∥
∥
∥
∥
∥
≤

√
C2T

1−κ/2, (46)

where C4 = n(B1)
2

2κ +
B1C1,1

κ +
C1,2

κ + 2nd(X)K(B4)
1−κ,

B4 = � 1

(μ)
1
κ
�, and μ = min{μ1, . . . , μn} are constants

independent of T .
Proof: See Appendix G. �
Corollary 3: Under the same conditions as stated in Theo-

rem 2, if Assumption 6 also holds. Then,

Reg(xT , x̌
∗
T ) ≤ C4T

κ, (47)
∥
∥
∥
∥
∥

[
T∑

t=1

gt(xt)

]

+

∥
∥
∥
∥
∥
≤ C3T

max{1−κ,κ}. (48)

Proof: (47) follows from the first step in the proof of (45)
and (48) follows from (39). �

With some minor modifications, the results stated in Theo-
rem 3 and Corollary 3 still hold if Assumption 6 is replaced by
the assumption that for any i ∈ [n] and t ∈ N+, fi,t or ri,t is
μi-strongly convex over Xi with respect to ψi with μi > 0.

V. NUMERICAL SIMULATIONS

This section evaluates the performance of Algorithm 1
in solving the multi-target tracking problem introduced in
Section I-A. In the simulations, for each agent i ∈ [n], Φi,t
is set as the identity mapping and the strongly convex func-
tion ψi(x) = σ‖x‖2 is used to define the Bregman divergence
Dψi

. Thus, Dψi
(x, y) = σ‖x− y‖2, ∀i ∈ [n]. The stepsize se-

quences given (44) are used. Moreover, agent i could use a
regularization function ri,t(xi,t) = λi,1‖xi,t‖1 + λi,2‖xi,t‖2 to
influence the structure of its action, where λi,1 and λi,2 are non-
negative constants. At each time t, an undirected graph is used
as the communication graph. Specifically, connections between
vertices are random and the probability of two vertices being
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Fig. 1. Comparison of different Φi,t: (a) Evolutions of Reg(xT ,x∗
T )/T ;

(b) Evolutions of ‖[
∑T

t=1
gt(xt)]+‖/T .

connected is ρ. To guarantee that Assumption 1 holds, edges
(i, i+ 1), i ∈ [n− 1] are added and [Wt]ij =

1
n if (j, i) ∈ Et

and [Wt]ii = 1−∑
j∈N in

i (Gt)
[Wt]ij .

We assume n = 50, m = 5, σ = 10, pi = 6, Xi = [0, 5]pi ,
ζi,1 = λi,1 = 1, ζi,2 = λi,2 = 30, i ∈ [n], and ρ = 0.2. Each
component of πi,t is drawn from the discrete uniform distri-
bution in [0,10] and each component of Di,t is drawn from the
discrete uniform distribution in [−5, 5]. We let ξi,t = [2(ζi,2 +
λi,2)x

0
i,t + ζi,1πi,t + λi,11pi ]/(2ζi,2), where x0i,t+1 = Ai,tx

0
i,t

with Ai,t being a doubly stochastic matrix and x0i,1 being a
vector that is uniformly drawn from Xi. In order to guarantee
the constraints are feasible, we let di,t = Di,tx

0
i,t.

A. Dynamics of Optimal Sequences

Under the above settings, we have that x∗i,t = x0i,t. To investi-
gate the dependence of the dynamic regret and constraint viola-
tion withΦi,t, we run Algorithm 1 for two cases:Φi,t is the iden-
tity mapping and the linear mappingAi,t. Figs. 1(a) and (b) show
the evolutions of Reg(xT ,x

∗
T )/T and ‖[∑T

t=1 gt(xt)]+‖/T ,
respectively, and we can see that knowing the dynamics of the

Fig. 2. (a) Evolutions of Reg(xT ,x∗
T )/T . (b) Evolutions of

‖[
∑T

t=1
gt(xt)]+‖/T .

optimal sequence leads to smaller dynamic regret and constraint
violation.

B. Regularization Function

To highlight the dependence of the dynamic regret and
constraint violation with the regularization function, we run
Algorithm 1 for two cases. Case I: fi,t(xi) = ζi,1〈πi,t, xi〉+
ζi,2‖Hi,txi − yi,t‖2, ri,t(xi) = λi,1‖xi‖1 + λi,2‖xi‖2 and
Case II: fi,t(xi) = ζi,1〈πi,t, xi〉+ ζi,2‖Hi,txi − yi,t‖2 +
λi,1‖xi‖1 + λi,2‖xi‖2, ri,t(xi) = 0. Figs. 2(a) and (b) show
the evolutions of Reg(xT ,x

∗
T )/T and ‖[∑T

t=1 gt(xt)]+‖/T ,
respectively, for these two cases. From these two figures, we
can see that having the regularization term explicitly leads to
smaller dynamic regret and constraint violation.

C. Effects of Parameter κ

To investigate the dependence of the dynamic regret and
constraint violation with the parameter κ, we run Algorithm 1
with κ = 0.1, 0.3, 0.5, 0.7, 0.9. Figs. 3(a) and (b) show effects
of κ on Reg(xT ,x

∗
T )/T and ‖[∑T

t=1 gt(xt)]+‖/T , respec-
tively, when T = 100, 500, 1000. From these two figures, we
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Fig. 3. Effects of parameter κ on (a) Reg(xT ,x∗
T )/T and

(b) ‖[
∑T

t=1
gt(xt)]+‖/T when T = 100, 500, 1000.

can see that κ almost does not affect Reg(xT ,x
∗
T )/T and

‖[∑T
t=1 gt(xt)]+‖/T when T is large (e.g., T ≥ 500). This

phenomenon is not contradictory to the theoretical results shown
in Theorem 3 since the theoretical results provide upper bounds
of Reg(xT ,x∗

T )/T and ‖[∑T
t=1 gt(xt)]+‖/T .

D. Comparison to Other Algorithms

Since there are no distributed online algorithms to solve the
problem of distributed online optimization with time-varying
coupled inequality constraints, we compare Algorithm 1 with
the centralized online algorithms in [11], [12], [14]. Here,
Algorithm 1 in [11] with α = 10, δ = 1, and μ = 1/

√
T ,

Algorithm 1 in [12] with α = μ = T−1/3, and the virtual
queue algorithm in [14] with V =

√
T and α = V 2 are used.

Figs. 4(a) and (b) show the evolutions of Reg(xT ,x∗
T )/T and

‖[∑T
t=1 gt(xt)]+‖/T , respectively, for these algorithms. From

these two figures, we can see that in this example Algorithm 1
achieves smaller dynamic regret and constraint violation than
the algorithms in [12], [14] and almost the same values as the
algorithm in [11].

Fig. 4. Comparison of other algorithms: (a) Evolutions of Reg(xT ,x∗
T )/T ;

(b) Evolutions of ‖[
∑T

t=1
gt(xt)]+‖/T .

VI. CONCLUSION

In this paper, we considered an online convex optimization
problem with time-varying coupled inequality constraints. We
proposed a distributed online primal-dual dynamic mirror de-
scent algorithm to solve this problem. We derived regret and
constraint violation bounds for the algorithm and showed how
they depend on the stepsize sequences, the accumulated dynamic
variation of the comparator sequence, the number of agents, and
the network connectivity. We proved that the algorithm achieves
sublinear regret and constraint violation for both arbitrary and
strongly convex objective functions. We showed that the results
in this paper can be cast as extensions of existing literature.
Future research directions include considering a strict form of
the constraint violations, extending the algorithm with bandit
feedback, and learning the dynamics of the optimal sequence.

APPENDIX

A. Proof of Lemma 1

i) Denote h̃(x) = h(x) +Dψ(x, z). Then h̃ is a convex
function on Dom. Thus the optimality condition (23), i.e.,
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y = argminx∈Dom h̃(x), implies 〈y − x,∇h̃(y)〉 ≤ 0, ∀x ∈
Dom. Substituting ∇h̃(y) = ∇h(y) +∇ψ(y)−∇ψ(z) into
the above inequality yields

〈y − x,∇h(y)〉 ≤ 〈y − x,∇ψ(z)−∇ψ(y)〉
= Dψ(x, z)−Dψ(x, y)−Dψ(y, z), ∀x ∈ Dom,

where the equality holds since (9). Hence, (24) holds.
ii) h̃(x) is strongly convex with convexity parameter σ since

Dψ is strongly convex. It is known that if h̃ : Dom → R is a
strongly convex function and is minimized at the point xmin ∈
Dom, then

h̃(xmin) ≤ h̃(x)− σ

2
‖x− xmin‖2, ∀x ∈ Dom .

Thus the optimality condition of (23) implies

h(y) +Dψ(y, z) ≤ h(z) +Dψ(z, z)− σ

2
‖z − y‖2.

Noting that Dψ(y, z) ≥ σ
2 ‖z − y‖2 and Dψ(z, z) = 0, and re-

arranging the above inequality gives

σ‖z − y‖2 ≤ σ

2
‖z − y‖2 +Dψ(y, z) ≤ h(z)− h(y). (49)

From (4) and ‖∇h(x)‖ ≤ Gh, ∀x ∈ Dom, we have

h(z)− h(y) ≤ 〈∇h(z), z − y〉 ≤ Gh‖z − y‖. (50)

Thus, combining (49) and (50) yields (25).

B. Proof of Lemma 2

i) We prove (26) by induction.
It is straightforward to see that qi,1 = q̃i,2 = 0m, ∀i ∈ [n],

thus‖qi,1‖ ≤ F
β1
, ‖q̃i,2‖ ≤ F

β1
, ∀i ∈ [n]. Assume that (26) is true

at time t for all i ∈ [n]. We show that it remains true at time t+ 1.
(4) and (19) imply

(1− γt+1βt+1)q̃i,t+1 + γt+1bi,t+1

≤ (1− γt+1βt+1)q̃i,t+1 + γt+1gi,t(x̃i,t+1). (51)

Since ‖[x]+‖ ≤ ‖y‖ for all x ≤ y, (20), (51), and (5) imply

‖qi,t+1‖ ≤ (1− γt+1βt+1)‖q̃i,t+1‖+ γt+1‖gi,t(x̃i,t+1)‖

≤ (1− γt+1βt+1)
F

βt
+ γt+1F

≤ (1− γt+1βt+1)
F

βt+1
+ γt+1F =

F

βt+1
, ∀i ∈ [n],

where the last inequality holds due to the sequence {βt} is non-
increasing. The convexity of norms and

∑n
j=1[Wt]ij = 1 yield

‖q̃i,t+2‖ ≤
n∑

j=1

[Wt]ij‖qj,t+1‖ ≤
n∑

j=1

[Wt]ij
F

βt+1

=
F

βt+1
, ∀i ∈ [n].

Thus, (26) follows.

ii) We can rewrite (20) as

qi,t+1 =
n∑

j=1

[Wt]ijqj,t + εqi,t,

where εqi,t = [(1− γt+1βt+1)q̃i,t+1 + γt+1bi,t+1]+ − q̃i,t+1.
From (5), (6), and (12), we have

‖bi,t+1‖ ≤ ‖gi,t(xi,t)‖+ ‖∇gi,t(xi,t)‖‖(x̃i,t+1 − xi,t)‖
≤ F +Gd(X), ∀i ∈ [n]. (52)

Thus, (3), (26), and (52) give

‖εqi,t‖ ≤ ‖ − γt+1βt+1q̃i,t+1 + γt+1bi,t+1‖
≤ B1γt+1, ∀i ∈ [n]. (53)

Then, Lemma 2 in [26], qi,1 = 0m, ∀i ∈ [n], and (53) yield

‖qi,t+1 − q̄t+1‖ ≤ nτB1

t∑

s=1

γs+1λ
t−s, ∀i ∈ [n].

So (27) follows since
∑n
j=1[Wt]ij = 1 and ‖q̃i,t+1 − q̄t‖ =

‖∑n
j=1[Wt]ijqj,t − q̄t‖ ≤ ∑n

j=1[Wt]ij‖qj,t − q̄t‖.
iii) Applying (3) to (20) gives

‖qi,t − q‖2 ≤
∥
∥
∥(1− βtγt)q̃i,t + γtbi,t − q

∥
∥
∥
2

= ‖q̃i,t − q‖2 + (γt)
2‖bi,t − βtq̃i,t‖2

+ 2γt[q̃i,t]
�∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1)

− 2γtq
�∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1)

+ 2γt[q̃i,t − q]�gi,t−1(xi,t−1)

− 2βtγt[q̃i,t − q]�q̃i,t. (54)

For the first term of the right-hand side of (54), by convexity of
norms and

∑n
j=1[Wt−1]ij = 1, it can be concluded that

‖q̃i,t − q‖2 =

∥
∥
∥
∥
∥
∥

n∑

j=1

[Wt−1]ijqj,t−1 −
n∑

j=1

[Wt−1]ijq

∥
∥
∥
∥
∥
∥

2

≤
n∑

j=1

[Wt−1]ij‖qj,t−1 − q‖2. (55)

For the second term of the right-hand side of (54), (26) and (52)
yield

(γt)
2‖bi,t − βtq̃i,t‖2 ≤ (B1γt)

2. (56)

For the fourth term of the right-hand side of (54), (6) and the
Cauchy-Schwarz inequality yield

− 2γtq
�∇gi,t−1(xi,t−1)(x̃i,t − xi,t−1)

≤ 2γt

(
G2αt
σ

‖q‖2 + σ

4αt
‖x̃i,t − xi,t−1‖2

)

. (57)

For the fifth term of the right-hand side of (54), we have

2γt[q̃i,t − q]�gi,t−1(xi,t−1) = 2γt[q̄t−1 − q]�gi,t−1(xi,t−1)

+ 2γt[q̃i,t − q̄t−1]
�gi,t−1(xi,t−1). (58)
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Moreover, from (5) and (27), we have

2γt[q̃i,t − q̄t−1]
�gi,t−1(xi,t−1)

≤ 2γt‖q̃i,t − q̄t−1‖‖gi,t−1(xi,t−1)‖ ≤ 2γtE1(t− 1)

n
. (59)

For the last term of the right-hand side of (54), neglecting the
nonnegative term βtγt‖q̃i,t‖2 gives

−2βtγt[q̃i,t − q]�q̃i,t ≤ βtγt(‖q‖2 − ‖q̃i,t − q‖2). (60)

Then, combining (54)–(60), summing over i ∈ [n], and dividing
by 2γt, and using

∑n
i=1[Wt−1]ij = 1, ∀t ∈ N+ yields (28).

C. Proof of Lemma 3

From (4), we have

li,t(xi,t)− li,t(yi,t)

= fi,t(xi,t)− fi,t(yi,t) + ri,t(xi,t)− ri,t(x̃i,t+1)

+ ri,t(x̃i,t+1)− ri,t(yi,t)

≤ 〈∇fi,t(xi,t), xi,t − yi,t〉+ 〈∇ri,t(xi,t), xi,t − x̃i,t+1〉
+ 〈∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉

= 〈∇fi,t(xi,t) +∇ri,t(xi,t), xi,t − x̃i,t+1〉
+ 〈∇fi,t(xi,t) +∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉. (61)

We now bound each of the two terms above. For the first term,
(6) and the Cauchy-Schwarz inequality give

〈∇fi,t(xi,t) +∇ri,t(xi,t), xi,t − x̃i,t+1〉
≤ 2G‖xi,t − x̃i,t+1‖

≤ σ

4αt+1
‖xi,t − x̃i,t+1‖2 + 4 G2αt+1

σ
. (62)

For the second term, we have

〈∇fi,t(xi,t) +∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉
= 〈(∇gi,t(xi,t))�q̃i,t+1, yi,t − x̃i,t+1〉

+ 〈ai,t+1 +∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉
= 〈(∇gi,t(xi,t))�q̃i,t+1, yi,t − xi,t〉

+ 〈(∇gi,t(xi,t))�q̃i,t+1, xi,t − x̃i,t+1〉
+ 〈ai,t+1 +∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉. (63)

From (4) and q̃i,t ≥ 0m, ∀t ∈ N+, ∀i ∈ [n], we have

〈(∇gi,t(xi,t))�q̃i,t+1, yi,t − xi,t〉
≤ [q̃i,t+1]

�gi,t(yi,t)− [q̃i,t+1]
�gi,t(xi,t)

= [q̄t]
�[gi,t(yi,t)− gi,t(xi,t)]

+ [q̃i,t+1 − q̄t]
�[gi,t(yi,t)− gi,t(xi,t)]. (64)

Similar to (59), we have

[q̃i,t+1 − q̄t]
�[gi,t(yi,t)− gi,t(xi,t)] ≤ 2E1(t)

n
. (65)

Applying (24) to the update rule (18), we get

〈ai,t+1 +∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉

≤ 1

αt+1
[Dψi

(yi,t, xi,t)−Dψi
(yi,t, x̃i,t+1)

−Dψi
(x̃i,t+1, xi,t)]

=
1

αt+1
[Dψi

(yi,t, xi,t)−Dψi
(yi,t+1, xi,t+1)

+Dψi
(yi,t+1, xi,t+1)−Dψi

(Φi,t+1(yi,t), xi,t+1)

+Dψi
(Φi,t+1(yi,t), xi,t+1)−Dψi

(yi,t, x̃i,t+1)

−Dψi
(x̃i,t+1, xi,t)]

≤ 1

αt+1
[Dψi

(yi,t, xi,t)−Dψi
(yi,t+1, xi,t+1)

+K‖yi,t+1 − Φi,t+1(yi,t)‖ − σ

2
‖x̃i,t+1 − xi,t‖2], (66)

where the last inequality holds since (21), (22), (10), and (8).
Combining (61)–(66) and summing over i ∈ [n] yields (30).

D. Proof of Lemma 4

i) The definition of Δt given by (29) yields

−Δt

2γt
=

1

2γt

n∑

i=1

[(1− βtγt)‖qi,t−1 − q‖2 − ‖qi,t − q‖2]

=
1

2

n∑

i=1

[
1

γt−1
‖qi,t−1 − q‖2 − 1

γt
‖qi,t − q‖2

]

+
1

2

n∑

i=1

(
1

γt
− 1

γt−1
− βt

)

‖qi,t−1 − q‖2. (67)

For any nonnegative sequence ζ1, ζ2, . . . , it holds that

T∑

t=1

t∑

s=1

ζs+1λ
t−s =

T∑

t=1

ζt+1

T−t∑

s=0

λs ≤ 1

(1− λ)

T∑

t=1

ζt+1.

(68)

Let gc : Rm+ → R be a function defined as

gc(q) =

[
T∑

t=1

gt(xt)

]�

q

− n

[
1

γ1
+

T∑

t=1

(
G2αt+1

σ
+
βt+1

2

)]

‖q‖2. (69)

Combining (28) and (30), summing over t ∈ [T ], ne-
glecting the nonnegative term ‖qi,T+1 − q‖2, and using
(67)–(69), ‖qi,1 − q‖2 ≤ 2‖qi,1‖2 + 2‖q‖2 = 2‖q‖2, and
gt(yt) ≤ 0m,yT ∈ XT yields

gc(q) + Reg(xT ,yT )

≤ C1,1

T∑

t=1

γt+1 +
4nG2

σ

T∑

t=1

αt+1 +

T∑

t=1

E3(t)
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− 1

2

T∑

t=1

n∑

i=1

(
1

γt
− 1

γt+1
+ βt+1

)

‖qi,t − q‖2

+K
T∑

t=1

n∑

i=1

‖yi,t+1 − Φi,t+1(yi,t)‖
αt+1

, ∀q ∈ R
m
+ . (70)

Then, substituting q = 0m into (70), setting yi,T+1 =
Φi,T+1(yi,T ), noting that {αt} is non-increasing, and
rearranging the terms yields (31).

ii) Substituting q = qc into gc(q) gives

gc(qc) =
‖[∑T

t=1 gt(xt)]+‖2
E4(T )

. (71)

Moreover, (5) gives

|Reg(xT ,yT )| ≤ 2nFT, ∀yT ∈ XT . (72)

Substituting q = qc into (70), combining (71)–(72), and rear-
ranging the terms gives (32).

E. Proof of Theorem 1

i) For any constant κ < 1 and T ∈ N+, it holds that

T∑

t=1

1

tκ
≤

∫ T

1

1

tκ
dt+ 1 =

T 1−κ − κ

1− κ
≤ T 1−κ

1− κ
. (73)

Applying (73) to the third and forth terms of the right-hand side
of (31) gives

C1,1

T∑

t=1

γt+1 ≤ C1,1

κ
Tκ, (74)

C1,2

T∑

t=1

αt+1 ≤ C1,2

1− c
T 1−c. (75)

Noting that {αt} is non-increasing and (11), for any s ∈ [T ], we
have

T∑

t=s

E3(t) =

T∑

t=s

n∑

i=1

[
1

αt
Dψi

(yi,t, xi,t)− 1

αt+1
Dψi

(yi,t+1, xi,t+1)

]

+

T∑

t=s

n∑

i=1

(
1

αt+1
− 1

αt

)

Dψi
(yi,t, xi,t)

≤ 1

αs

n∑

i=1

Dψi
(yi,s, xi,s)− 1

αT+1

n∑

i=1

Dψi
(yi,T+1, xi,T+1)

+ n

(
1

αT+1
− 1

αs

)

d(X)K ≤ nd(X)K

αT+1
. (76)

Combining (31) and (74)–(76), setting yi,t = x∗i,t, ∀t ∈ [T ], and
noting that the second last term of the right-hand side of (31) is
non-positive since 1

γt
− 1

γt+1
+ βt+1 > 0 yields (34).

ii) Using (73) gives

E4(T ) ≤ C2,1T
max{1−c,1−κ}. (77)

Combining (32) and (74)–(77) and noting that the last term
of the right-hand side of (32) is non-positive since 1

γt
− 1

γt+1
+

βt+1 > 0 gives (35).

F. Proof of Theorem 2

i) Substituting c = 1− κ in (34) gives (38).
ii) We first show that ‖qt‖ ≤ B2 by induction, where qt =

col(q1,t, . . . , qn,t).
It is straightforward to see that ‖q1‖ = 0 ≤ B2. Suppose

that there exists T1 ∈ N+ such that ‖qt‖ ≤ B2, ∀t ∈ [T1].
We show that ‖qT1+1‖ ≤ B2 by contradiction. Now sup-
pose that ‖qT1+1‖ > B2. Noting that ‖q̄T1+1‖1 = ‖qT1+1‖1 ≥
‖qT1+1‖ > B2 and ‖q̄1‖1 = 0, we know that there exists
t0 ∈ [T1] such that ‖q̄t0‖1 ≤ B2

2 . Let t1 = max{t0 : ‖q̄t0‖1 ≤
B2

2 , t0 ∈ [T1]}. Combining (28) and (30), substituting q = 0m
and yt = xc, setting {Φt,i} as the identity mapping, and using
|ft(xt)− ft(x0)| ≤ 2F and (36) yields

‖qt+1‖2 − (1− βt+1γt+1)‖qt‖2

≤ 2B3γt+1 + 2γt+1E2(t+ 1)− 2ε‖q̄t‖1γt+1. (78)

Summing (78) over t ∈ {t1, . . . , T1}, using (11), αt = γt =
1

t1−κ and βt ≥ 0, and noting that ‖qT1+1‖ > B2, ‖qt1‖ ≤
‖q̄t1‖1 ≤ B2

2 , and ‖q̄t‖1 > B2

2 , ∀t ∈ {t1 + 1, . . . , T1} gives

3(B2)
2

4
< ‖qT1+1‖2 − ‖qt1‖2 +

T1∑

t=t1

βt+1γt+1‖qt‖2

≤ 2B3

T1∑

t=t1

γt+1 + 2nd(X)K − 2ε

T1∑

t=t1

‖q̄t‖1γt+1

≤ 2B3

κ
[(T1 + 1)κ − (t1 + 1)κ] + 2B3 + 2nd(X)K

− εB2

κ
[(T1 + 1)κ − (t1 + 1)κ] + εB2 − 2ε‖q̄t1‖1

≤ 2nd(X)K + 2εB2 ≤ (B2)
2

2
, (79)

which is a contradiction. Thus, ‖qT1+1‖ ≤ B2.
We now show (39) holds. Applying (25) to the update (18)

and noting ‖q̃i,t+1‖ ≤ ‖qt‖ ≤ B2 gives

‖x̃i,t+1 − xi,t‖ ≤ ‖αt+1ai,t+1‖+ αt+1G

σ

≤ Gαt+1

σ
(B2 + 2). (80)

(16) and (20) give

qi,t+1 ≥ (1− βt+1γt+1)

n∑

j=1

[Wt]ijqj,t + γt+1bi,t+1. (81)
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Summing (81) over i ∈ [n], dividing by nγt+1, and using∑n
i=1[Wt]ij = 1, ∀t ∈ N+, (6), (19), and (80) yields

q̄t+1

γt+1
≥

(
1

γt+1
− βt+1

)

q̄t +
1

n

n∑

i=1

bi,t+1

≥
(

1

γt+1
− βt+1

)

q̄t +
1

n
gt(xt)

− G2αt+1

σ
(B2 + 2)1m. (82)

Summing (82) over t ∈ [T ] gives

1

n

T∑

t=1

gt(xt) ≤ q̄T+1

γT+1
+

T∑

t=1

βt+1q̄t

+

T∑

t=1

G2αt+1

σ
(B2 + 2)1m. (83)

Noting that ‖[x]+‖ ≤ ‖y‖ for all x ≤ y and using ‖q̄t‖ ≤
‖qt‖ ≤ B2 and (73) yields (39).

G. Proof of Theorem 3

i) We first show thatReg(xT , x̌∗
T ) ≤ C4 T

κ whenαt = 1
t1−κ .

Under Assumption 6, (61) can be replaced by

li,t(xi,t)− li,t(yi,t)

≤ 〈∇fi,t(xi,t), xi,t − yi,t〉+ 〈∇ri,t(xi,t), xi,t − x̃i,t+1〉
+ 〈∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉 − μDψi

(yi,t, xi,t)

= 〈∇fi,t(xi,t) +∇ri,t(xi,t), xi,t − x̃i,t+1〉
+ 〈∇fi,t(xi,t) +∇ri,t(x̃i,t+1), x̃i,t+1 − yi,t〉
− μDψi

(yi,t, xi,t). (84)

Thus, (30)–(32) still hold if replacing E3(t) by

E5(t) =

n∑

i=1

{ 1

αt+1

[
Dψi

(yi,t, xi,t)

−Dψi
(yi,t+1, xi,t+1)

]
− μDψi

(yi,t, xi,t)
}
.

Then,

T∑

t=1

E5(t)

=
T∑

t=1

n∑

i=1

[
1

αt
Dψi

(yi,t, xi,t)− 1

αt+1
Dψi

(yi,t+1, xi,t+1)

]

+

T∑

t=1

n∑

i=1

(
1

αt+1
− 1

αt
− μ

)

Dψi
(yi,t, xi,t). (85)

Noting that μ > 0, Dψi
(·, ·) ≥ 0, and 1

αt+1
− 1

αt
− μ =

t+1
(t+1)κ − t

tκ − μ < 1
tκ − μ ≤ 0, ∀t ≥ B4 and using (76) and

(85) yields

T∑

t=1

E5(t) =

B4−1∑

t=1

E3(t) +

T∑

t=B4

E5(t)

≤ nd(X)K

αB4

+

T∑

t=B4

n∑

i=1

( 1

αt+1
− 1

αt
− μ

)
Dψi

(yi,t, xi,t)

+

T∑

t=B4

n∑

i=1

[ 1

αt
Dψi

(yi,t, xi,t)− 1

αt+1
Dψi

(yi,t+1, xi,t+1)
]

≤ 2nd(X)K

αB4

. (86)

Replacing (76) with (86) and along the same line as the proof
of (34) in Theorem 1 gives that Reg(xT , x̌∗

T ) ≤ C4 T
κ when

αt =
1

t1−κ .
Next, we show that (45) holds. When κ ∈ (0, 0.5), we

have αt = 1/t(1−κ). Thus, from the above result, we have
Reg(xT , x̌

∗
T ) ≤ C4 T

κ. When κ ∈ [0.5, 1), we have αt =
1/tκ. Thus, (40) gives Reg(xT , x̌

∗
T ) ≤ C1 T

κ. In conclusion,
(45) holds.

ii) Substituting c = 1− κwhen κ ∈ (0, 0.5) and c = κwhen
κ ∈ [0.5, 1) in (35) gives (46).
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