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Generalized PID Synchronization of Higher
Order Nonlinear Systems With a Recursive

Lyapunov Approach
Davide Liuzza , Dimos V. Dimarogonas , and Karl H. Johansson

Abstract—This paper investigates the problem of syn-
chronization for nonlinear systems. Following a Lyapunov
approach, we first study the global synchronization of
nonlinear systems in the canonical control form with both
distributed proportional-derivative and proportional-
integral-derivative control actions of any order. To do so,
we develop a constructive methodology and generate in an
iterative way inequality constraints on the coupling matri-
ces that guarantee the solvability of the problem or, in a dual
form, provide the nonlinear weights on the coupling links
between the agents such that the network synchronizes.
The same methodology allows us to include a possible
distributed integral action of any order to enhance the
rejection of heterogeneous disturbances. The considered
approach does not require any dynamic cancellation, thus
preserving the original nonlinear dynamics of the agents.
The results are then extended to linear and nonlinear
systems admitting a canonical control transformation.
Numerical simulations validate the theoretical results.

Index Terms—Distributed proportional-integral-
derivative (PID) control, higher order synchronization,
networked control of companion forms, networked
nonlinear systems.

I. INTRODUCTION

THE synchronization of networked systems has been widely
studied in the last decade by different research communi-

ties [1]–[3].
In the control system community, starting from the consensus

problem for single-integrator nodes, the problem of synchro-
nization has been gradually and extensively extended to linear
systems, first with assumptions on the eigenvalues of the dy-
namical matrix or input matrix [4], [5] and later under the mild
assumption on the controllability and detectability alone of the
linear systems [6], [7]. So, for the class of linear systems, gen-
eral results are currently available [8]. Also, research on the syn-
chronization of nonlinear systems has generated many results.
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However, due to the intrinsic difficulty, the synchronization of
nonlinear systems is still under active investigation.

These days, various methodologies aim at studying the syn-
chronization for wide classes of nonlinear systems. Approaches
include Lyapunov methods [9], [10]; contraction analysis [11],
[12]; and passivity and incremental dissipativity [13]–[15].

Other authors focus on the synchronization of agents whose
model appears in the canonical control form, also called com-
panion form [16]. This class of results is known as higher order
synchronization and explicitly exploits the structure of the dy-
namical model.

Specifically, Lyapunov methods are considered, among oth-
ers, in [9], [10], and [17]–[22]. These papers offer a huge spec-
trum of approaches for the synchronization problem. Without
going too much into details, these works explore the possibility
of leveraging on bounded Jacobian assumption, linear systems
with additional Lipschitz nonlinearity, and the existence of the
solution of suitable linear matrix inequalities, hypothesis on in-
equalities constraints for the nonlinear dynamics, and external
reference pinner nodes.

Specifically, consensus among second-order integrators and
higher order integrators has been addressed [23]–[32], follow-
ing different approaches, such as studying the determinant of
the overall networked linear system or via ensuring that the
polynomial obtained considering the eigenvalue problem on the
companion dynamical systems’ matrix and the coupling feed-
back are Hurwitz. One of the motivations behind these studies is
related to the fact that several dynamical systems, for example,
mechanical systems, are naturally described in canonical control
form and, in particular, higher order integrators are a more realis-
tic model of mobile robotic vehicles than the simple integrators.

The papers reviewed above strongly rely on tools for linear
systems or on the specific structure of companion form of higher
order integrators, and their extension to nonlinear systems ap-
pears to be a nontrivial task.

Lyapunov methods for second-order integrators are consid-
ered in [27] and [28], in which a Lyapunov function specific
for the second-order case is adopted. A specific second-order
integrator Lyapunov approach is also considered in [29], where
the presence of an external pinner is also required, whereas in
[30], the specific second-order consensus is considered when
bounded control actions are required. The case of higher or-
der systems with nonlinear dynamics is instead studied in [32].
In that paper, the specific cases of first-order and second-order
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nonlinear systems are considered and, for these two cases, two
suitable Lyapunov functions are introduced to prove conver-
gence. The extension to higher order nonlinear dynamics is not
addressed in this paper. In general, although these papers allow
us to consider nonlinear dynamics via a Lyapunov function, the
results appear to be specific to the order and the problem consid-
ered and, therefore, not straightforward to scale to any arbitrary
system’s order.

In [33], synchronization of second-order nonlinear dynamics
is addressed via a nonlinear compensation through a neural net-
work and the presence of an external reference. This approach
is further extended in [34]–[36] for higher order nonlinear sys-
tems. Although such results provide a suitable methodology
for addressing the higher order nonlinear synchronization, the
methodology is not applicable to the free synchronization prob-
lem where the aim is to preserve the original nonlinear dynam-
ics of the agents while studying an emerging common behavior
without permanently forcing the overall system.

Motivated by the need for providing a general framework
for the free synchronization problem, in this paper, we study
the higher order free synchronization for nonlinear systems of
any degree considering local state feedback. Referring to the
previous literature on this problem, we compare our results with
the strategies given in [23]–[32]. In our case, nonlinear dynamics
are allowed and, therefore, a Lyapunov approach is developed.
However, different from what was done in [23]–[32], we do not
focus our investigation on a specific system’s order but instead
derive results for general degree higher order systems. Also,
compared to [34]–[36], no dynamic cancellation (i.e., reduction
to a higher order consensus) is needed, thus preserving the free
system motion.

More specifically, we address the problem via finding a Lya-
punov function whose structure is based on the system’s or-
der considered. Therefore, called n the order of the nonlinear
agents, a Lyapunov function is derived via a suitable algorithm
that generates, up to iteration n, a set of appropriate matrices.
These matrices, blocked together in a specific way depending
on the order n, will constitute the core of the Lyapunov function
expression, which, in turn, will prove free synchronization. A
key novelty of the approach followed in this paper, with respect
to the literature, is that the conducted analysis is constructive,
providing an iterative way inequality constraints on the cou-
pling matrices that guarantee the solvability of the problem or,
in a dual form, providing the nonlinear weights on the coupling
links between the agents such that the network synchronizes.
The given procedure relies on the iterative computation of the
solution of a system of three second-order inequalities that for
this reason are, contrary to other approaches in the literature
(see, for example, [31] for the case of networked integrators),
computable in an easier way.

Also, we believe that the analysis/synthesis method via a
constructive Lyapunov function represents a relevant theoreti-
cal achievement due to its generality and scalability. Further-
more, the approach naturally encompasses the possibility to
have distributed integral control actions of any order, that is,
distributed PIhDn−1 controllers, with h ≥ 0 being the degree
of the integral action, without any additional hypothesis. Such

integral action can be used to attenuate possible distributed and
heterogeneous disturbances acting on the interconnected plants.
As shown in [37], an integral action significantly enhances the
performances of the closed-loop system.

We note here that generalized PIhDn−1 structures have al-
ready been introduced in the literature. Specifically, in [38] and
[39], controllers with an analogous structure to the one pro-
posed in this paper have been adopted for the flocking problem
of a team of mobile robots following a polynomial reference
trajectory. Such mobile agents are modeled with single [39] and
higher order [38] integrators, and PIn and PIlm −mDm−1 con-
tainment controllers are, respectively, designed. To prove con-
vergence, the adopted methodology exploits a pole-placement
technique for the individual linear system and then solves a Lya-
punov equation on the overall linear systems. Also, the proposed
method can be adopted to the leader–follower control problem
as in a particular case. In [38], a discrete-time version of the
proposed strategies is also developed. Despite the analogy of
the controllers’ structure, however, these works differ from the
results presented here in the control goal, the agents’ model, and
the analytical techniques adopted.

Relevant recent papers with generalized PID controllers can
be found in the literature. Specifically, in [47], generalized PID
controllers have been considered to synchronize a network of
possibly heterogeneous scalar linear systems subjected to con-
stant disturbances. The results have been extended in [48], where
general linear systems and multiplex PI interactions are consid-
ered. Also, in [49] generalized P and PI controllers are consid-
ered to synchronize nonlinear agents.

The results in our paper, however, differ from these latter ones
in the nonlinear systems considered and in the input channel
chosen to control the network which, in our case, affects directly
only one state component.

As a further contribution of our paper, the approach studied
for higher order nonlinear systems is extended to the relevant
class of interconnected nonlinear systems admitting a canoni-
cal control transformation, resulting in a distributed nonlinear
control action that guarantees the synchronization of the net-
work. Classes of the problem studied in the literature, such as
second-order and higher order consensus, can be seen as special
cases of such a general framework. The particular case of linear
systems is also addressed as a corollary of such general frame-
work, thus resulting in the sufficient condition of controllability
of the linear systems, as already shown in a different way in
[6]. However, it is worth noticing that also for the case of linear
systems, the approach presented in the paper naturally allows
us to explicitly consider integral control actions of any order for
possible disturbances rejections.

This paper is organized in the following way. A mathemat-
ical background and the problem statement can be found in
Sections II and III, respectively. In Section IV, the aforemen-
tioned iterative algorithms are presented. The synchronization
of systems in a companion form is proved in Section V for both
PDn−1 and PIhDn−1 local control laws, whereas an extension
to controllable systems is addressed in Section VI. Numerical
examples are illustrated in Section VII, whereas concluding re-
marks and future work are given in Section VIII.
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II. MATHEMATICAL BACKGROUND

A. Matrix Analysis

Here, we report some concepts of matrix analysis, which will
be useful in the rest of this paper [40].

Let us consider a generic square matrix A ∈ Rn×n . For any
index k ∈ {1, . . . , n}, the k × k top-left submatrix obtained
from A, so considering the entries that lie in the first k rows
and columns of A, is called a leading principal submatrix and
its determinant is called leading principal minor. In an analo-
gous way, the k × k bottom-right submatrix is called trailing
principal submatrix and its determinant is called trailing prin-
cipal minor.

Two matrices A,B ∈ Rn×n are said to be commutative if
AB = BA. Furthermore, they are said to be simultaneously
diagonalizable if there exists a nonsingular matrix S ∈ Rn×n

such that S−1AS and S−1BS are both diagonal. The following
result holds.

Lemma 1: Let A,B ∈ Rn×n be simultaneously diagonal-
izable. Then they are commutative.

Let A ∈ Rn×n be any symmetric matrix, that is, A = AT .
Then, the eigenvalues of A are real and the eigenvectors con-
stitute an orthonormal basis for A. We denote with eig(A)
the set containing the eigenvalues of A and with λmin(A) =
minλi ∈eig(A) λi , and λmax(A) = maxλi ∈eig(A) λi the minimum
and maximum eigenvalue of A, respectively. For a symmetric
matrix, the following results hold.

Lemma 2: (Rayleigh) Let A ∈ Rn×n be a symmetric
matrix. Then, for all y ∈ Rn , it holds λminy

T y ≤ yT Ay ≤
λmaxy

T y.
Lemma 3: (Sylvester’s criterion) Let A ∈ Rn×n be a sym-

metric matrix. Then, A is positively defined iff every leading
(respectively, trailing) principal minor of A is positive (includ-
ing the determinant of A).

B. Lie Algebra and Weak-Lipschitz Functions

Here, we give some useful definitions and basic concepts on
differential geometry (for more details, see also [16] and [41])
and the definition of weak-Lipschitz functions that will be useful
in the rest of this paper.

Definition 1: A function T (x) : Rn �→ Rn defined in a
region Ω ⊆ Rn is said to be a diffeomorphism if it is smooth
and invertible, with inverse function T−1(x) smooth.

Given a smooth scalar function h(x) : Rn �→ R, its
gradient will be denoted by the row vector ∂

∂x h(x) =
[ ∂
∂x1

h(x), . . . , ∂
∂xn

h(x)]. In the case of vector function f(x) :
Rn �→ Rn , with the same notation ∂

∂x f(x), we denote the Ja-
cobian matrix of f(x). The following definitions can be now
given.

Definition 2: Let us consider a smooth scalar function
h(x) : Rn �→ R and a smooth vector field f(x) : Rn �→ Rn ,
the Lie derivative of h with respect to f is the scalar function
defined as Lf h(x) := ∂

∂x h(x)f(x).
Multiple Lie derivative can be easily written by recur-

sively extending the notation as Lkf h(x) = Lf (Lk−1
f h), for

k = 1, 2, . . ., and with L0
f h(x) = h.

Definition 3: Let us consider two smooth vector fields
f(x), g(x) : Rn �→ Rn , the Lie bracket of f and g is the vector
field defined as adf g(x) = ∂

∂x g f − ∂
∂x f g.

Analogous to what is done for the Lie derivative, multiple Lie
bracket can be defined as adkf g = adf (adk−1

f g), for k = 1, 2, . . .,
with ad0

f g = g.
Definition 4: A set of linearly independent vector fields

{f1(x), . . . , fm (x)} is said to be involutive if and only if, for
all i, j, there exist scalar functions αijk (x) : Rn �→ R such that
adfi fj (x) =

∑m
k=1 aijk (x)fk (x).

Definition 5: A function f(t, x) : R+ ×Rn �→ Rm is said
to be globally Lipschitz with respect to x if ∀x, y ∈ Rn , ∀t ≥
0, there exists a constant w > 0 s.t. ‖f(t, x)− f(t, y)‖
≤ w‖x− y‖.

Definition 6: A function f(t, x) : R+ ×Rn �→ R is said
to be globally weak-Lipschitz with respect to x if ∀x, y ∈
Rn , ∀t ≥ 0,∀i ∈ {1, . . . , n} there exists a constant w > 0 s.t.
(xi − yi)[f(t, x)− f(t, y)] ≤ w‖x− y‖2 , with xi and yi being
the ith element of vector x and y, respectively.

The following lemma points out a relation between Lipschitz
and weak-Lipschitz functions.

Lemma 4: A Lipschitz function f(t, x) = R+ ×Rn �→ R,
with Lipschitz constantw, is also weak-Lipschitz with the same
constant w.

Proof: Let us introduce the function Fi(t, x) ∈ Rn whose
ith entry is f(t, x), whereas the others are null. It is immediate
to observe that ‖Fi(t, x)− Fi(t, y)‖ = ‖f(t, x)− f(t, y)‖. So,
the lemma is proved considering, for all i ∈ {1, . . . , n}, the
following relation:

(xi − yi)[f(t, x)− f(t, y)] = (x− y)T [Fi(t, x)− Fi(t, y)]
≤ w‖x− y‖2 .

�
Remark 1: In this paper, we will assume that the function

f(t, x(i)) of the dynamical model given later in (1) is weak-
Lipschitz. However, as also reported in [42], in the presence of
synchronization in a compact invariant set, this condition can
be replaced by the assumption of locally Lipschitz f(t, x(i)).
Indeed, each locally Lipschitz function can be extended outside
a compact set by appropriate extension theorems.

III. PROBLEM FORMULATION

The aim of this paper is to study the free synchronization for
multiagent systems whose dynamics can be expressed in the
canonical control form.

In further detail, a dynamical agent ẋ(i) = X(t, u(i) , x(i)),
with x(i) ∈ Rn , u(i) ∈ R, t ∈ [0,+∞), is said to be in the
canonical control form or companion form [16] when it is in
the following form:

ẋ
(i)
1 = x

(i)
2

...

ẋ(i)
n = f(t, x(i)) + g(t, x(i))u(i) (1)
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where x(i) = [x(i)
1 , . . . , x

(i)
n ]T and with x(i)(0) = x

(i)
0 . In this

paper, we will consider the case of1 g(t, x(i)(t)) �= 0, ∀t ≥
0, and so the control input can be rewritten as u(i) =
1/g(t, x(i)(t))ũ(i) , with ũ(i) ∈ R.

The problem of the free synchronization of a multiagent sys-
tem is formally defined in what follows.

Definition 7: A multiagent system of identical agents ẋ(i) =
X(t, u(i) , x(i)), with i = 1, . . . , N , is free synchronizable, if for
all of the agents, there exists a distributed control law ui =
ui(t, xi, xj ) with j ∈ Ni such that

lim
t→∞‖x

(i)(t)− x(j )(t)‖ = 0 ∀i, j = 1, . . . , N (2a)

lim
t→∞‖u

(i)(t)‖ = 0 ∀i = 1, . . . , N. (2b)

The goal of this paper is to study the free synchronization of a
multiagent system with agents’ dynamics expressed in the com-
panion form (1) or that can be transformed in such canonical
form. We will give conditions under which the problem of find-
ing a distributed u(i) for each agent able to guarantee conditions
(2a) and (2b) is solvable. Furthermore, our proofs will be based
on a constructive method, so a proportional-derivative (PDn−1)
and proportional-integral-derivative (PIhDn−1) control law
that is able to synchronize the agents will be explicitly given.
Specifically, in Section V, the problem of synchronization of
systems in the canonical control form will be addressed, whereas
in Section VI, the results will be extended to the relevant case
of systems admitting a canonical transformation. Defining the
average state trajectory as x̄(t) := [x̄T1 (t), . . . , x̄Tn (t)]T ∈ Rn ,
with each x̄k ∈ R given by x̄k (t) = 1

N

∑N
j=1 x

(j )
k (t), we can

define the stack error trajectory as e := [eT1 , . . . , e
T
n ]T ∈ RnN ,

and ek := [e(1)
k , . . . , e

(N )
k ]T = xk − x̄k1N , with 1N vector of

N unitary entries. It is easy to see that condition (2a) can be
equivalently stated in the alternative way limt→∞ ‖e(t)‖ = 0.

IV. SYNCHRONIZATION COUPLINGS CONSTRAINTS

In this section, we identify, via an iterative procedure, a class
of feedback gain matrices that suffices to achieve free synchro-
nization for systems in the companion form. Specifically, in-
stead of using a closed form for identifying the conditions on
the feedback gains, which guarantee the synchronization, we
will define it via such a procedure. The advantage is that, in this
way, PIhDn−1 controllers can be defined in a general way and
the results can be proven considering any arbitrary degree.

When the case of a specific communication topology has to
be considered, a second iterative procedure is also presented,
which further imposes on the feedback gains the topology con-
straint. As we already said, our main purpose is to investi-
gate the solvability of the higher order free synchronization
problem. However, since the methodology is constructive, the
derived conditions can also be used to either check if a given
weighted topology allows synchronization or to synthesize dis-
tributed gains able to enforce synchronization.

We start giving the following definition.

1Notice that when a nonlinear system can be transformed in the companion
form, this condition is always guaranteed by the transformation procedure itself
[16].

Definition 8: A symmetric matrix L ∈ RN×N is said to be
an LN matrix if L1N = 0N and for its eigenvalues λ1 , . . . , λN
it holds that 0 = λ1 < λ2 ≤ . . . ≤ λN , where 1N and 0N are
vectors ofN unitary and null entries, respectively. Furthermore,
we denote with LN -class the set of all LN matrices.

Notice that the N ×N Laplacian matrices [43] belong to
the LN -class. However, the LN -class is more generic since
we do not require the off-diagonal elements of the matrix to
be nonpositive and, furthermore, no specific structure of the
matrices is a priori assumed.

Given n,N ∈ N such that n,N ≥ 2, let us consider the ma-
trices {Ln−k}k∈K ∈ LN -class, with K = {0, . . . , n− 1} and
pairwise simultaneously diagonalizable. The orthonormal ba-
sis of the Ln−k matrices is denoted as {v(1) , v(2) , . . . v(N )},
with v(1) = ν and ν = 1/N · 1N , as stated in Section III. For
each matrix Ln−k , we denote with λ

(i)
n−k the eigenvalue corre-

sponding to the eigenvector v(i) , for all i ∈ {2, . . . , N}, whereas
λ

(1)
n−k = 0 by Definition 8. The algorithmic criteria we are go-

ing to give aim at identifying a class of synchronizing dis-
tributed feedback assigning spectral properties to the matrices
{Ln−k}k∈K and, thus, constraining their selection. In particular,
for each eigenvalue λ

(i)
n−k associated with eigenvector v(i) , with

i ∈ I = {2, . . . , N}, we consider inequality constraints via an
iterative procedure.

First, let us consider the initialization λ
(i)
0 = 0; 0 <

λ
(i)
n−1 < λ

(i)2

n ; α(i)
n−1 = min eig{A(i)

n−1}; β(i)
n−1 = λ

(i)2

n − λ
(i)
n−1 ;

and γ(i)
n−1 = 1, with

A
(i)
n−1 =

[
2λ

(i)
n−1λ

(i)
n λ

(i)
n−1

λ
(i)
n−1 λ

(i)
n

]

.

It is easy to see that the coefficients α(i)
n−1 , β

(i)
n−1 , and γ(i)

n−1
are strictly positive. Furthermore, for k = 2, . . . , n− 1, we
define the iterative terms α

(i)
n−k = min eig{A(i)

n−k}; β(i)
n−k =

min eig{B(i)
n−k}; and γ(i)

n−k = γ
(i)
n−k+1 + 2λ

(i)
n−k+2 , with

A
(i)
n−k =

⎡

⎣
2λ

(i)
n−kλ

(i)
n−k+1 γ

(i)
n−kλ

(i)
n−k

γ
(i)
n−kλ

(i)
n−k α

(i)
n−k+1

⎤

⎦ ,

B
(i)
n−k =

⎡

⎢
⎣

λ
(i)2

n−k+1 − 2λ
(i)
n−kλ

(i)
n−k+2 −1

2
γ

(i)
n−k+1λ

(i)
n−k

−1
2
γ

(i)
n−k+1λ

(i)
n−k β

(i)
n−k+1

⎤

⎥
⎦ .

For convenience, we also defineB(i)
0 and β(i)

0 by iterating the

above B(i)
n−k and β(i)

n−k up to step k = n.
Taking into account the aforementioned definitions,

Algorithm 1 considers for each eigenvector v(i) , with i ∈ I,
a particular choice on the corresponding eigenvalues λ

(i)
n−k , with

i ∈ I and k ∈ K, in order to generate spectral constraints on the
matrices {Ln−k}k∈K. In particular, each Ln−k is computed as
Ln−k = UDn−kUT , with matrices U = [ν|v(2) | . . . |v(n) ] and
Dn−k = diag{0, λ(2)

n−k , . . . , λ
(N )
n−k}.

Notice that inequalities (3a)–(3c) are always feasible, since
the right-hand side of (3b) is strictly positive and the second-
order equation associated with (3c) has one strictly negative and
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Algorithm 1: Spectral constraints assignment.
1: for all i = 2,..., N do
2: for k = 2,..., n − 1 do
3: Compute α(i)

n−k+1

4: Compute γ(i)
n−k

5: Choose a λ
(i)
n−k satisfying the following inequalities

λ
(i)
n−k > 0, (3a)

λ
(i)
n−k <

2λ
(i)
n−k+1α

(i)
n−k+1

γ
(i)2

n−k
, (3b)

γ
(i)2

n−k+1λ
(i)2

n−k + 8λ
(i)
n−k+2β

(i)
n−k+1λ

(i)
n−k

− 4λ
(i)2

n−k+1β
(i)
n−k+1 < 0. (3c)

6: Define B(i)
n−k

7: Compute β(i)
n−k

8: end for
9: end for

10: for k = 0,..., n − 1 do
11: Set Dn−k ← diag{0, λ(2)

n−k , . . . , λ
(N )
n−k}

12: Set Ln−k ← UDn−kUT

13: end for

one strictly positive root. Furthermore, notice also that matrices
{Ln−k}k∈K ∈ LN -class and, as said before, in general, they
are not Laplacian matrices of any graph G. The collection of
pairwise simultaneously diagonalizable matrices obtained by
imposing the iterative constraints (3a)–(3c) is formalized in the
following definition.

Definition 9: Given two integersN,n ∈ N, with n,N ≥ 2,
the collection of matrices {Ln−k}k∈K ∈ LN -class, with K =
{0, . . . , n− 1}, is said to be a (N,n)-collection if the matri-
ces are pairwise simultaneously diagonalizable and satisfy the
iterative spectrum constraints (3a)–(3c) of Algorithm 1.

Notice that since inequalities (3a)–(3c) are always feasible,
such collection is never empty.

When a specific interconnection topology G needs to be taken
into account, the more restrictive (G, n)-collection can be con-
sidered, as it is clear from the following definition.

Definition 10: Given a connected graph G of N nodes
and an integer n ∈ N, with n,N ≥ 2, the collection of matri-
ces {Ln−k}k∈K ∈ LN -class, with K = {0, . . . , n− 1}, is said
to be a (G, n)-collection if they are a (N,n)-collection and
{Ln−k}k∈K are weighted Laplacian matrices of the graph G.

For the existence of a (G, n)-collection associated with
a given connected graph G, the following lemma can be
given.

Lemma 5: Given a connected graph G of N nodes and an
integer n ∈ N, with n,N ≥ 2, there always exists an associated
(G, n)-collection.

Proof: The existence of a (G, n)-collection can be proved
in a constructive way via Algorithm 2. �

Roughly speaking, the procedure described in Algorithm 2
allows us to obtain {Ln−k}k∈K, which are weighted Lapla-

Algorithm 2: Spectral constraints assignment for con-
strained topologies.

1: Choose any L(G) which is a compatible weighted
Laplacian of any desired connected graph G .
2: Set Ln ← L
3: Set {λ(1)

n , λ
(2)
n , . . . , λ

(N )
n } ← eig{Ln}

4: for i = 2,..., N do
5: Set s(i)

n−1 ← λ
(i)2

n

6: Set ρ(i)
n−1 ← s

( i )
n −1

λ
( i )
n

7: end for
8: Choose 0 < ρ̄n−1 < mini=2,...,N ρ

(i)
n−1

9: Set Ln−1 ← ρ̄n−1Ln
10: for k = 2,..., n − 1 do

11: Set {λ(1)
n−k+1 , λ

(2)
n−k+1 , . . . , λ

(N )
n−k+1}←eig{Ln−k+1}

12: for i = 2, ..., N do
13: Compute β(i)

n−k+1

14: Compute α(i)
n−k+1

15: Compute γ(i)
n−k

16: Set s(i)
n−k ← min{r(i)

n−k,1 , r
(i)
n−k,2}, with

r
(i)
n−k,1 =

2λ
(i)
n−k+1α

(i)
n−k+1

γ
(i)2

n−k
,

r
(i)
n−k,2 = sup

r∈R

{
γ

(i)2

n−k+1r
2 + 8λ

(i)
n−k+2β

(i)
n−k+1r

− 4λ
(i)2

n−k+1β
(i)
n−k+1 < 0

}
.

17: Set ρ(i)
n−k ←

s
( i )
n −k

λ
( i )
n −k + 1

18: end for
19: Choose 0 < ρ̄n−k < mini=2,...,N ρ

(i)
n−k

20: Set Ln−k ← ρ̄n−kLn−k+1
21: end for

cian for any arbitrary connected graph G. Their expression is
Ln−k = ln−kL, whereL = L(G) and ln−k is a positive gain de-
fined by the recursive formula ln−k = ρ̄n−k ln−k+1 , with ln = 1.
Furthermore, the fact that such matrices are also a (N,n)-
collection can be trivially shown by noticing that the spectral
constraints (3a)–(3c) are satisfied.

Remark 2: It is worth noticing that Algorithm 1 has been
introduced specifically to define a (N,n)-collection (and so also
the special case of (G, n)-collection). The spectral constraints
assigned in such an iterative way to the matrices in the collection
will be shown to be sufficient for the network synchronization.
Notice also that in several papers in the literature, sufficient con-
ditions on the spectrum of the Laplacian matrix of the graph are
given in order to prove synchronization, and the same happens
in this paper. However, due to the fact that any possible system
degree is here considered, the conditions are given through an
iterative procedure rather than using a closed expression.

It is also worth noticing the fact that a (G, n)-collection is
never empty, for any connected graph G. This will ensure the
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solvability of the higher order free synchronization problem
with local controllers.

V. SYNCHRONIZATION OF SYSTEMS IN COMPANION FORM

In this section, we give the main results of this paper, that
is, proving that local controllers are able to synchronize a
network of nonlinear systems in the companion form of any
given order, as stated in Section III. Specifically, here, we
propose a generalized proportional-derivative and a generalized
integral-proportional-derivative controller. It is worth noticing
that in our approach, the analytic expression of the Lyapunov
function that allows us to prove the results is parametrized by
the system order n. Indeed, its expression will be obtained by
means of the (N,n)-collection generated with Algorithm 1 for
any given system order.

A. Synchronization With PDn−1 Controllers

The following theorem gives conditions on the existence of
a solution for the free synchronization problem of dynamical
systems in the companion form.

Theorem 1: Let us consider N dynamical agents in
companion form (1) and suppose that f(t, x(i)) is weak-
Lipschitz with constant w. Let us consider a (N,n)-collection
{L1 , . . . , Ln} (or, more specifically, a (G, n)-collection associ-
ated with a connected graph G). Then, the free synchronization
problem stated in Section III is solvable with the following PD
controllers:

ũ(i)(t) = l
n∑

k=1

N∑

j=1

lkij

(
x

(j )
k (t)− x(i)

k (t)
)
, i = 1, . . . , N

with lkij being the elements of the matrices Lk = [lkij ], with
k = 1, . . . , n, and l > 1 being a scalar gain satisfying

l >
1
β̃

(
wλ̄max + β̃ − β̄

)
(4)

where in the above expression β̄, λ̄max , and β̃ are positive
scalars defined, respectively, as β̄ = mini=2,...,N β

(i)
0 ,

λ̄max = max eig{L̄}, with L̄ =
∑n

k=1 Lk , and β̃ =

mini=2,...,N {β̄, λ(i)2

n }.
Proof: The proof of the aforementioned result is obtained by

constructing a suitable Lyapunov function for the synchroniza-
tion error trajectory that is able to exploit the specific canonical
structure. To do so, we will divide the proof in two steps. In
the first one, we will define appropriate matrices upon which
we will derive a candidate Lyapunov function. In the second
part, we will define the stack error system and we will prove the
stability by means of such an obtained function.

Part 1: Definition of appropriate matrices. Let us denote
for convenience Ln+1 = 1/2 · IN and L0 = ON , and let us
consider the positions λ

(i)
n+1 = 1/2 and λ

(i)
0 = 0. We define the

matrices {Mn−k}k∈K, with Mn−k ∈ R(k+1)N×(k+1)N , in the
following recursive way:

Mn−k =

[
Mϕ,n−k Mψ,n−k
MT

ψ,n−k Mn−k+1

]

(5)

with Mϕ,n−k = 2Ln−kLn−k+1 and Mψ,n−k = [2Ln−k
Ln−k+2 , . . . , 2Ln−kLn , 2Ln−kLn+1], and where as terminal
condition of the recursion we define Mn = Ln . It is easy to
notice from the above definition that matrices {Mn−k}k∈K are
(k + 1)× (k + 1) symmetric block matrices.

Analogously, we consider the {M (i)
n−k}(i,k)∈I×K matrices,

with M (i)
n−k ∈ R(k+1)×(k+1) and with I = {2, . . . , N}, recur-

sively defined as

M
(i)
n−k =

[
M

(i)
ϕ,n−k M

(i)
ψ ,n−k

MT (i)
ψ ,n−k M

(i)
n−k+1

]

(6)

where M
(i)
ϕ,n−k = 2λ

(i)
n−kλ

(i)
n−k+1 , M

(i)
ψ ,n−k = [2λ(i)

n−kλ
(i)
n−k+2 ,

. . . , 2λ
(i)
n−kλ

(i)
n , 2λ

(i)
n−kλ

(i)
n+1], and with M (i)

n = λ
(i)
n .

Together with matrices {Mn−k}k∈K and {M (i)
n−k}(i,k)∈I×K,

we also define the symmetric matrices {Hn−k}k∈K, with
Hn−k ∈ R(k+1)N×(k+1)N and {H(i)

n−k}(i,k)∈I×K, with H(i)
n−k ∈

R(k+1)×(k+1) . Specifically

Hn−k =

[
Hϕ,n−k Hψ,n−k
HT
ψ,n−k Hn−k+1

]

(7)

where Hϕ,n−k = L2
n−k − 2Ln−k−1Ln−k+1 , Hψ,n−k =

[−Ln−k−1Ln−k+2 , . . . ,−Ln−k−1Ln ,−Ln−k−1Ln+1], and
with Hn = L2

n − Ln−1 , whereas H(i)
n−k is defined as

H
(i)
n−k =

[
H

(i)
ϕ,n−k H

(i)
ψ ,n−k

HT (i)
ψ ,n−k H

(i)
n−k+1

]

(8)

where H
(i)
ϕ,n−k = λ

(i)2

n−k − 2λ
(i)
n−k−1 , H

(i)
ψ ,n−k = [−λ

(i)
n−k−1

λ
(i)
n−k+2 , . . . ,−λ

(i)
n−k−1λ

(i)
n ,−λ

(i)
n−k−1λ

(i)
n+1], and with

H
(i)
n = λ

(i)2

n − λ
(i)
n−1 .

From the above definitions, it is immediate to see that
yT M1y = 0 and yT H1y = 0, for all y ∈ Δ. We are now going
to prove that for all y ∈ Δ⊥ − {0}, that is, for all the vector or-
thogonal to the synchronization manifold, we have yT M1y > 0
and yT H1y > 0. This fact will be a key aspect later, where we
will derive a Lyapunov function for the system.

First, let us consider the following set of vectors:

SΔ⊥ =
{
ε1 ⊗ v(2) , . . . , ε1 ⊗ v(N ) , ε2 ⊗ v(2) , . . . , ε2 ⊗ v(N ) ,

. . . , εn ⊗ v(2) , . . . , εn ⊗ v(N )
}

with εi ∈ Rn being the vector with a unitary entry in the ith
position and all other entries null.

It is easy to see that SΔ⊥ ⊂ RnN is a set of orthogonal unitary
vectors and that Δ⊥ = span{SΔ⊥}. Hence, any vector y ∈ Δ⊥

can be expressed as a liner combination of the vectors in SΔ⊥ or,
more compactly, it can be expressed as y =

∑N
i=2 y

(i) , where

y(i) = c(i) ⊗ v(i) and where c(i) = (c(i)1 , . . . , c
(i)
n )T ∈ Rn is a

vector of coefficients.
Now, due to the orthogonality of v(i) and v(j ) , we have that

for all i �= j, y(j )T M1y
(i) = 0, and y(j )T H1y

(i) = 0, while
remembering definitions (6) and (8), we have y(i)T M1y

(i) =
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c(i)
T
M

(i)
1 c(i) and y(i)T H1y

(i) = c(i)
T
H

(i)
1 c(i) . So

yT M1y =
N∑

i=2

c(i)
T
M

(i)
1 c(i) (9)

and

yT H1y =
N∑

i=2

c(i)
T
H

(i)
1 c(i) . (10)

Now, guaranteeing that c(i)
T
M

(i)
1 c(i) > 0 and c(i)

T
H

(i)
1 c(i) >

0, for all c(i) ∈ Rn − {0} and for all i ∈ I, implies the strict
positivity of (9) and (10), respectively. For this reason, the rest
of this first part of the proof is devoted to showing the positive
definiteness of matricesM (i)

1 andH(i)
1 . Specifically, we first fo-

cus on proving the positivity ofM (i)
1 via an induction argument

that exploits the recursive structure of the matrix itself. First of
all, we can see that the trailing principal submatrix

M
(i)
n−1 =

[
2λ

(i)
n−1λ

(i)
n λ

(i)
n−1

λ
(i)
n−1 λ

(i)
n

]

is positively defined. Indeed, Sylvester’s criterion can be ap-
plied since λ

(i)
n > 0 and its determinant is positive due to the

choice λ
(i)
n−1 < λ

(i)2

n (initialization of Algorithm 1). So, trivially,

we have that α(i)
n−1 > 0 and, since M (i)

n−1 = A
(i)
n−1 , the relation

zT M
(i)
n−1z ≥ zT A(i)

n−1z ≥ α(i)
n−1z

T z holds for all z ∈ R2 . Fur-
thermore, γn−1 > 0 trivially holds. For the induction argument,
we suppose that the same relation holds for a generic M (i)

n−k+1 ,
with k ≥ 2, namely

zT M
(i)
n−k+1z ≥ zT A(i)

n−k+1z ≥ α(i)
n−k+1z

T z ∀z ∈ Rk (11)

with α(i)
n−k+1 > 0. We also suppose that γ(i)

n−k > 0. With such
an assumption, we study the quadratic form z̄Tk Mn−k z̄k , for all
the vectors z̄k ∈ Rk+1 − {0}, and where we have defined z̄k =
(z1 , . . . , zk+1)T . For convenience, we introduce the subvector
z̄k−1 of the last k elements of z̄k , and so, in block form, we have
z̄k = [z1 |z̄Tk−1 ]

T . We obtain

z̄Tk Mn−k z̄k = 2λ
(i)
n−kλ

(i)
n−k+1z

2
1 +

k∑

j=2

4λ
(i)
n−kλ

(i)
n−k+j z1zj

+ 2λ
(i)
n−k z1zk+1 + z̄Tk−1M

(i)
n−k+1 z̄k−1 .

Considering now z1zh = minj=2,...,k+1 z1zj , and remembering
inequality (11), we obtain

z̄Tk Mn−k z̄k ≥ 2λ
(i)
n−kλ

(i)
n−k+1z

2
1

+ 2

⎡

⎣1 +
k∑

j=2

2λ
(i)
n−k+j

⎤

⎦ λ
(i)
n−k z1zh + α

(i)
n−k+1z

2
h

= 2λ
(i)
n−kλ

(i)
n−k+1z

2
1 + 2γ(i)

n−kλ
(i)
n−k z1zh

+ α
(i)
n−k+1z

2
h .

Now, considering the definition of A(i)
n−k , it can be immedi-

ately noticed that the above-mentioned quadratic expression can
be written as [zi, zh ]A

(i)
n−k [zi, zh ]

T . So, its positivity is guar-

anteed if and only if the matrix A
(i)
n−k is positively defined.

Since α(i)
n−k+1 > 0, and since condition (3b) in Algorithm 1 im-

poses the positivity of the determinant of A(i)
n−k , applying again

Sylvester’s criterion, we conclude that A(i)
n−k > 0. Iterating the

reasoning for all k = 2, . . . , n− 1, we obtain M (i)
1 > 0.

Analogous reasoning can be adopted to prove positive def-
initeness of H

(i)
1 . Indeed, it is immediate to see that the

trailing principal submatrix H
(i)
n ∈ R1×1 is positive since

H
(i)
n = β

(i)
n−1 = λ

(i)2

n − λ
(i)
n−1 > 0, again for the initial choice

0 < λ
(i)
n−1 < λ

(i)2

n . Obviously, the relation

zT H(i)
n z ≥ β(i)

n−1z
T z

holds for all z ∈ R. As done for M (i)
n−k , also for proving the

positive definiteness of H(i)
n−k , an induction argument will be

used. To do so, we suppose

zT H
(i)
n−k+1z ≥ βn−k zT z ∀z ∈ Rk (12)

with βn−k > 0. Furthermore, from the iterative reasoning ap-
plied for proving that M (i)

1 > 0, we implicitly obtained that

γ
(i)
n−k > 0, for all k = 1, . . . , n− 1, since λ

(i)
n−k > 0, for all

k = 1, . . . , n− 1. Defining z̄k as before, we can write the
quadratic form z̄Tk H

(i)
n−k z̄k , for all z̄k ∈ Rk+1 − {0}, as

z̄Tk H
(i)
n−k z̄k =

[
λ

(i)2

n−k − 2λ
(i)
n−k−1λ

(i)
n−k+1

]
z2

1

−
k∑

j=2

2λ
(i)
n−k−1λn−k+j z1zj

−λ
(i)
n−k−1z1zk+1 + z̄Tk−1H

(i)
n−k+1 z̄k−1 .

Considering z1zh = maxj=2,...,k+1 z1zj , and taking into ac-
count (12), we obtain the following inequality:

z̄Tk H
(i)
n−k z̄k ≥

[
λ

(i)2

n−k − 2λ
(i)
n−k−1λ

(i)
n−k+1

]
z2

1

−
⎡

⎣1 +
k∑

j=2

2λ
(i)
n−k+j

⎤

⎦ λ
(i)
n−k−1z1zh + β

(i)
n−k z

2
h

=
[
λ

(i)2

n−k − 2λ
(i)
n−k−1λ

(i)
n−k+1

]
z2

1

−γ(i)
n−k z1zh + β

(i)
n−k z

2
h .

Observing that the above-mentioned quadratic form can be ob-
tained from [zi, zh ]B

(i)
n−k−1 [zi, zh ]

T , since β
(i)
n−k > 0 for the

Sylvester’s criterion, the positive definiteness ofBn−k−1 is guar-
anteed by the positivity of its determinant. The latter condition
is given by (3c) of Algorithm 1 evaluated at k + 1. Repeating
the reasoning for k = 1, . . . , n, we obtain zT H(i)

1 z ≥ β(i)
0 zT z,

with β
(i)
0 > 0, which guarantees the positive definiteness of

H
(i)
1 . It is also possible to further analyze the quadratic form
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(10), as this will turn useful later in Step 2 of the proof. For all
y ∈ Δ⊥ − {0}, we have

yT H1y =
N∑

i=2

c(i)
T
H

(i)
1 c(i) ≥

N∑

i=2

β
(i)
0 c(i)

T
c(i)

≥ β̄
N∑

i=2

c(i)
T
c(i) ≥ β̄yT y (13)

where β̄ = mini=2,...,N β
(i)
0 is a positive scalar and where we

considered y(i)T y(i) = [c(i)
T ⊗ v(i)T ][c(i) ⊗ v(i) ] = c(i)

T
c(i) ,

with y(i)T y(j ) = 0, for i �= j.
Part 2: Lyapunov stability analysis. For convenience, we con-

sider the error stack system of the following form:

ė1 = e2

...

ėn = F (t, x)− f̄(t, x) · 1N + ũ(t) (14)

where f̄(t, x) = 1/N
∑N

j=1 f(t, x(j )) and with ũ(t) =
−l∑n

k=1 Lkek (t), where Lk , with k = 1, . . . , n, are given in
the theorem statement. Remembering the definition of matrix
M1 in (5) with k = n− 1, we can also rewrite it in the following
block form:

M1 =

[
Mϑ Mς

MT
ς Ln

]

with Mϑ ∈ R(n−1)N×(n−1)N leading principal submatrix. For
the error system (14), we can finally consider the quadratic

candidate Lyapunov function2 V (e, n) = 1/2eT
∼
M e, where

∼
M ∈ RnN×nN is defined from M1 by considering as leading
principal submatrix lMϑ , whereas all other submatrices are the
same as in M1 , i.e.,

∼
M =

[
lMϑ Mς

MT
ς Ln

]

. (15)

It easy to see that the quadratic form is a valid candidate Lya-

punov function for proving synchronization since yT
∼
M y = 0

for all y ∈ Δ, whereas yT
∼
M y > 0 for all y ∈ Δ⊥ − {0}.

The first property follows immediately from the definition,
whereas the latter can be shown partitioning the generic y

as y = [yTϑ , y
T
ς ]T and considering yT

∼
M y = yT M1y + (l −

1)yTϑ Mϑyϑ . The positivity is so proved remembering that M1
is positive definite on Δ⊥ − {0}, as shown in Part 1, while Mϑ

is its leading principal minor and is, therefore, positive. Consid-
ering the time derivative of V (e, n), we obtain

V̇ (e, n) = eT
∼
M ė = eT

∼
M Φ(t, x) + eT

∼
M Ξ(e) (16)

with Φ(t, x) = [0TN , . . . , 0
T
N , F

T (t, x)− f̄(t, x) · 1TN ]T and
Ξ(e) = [eT2 , . . . , e

T
n ,−(

∑n
k=1 Lkek (t))

T ]T . We now analyze

2The explicit dependence onn of the Lyapunov function points out that matrix

M1 , from which
∼
M ∈ RnN ×nN is derived, has a specific structure depending

on the system order n considered.

separately the two terms in (16). For the first one, we have

eT
∼
M Φ(t, x) =

n∑

k=1

eTk Lk
[
F (t, x)− f̄(t, x) · 1N

]

=
n∑

k=1

1
2

N∑

i=1

N∑

j=1

lkij

[
e

(i)
k − e(j )

k

] [
f(t, x(i))− f(t, x(j ))

]

=
n∑

k=1

1
2

N∑

i=1

N∑

j=1

lkij

[
x

(i)
k − x(j )

k

] [
f(t, x(i))− f(t, x(j ))

]

from which, using the weak-Lipschitz property

eT
∼
M Φ(t, x) ≤

n∑

k=1

1
2

N∑

i=1

N∑

j=1

(17)

lkijw
[
x(i) − x(j )

]T [
x(i) − x(j )

]

=
n∑

k=1

w

n∑

h=1

1
2

N∑

i=1

N∑

j=1

lkij

[
e

(i)
h − e(j )

h

]2

=
n∑

k=1

w

n∑

h=1

eTh Lkeh =
n∑

k=1

weT (In ⊗ Lk )e

= weT

(

In ⊗
n∑

k=1

Lk

)

e = weT
(
In ⊗ L̄

)
e. (18)

For the analysis of the second term in (16), we first write matrix
H1 in a block form analogous to M1 , namely

H1 =

[
Hϑ Hς

HT
ς L2

n − Ln−1

]

.

From the aforementioned matrix, we define
∼
H ∈ RnN×nN as

∼
H =

[
lHϑ Hς

HT
ς lL2

n − Ln−1

]

.

Now, performing suitable algebraic manipulations, we can
show that

eT
∼
M Ξ(e) = −eT ∼

H e. (19)

To do so, we take advantage of the recursive structure of the
matrices M1 and H1 , respectively, obtained nesting (5) and (7)
up to index k = n− 1. Remembering thatLn+1 = 1/2 · IN and

L0 = ON , we have that
∼
M =

∼
M 1 , with

∼
M 1 defined nesting up

to k = n− 1 the following:

∼
Mn−k =

⎡

⎣

∼
Mϕ,n−k

∼
Mψ,n−k

∼
M

T

ψ,n−k
∼
Mn−k+1

⎤

⎦
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where
∼
Mϕ,n−k = 2lLn−kLn−k+1 and

∼
Mψ,n−k =

[2lLn−kLn−k+2 , . . . , 2lLn−kLn , Ln−k ], and where as ter-

minal condition of the recursion, we define
∼
Mn = Ln .

Analogously, we have
∼
H =

∼
H1 , with

∼
H1 defined nesting up

to k = n− 1, the following equation:

∼
Hn−k =

⎡

⎣

∼
Hϕ,n−k

∼
Hψ,n−k

∼
H

T

ψ,n−k
∼
Hn−k+1

⎤

⎦

where
∼
Hϕ,n−k = lL2

n−k − 2lLn−k−1Ln−k+1 ,
∼
Hψ,n−k =

[−lLn−k−1Ln−k+2 , . . . ,−lLn−k−1Ln ,− 1
2Ln−k−1 ], and with

∼
Hn = lL2

n − Ln−1 .
Relation (19) can be proved by focusing on a generic trail

principal submatrix
∼
Hn−k of

∼
H1 . In particular, we restrict our

attention on the first row and column of submatrix
∼
Hn−k . The

associated terms will be involved in the bilinear terms
eTi ηij ej with i = n− k and j = n− k, . . . , n and with i =
n− k, . . . , n and j = n− k, where with ηij , we have here de-

noted the i, jth entry of matrix
∼
H1 , that is,

∼
H1 = [ηij ].

From the definition of matrix
∼
H1 , it is easy to see that the

terms in eT
∼
H1Ξ(e) corresponding to the bilinear terms eTi ηij ej

considered are given by

−
∑

i= n −k , j = n −k , . . . , n
i= n −k , . . . , n , j = n −k

eTi ηij ej = 2leTn−kLn−k−1Ln−k+1e
T
n−k

+
n∑

j=n−k+1

2leTn−kLn−kLj ej

−
n∑

j=n−k
leTn−kLn−kLj ej

−
n∑

j=n−k+1

leTi LiLn−k en−k

+
n−1∑

i=n−k+1

2leTi Ln−k−1Li+1en−k

+eTn Ln−k−1en−k ,

from which we obtain

−
∑

i= n −k , j = n −k , . . . , n
i= n −k , . . . , n , j = n −k

eTi ηij ej = 2eTn−kLn−k−1Ln−k+1e
T
n−k

−eTn−kL2
n−k en−k

+
1
2

n−1∑

i=n−k+1

[
eTi Ln−k−1Li+1en−k

+ eTn−kLn−k−1Li+1ei
]

+
1
2
eTn Ln−k−1en−k

+
1
2
eTn−kLn−k−1en .

Repeating the same reasoning for all k ∈ {0, . . . , n− 1}, we

finally have (19). Writing e = [eTϑ , e
T
ς ]T , we have eT

∼
H e =

eT H1e+ (l − 1)eTϑ Hϑeϑ + (l − 1)eTς L
2
neς and so, remember-

ing (13), the following inequality holds:

eT
∼
H e ≥ β̄eT e+ (l − 1)β̃eT e ∀e ∈ Δ⊥ − {0}. (20)

Combining (18) and (20), from (16), the following inequality
holds:

V̇ (e, n) ≤ weT (In ⊗ L̄
)
e− β̄eT e− (l − 1)β̃eT e

≤ wλ̄maxe
T e− β̄eT e− (l − 1)β̃eT e.

Imposing wλ̄max − β̄ − (l − 1)β̃ < 0, condition (4) is ob-
tained which guarantees, together with l > 1, a negative
quadratic upper bound for V̇ (e, n) and so the synchronization
of the agents to the same trajectory.

Remark 3: It is worth noticing that the relevant case of
consensus of double [30], [32] and higher order [31] integrators
is included in the previous analysis as a particular case when
f(t, x(i)) = 0, and can be studied following exactly the same
way of constructing the quadratic Lyapunov function V (e, 2) =
1/2eT

∼
M e, with

∼
M given in (15). Specifically, for the consensus

of double integrators, the matrix
∼
M can be easily shown to be

given by
[

2lL1L2 L1

L1 L2

]

.

Notice also that in our study, we directly consider in Algorithm 1
and Algorithm 2 at least a second-order degree, that is, n ≥ 2,
for the interconnected agents. In principle, a first-order case
could still be studied observing that the n× n block matrixM1 ,

and so also matrix
∼
M , grows in size according to the degree n of

the agents from the bottom-right cornerLn , thus resulting in the
specific recursive structure we highlighted. The case of n = 1
would so result in the bottom-right corner only, thus having

∼
M =

lL, which gives a well-known Lyapunov function for studying
the classical problem of consensus for single integrators [44].
Also, when considering the higher order consensus problem and
a (G, n)-collection is chosen, the controller shows an analogous
structure to the one described in [31]. However, in that paper, a
different criterion based on Kharitonov’ s theorem is provided
in order to select the feedback coefficients ln−k .

Furthermore, together with the case of consensus of integra-
tors, the relevant case of the synchronization of linear systems
can be also addressed with our framework, as will be shown
later in Corollary 1.

B. Synchronization With PIhDn−1 Controllers

The analysis conducted in Section V-A control action is used
to achieve free synchronization, is now extended to the case
where an integral control action of any arbitrary degree h ≥ 1,
with h ∈ N, is also considered.

In further detail, considering a generic integrable function
η(·) : R �→ Rn , we define its integral of degree h ∈ N with the
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following notation:
∫ t,(h)

0
η(τ)dτ :=

∫ t

0

∫ τ ,(h−1)

0
η(τ ′)dτ ′dτ if h > 1

while in case h = 1, we simply have
∫ t,(1)

0
η(τ)dτ :=

∫ t

0
η(τ)dτ.

We now give the following theorem.
Theorem 2: Let us consider N dynamical agents in the

companion form and suppose that f(t, x(i)) is weak-Lipschitz
with constantw. Then, the free synchronization problem is solv-
able with a PIhDn−1 controller of arbitrary degree h ≥ 1 of
the following form:

ũ(i)(t) = l
n∑

k=1

N∑

j=1

lP D,kij (x
(j )
k (t)− x(i)

k (t))

+ l

h∑

m=1

N∑

j=1

lI ,mij

∫ t,(m )

0
(x(j )

1 (τ)− x(i)
1 (τ))dτ

with i = 1, . . . , N . Furthermore, the gain l and the matrices
LPD,k = [lP D,kij ], with k = 1, . . . , n, and LI,m = [lI ,mij ],
with m = 1, . . . , h, can be selected analogously to Theorem
1 considering the following position:

LI,h−ϑ+1 = Lϑ, ϑ = 1, . . . , h (21)

LPD,ϑ−h = Lϑ, ϑ = h+ 1, . . . , h+ n (22)

with {L1 , . . . , Lh+n} being a (N,h+ n)-collection (or a
(G, h+ n)-collection with G any connected graph).

Proof: The proof of Theorem 2 is given in [45,
Appendix]. �

Remark 4: The previous result extends Theorem 1, al-
lowing an additional integral control action of any degree. The
benefits of integral control actions in polynomial-type distur-
bance rejection are well known in the literature. Therefore, such
an additional degree of freedom can be usefully exploited for
this aim, as shown in the numerical examples section.

VI. SYNCHRONIZATION UNDER CANONICAL

TRANSFORMATION

The results stated in Section V can be extended to the relevant
class of dynamical systems admitting a canonical control trans-
formation. Roughly speaking, for general nonlinear systems, it
suffices to find a nonlinear state transformation z(t) = T (x(t))
and apply the PIhDn−1 control law of Theorem 2 to such a
transformed state. The computation of this nonlinear transfor-
mation under suitable involutivity conditions of the nonlinear
vector field is a well-known result in nonlinear control and can
be found in [16]. Also, when the special case of linear sys-
tems is considered, the canonical control transformation can be
found in [46] and represents a fundamental result in the control
theory.

In this section, we first analyze the general case of non-
linear systems, and later the case of linear systems as a

separate result. Notice that for the sake of simplicity in the nota-
tion, we will consider only time-independent systems. However,
analogous results hold for the case of time-dependent systems.

Theorem 3: Let us consider a connected graphG and a mul-
tiagent system of nonlinear dynamical agents of the following
form:

ẋ(i) = f
(
x(i)
)

+ g
(
x(i)
)
u(i) , i = 1, . . . , N (23)

with x(i) ∈ Rn and u(i) ∈ R. Suppose that, for all x(i) ∈ Rn ,
the following conditions hold.

1) The vectors {g, adf g, . . . , adn−1
f g} are linearly indepen-

dent.
2) The set {g, adf g, . . . , adn−2

f g} is involutive.
3) The function Lnf (T−1(ξ)), with ξ ∈ Rn , is weak-

Lipschitz with constant w.
Here, T (·) : Rn �→ Rn is a suitable diffeomorphism. Then,

the free synchronization problem for the multiagent system is
solvable with distributed PIhDn−1 controllers, with h ≥ 0, of
the following form3:

u(i)(t) =
1

LgLn−1
f (x(i))

l
n∑

k=1

N∑

j=1

lP D,kij

[
Tk

(
x(j )(t)

)

−Tk
(
x(i)(t)

)]

+ l

h∑

m=1

N∑

j=1

lI ,mij

∫ t,(m )

0

[
T1

(
x(j )(τ)

)

−T1

(
x(i)(τ)

)]
dτ

for all i = 1, . . . , N , and with the gains l, lP D,kij , and lI ,mij

selected according to Theorem 2 and with Tk (·) being the kth
element of T (·).

Proof: The proof of Theorem 3 is given in [45, Appendix].
Corollary 1: Let us consider a connected graph G and

a multiagent system of linear dynamical agents of the form
ẋ(i) = Ax(i) + bu(i) , with x(i) ∈ Rn and u(i) ∈ R. If the pair
(A, b) is controllable, then there exists a full-rank matrix T
such that the free synchronization problem for the multiagent
system is solvable with distributed PIhDn−1 controllers of the
following form:

u(i)(t) = l

n∑

k=1

N∑

j=1

lP D,kij

[
Tkx

(j )(t)− Tkx(i)(t)
]

+ l

h∑

m=1

N∑

j=1

lI ,mij

∫ t,(m )

0

[
T1x

(j )(τ)− T1x
(i)(τ)

]
dτ

where the gains l, lP D,kij , and lI ,mij are selected according to
Theorem 2 and with Tk being the kth row of matrix T .

Proof: The proof of Corollary 1 is given in [45,
Appendix]. �

3With a slight abuse of notation with h = 0, we mean here that no integral
action is considered.
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Fig. 1. Time evolution of the state components x
(i)
1 for the network

of Van der Pol oscillators: (a) uncoupled case; (b) coupled case; and
(c) synchronization error e.

Remark 5: Notice that from the aforementioned result, the
controllability hypothesis suffices to guarantee the synchroniz-
ability of the agents, as already shown in a different way in [6].
However, it is worth noticing that the approach presented here
naturally allows us to explicitly consider integral control actions
for possible disturbances rejections.

VII. NUMERICAL EXAMPLE

In this section, we show the effectiveness of our results on
two numerical examples. Specifically, the synchronization of

Fig. 2. Time evolution of the state components x(i)
1 for the network of

linear oscillators with PD controllers and no disturbances: (a) uncoupled
case; and (b) coupled case.

nonlinear and linear oscillators with possible disturbances will
be achieved via the coupling selection illustrated in Section IV.

A. Synchronization of Van der Pol Oscillators

We consider a network of ten identical Van der Pol oscillators
whose model is given by the following relation:

ẋ
(i)
1 = x

(i)
2

ẋ
(i)
2 = −x(i)

1 + μ
(
1− |x(i)

1 |
)
x

(i)
2 + u(i) . (24)

For our example, we choose the parameter μ = 2.5 and initial
conditions randomly assigned in the interval [0, 5] both for x(i)

1

and x(i)
2 , and for all of the systems in the network. We validate

Theorem 1 via creating a connected random graphG that sets the
distributed control for the ten systems and a (G, 2)-collection
over such graph (notice that in this case n = 2).

Fig. 1(a) shows the first state component of the networked
systems when no coupling is considered, while the effect of the
coupling of the assigned (G, 2)-collection allows the network
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Fig. 3. Time evolution of the network of linear oscillators with PD con-
trollers and heterogeneous disturbances: (a) state components x(i)

1 ; and
(b) global synchronization error e.

to synchronize over a common manifold [see Fig. 1(b)]. The
synchronization error is depicted in Fig. 1(c).

B. Synchronization of Linear Oscillators

We now consider the synchronization of ten interconnected
linear oscillators

ẋ(i) =
(

4 5
−5 −4

)

x(i) +
(

1
1

)

u(i)

using a PD controller and a PID controller according to
Corollary 1. Specifically, as done for the previous numerical
example, we validate a distribute PD controller via generating a
connected random graph G for the overall system and a related
(G, 2)-collection. It is easy to see that the system considered is
controllable, and so, we use the distributed controller given in
Corollary 1, where the transformation matrix T can be shown
to be

T =
(

0.0556 −0.0556
0.5 0.5

)

.

From Fig. 2, it is possible to see the time evolution of the first
state component for both cases of uncoupled [see Fig. 2(a)]
and coupled [see Fig. 2(b)] networks, starting from randomly

Fig. 4. Time evolution of the network of linear oscillators with PID
controllers and heterogeneous disturbances: (a) state components x(i)

1 ;
and (b) global synchronization error e.

Fig. 5. Time evolution of the network of linear oscillators with PID
controllers and heterogeneous disturbances. Zoom of state components
x

(i)
1 : (a) beginning of the simulation horizon; and (b) end of the simulation

horizon.

distributed initial conditions in the interval [−10, 10] for both
state components.

In order to validate the effectiveness of the distributed integral
action, we add a step disturbance on a system in the network.
In Fig. 3(a), the first state component is again shown. It is
possible to see that the synchronization is no longer achieved.
The residual global synchronization error reaches a constant
value in the limit when t→ +∞, which is equal to e∞ = 5.8,
as depicted in Fig. 3(b).

In order to reject the disturbance, we then consider a dis-
tributed PID controller, coupling the network via a (G, 3)-
collection (notice that we have now n = 2 and h = 1). As
clearly emerges from Fig. 4(a), the integral control action is
able to reject constant heterogeneous disturbances, thus leading
the network to synchronization. In Fig. 5(a) and (b), the same
evolution is given, zooming for a time span of 10 s at the begin-
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ning and at the end of the simulation horizon, respectively. As
can be witnessed, and different from what happens in Fig. 3(a),
all of the nodes converge to the same oscillatory orbit.

Fig. 4(b) shows the asymptotic convergence to zero of the
global synchronization error associated with such a PID scheme,
in comparison with the case shown in Fig. 3(b) where no integral
action is considered.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we addressed the problem of higher order free
synchronization for nonlinear systems. Via an iterative proce-
dure, we proved the existence of a class of feedback matrices,
able to guarantee distributed state synchronization over any con-
nected graph topology. The framework is related to any system
order and easily embeds a possible distributed integral action
of any order. The case of higher order consensus is naturally
embedded in our results as a particular case. Furthermore, the
methodology can also be extended to those linear and nonlinear
systems admitting a (local) canonical transformation. In partic-
ular, for the specific case of linear systems, the synchronization
with distributed PIhDn−1 controllers is guaranteed under the
mild hypothesis of controllability of the agent’s dynamics.

The presence of a distributed integral control action allows
us to attenuate possible distributed heterogeneous disturbances
affecting the agents and, as shown in the numerical simulations,
greatly improves the convergence performances.

Future work will address, in detail, the analysis of the robust
synchronization of agents with parameters’ mismatch and sub-
jected to heterogeneous noises/disturbances as well as the case
of a directed/pinned network.

A future direction of investigation is to recast the method-
ology adopted in this paper to the discrete-time case. At the
current stage, such an extension is not trivial since the entire
analysis (definitions of matrices M1 and H1 , Algorithm 1 and
Algorithm 2) is conducted for the continuous-time case. There-
fore, the discrete-time case requires further studies.
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