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Abstract—Within the set of stochastic, indecomposable,
aperiodic (SIA) matrices, the class of Sarymsakov matrices
is the largest known subset that is closed under matrix mul-
tiplication, and more critically whose compact subsets are
all consensus sets. This paper shows that a larger subset
with these two properties can be obtained by generalizing
the standard definition for Sarymsakov matrices. The gener-
alization is achieved by introducing the notion of the SIA in-
dex of a stochastic matrix, whose value is 1 for Sarymsakov
matrices, and then exploring those stochastic matrices with
larger SIA indices. In addition to constructing the larger set,
this paper introduces another class of generalized Sarym-
sakov matrices, which contains matrices that are not SIA,
and studies their products. Sufficient conditions are pro-
vided for an infinite product of matrices from this class,
converging to a rank-one matrix. Finally, as an application
of the results just described and to confirm their useful-
ness, a necessary and sufficient combinatorial condition,
the “avoiding set condition,” for deciding whether or not a
compact set of stochastic matrices is a consensus set is
revisited. In addition, a necessary and sufficient combina-
torial condition is established for deciding whether or not a
compact set of doubly stochastic matrices is a consensus
set.

Index Terms—Cooperative control, doubly stochastic
matrices, multi-agent systems, products of stochastic
matrices, Sarymsakov matrices.
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I. INTRODUCTION

OVER the last decade, there has been considerable interest
in consensus problems that are concerned with a network

of agents trying to agree on a specific value of some variable
[2]–[13]. Similar research problems have arisen decades ago
in statistics [14] and computer science [15]. While different
aspects of consensus processes, such as convergence rates [16]–
[18], measurement delays [16], stability [6], [19], controllabil-
ity [20], and robustness [21], have been investigated, and many
variants of consensus problems, such as average consensus [22],
asynchronous consensus [16], quantized consensus [23]–[26],
group consensus [27], [28], constrained consensus [29], and
modulus consensus [30]–[34], have been proposed and studied,
some fundamental issues regarding linear discrete-time consen-
sus processes still remain open, one of which can be stipulated
in precise terms as follows.

A linear discrete-time consensus process is typically modeled
by a linear recursion equation of the form

x(k + 1) = P (k)x(k), k ≥ 1 (1)

where x(k) = [x1(k), x2(k), . . . , xn (k)]T ∈ IRn and each
P (k) is an n × n stochastic matrix. It is well known that reach-
ing a consensus for any initial state in this model is equivalent
to the convergence of the product P (k) · · ·P (2)P (1) to a rank-
one matrix as k goes to infinity. Sufficient conditions for such
an infinite product of stochastic matrices converging to a rank-
one matrix have been widely studied in the literature; see, for
example, [2], [4], [6], [7], [10], [11], and [13].

In this context, one fundamental issue that comes up is that,
given a set of n × n stochastic matrices P , what the condi-
tions on P are such that for any infinite sequence of matri-
ces P (1), P (2), P (3), . . . from P , the sequence of left-products
P (1), P (2)P (1), P (3)P (2)P (1), . . . converges to a rank-one
matrix. We will call P satisfying this property a consensus set
(the formal definition will be given in the next section). The ex-
isting literature on characterizing a consensus set can be traced
back to at least the work of Wolfowitz [35] in which stochas-
tic, indecomposable, aperiodic (SIA) matrices have been intro-
duced. Recently, it has been shown in [36] that the problem
of deciding whether P is a consensus set or not is NP-hard;
a combinatorial necessary and sufficient condition for such a
decision has also been provided there as well. Even in the light
of these classical as well as recent findings, the following fun-
damental question remains: What is the largest subset of the
class of n × n stochastic matrices whose compact subsets are
all consensus sets? In [37], this question is answered under the
assumption that each stochastic matrix has positive diagonal en-
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tries. For general stochastic matrices, however, the question has
remained open. This paper aims at addressing this challenging
question by studying some well-known classes of SIA matrices.

It is known that the set of Sarymsakov matrices, first in-
troduced by Sarymsakov [38] and redefined in [39], forms a
semigroup [40] and is the largest known subset of the class of
stochastic matrices whose compact subsets are all consensus
sets; in particular, the set is closed under matrix multiplication,
and any infinitely long left-product of the elements from any of
its compact subsets converges to a rank-one matrix [41]. In this
paper, we construct a larger set of stochastic matrices whose
compact subsets are all consensus sets. The key idea is to gen-
eralize the definition of the Sarymsakov matrices so that the
original set of Sarymsakov matrices is contained as a proper
subset.

In this paper, we introduce two approaches to generalize the
definition, and thus study two classes of generalized Sarym-
sakov matrices and their products. The first class of generalized
Sarymsakov matrices, called Type-I generalized Sarymsakov
matrices, makes use of the concept of the SIA index of a stochas-
tic matrix (the formal definition will be given in Section III).
We show that the set of n × n stochastic matrices with SIA
indices no larger than k is closed under matrix multiplication
only when k = 1, which turns out to be the original Sarym-
sakov class. This result reveals why exploring a set larger than
the set of Sarymsakov matrices whose compact subsets are all
consensus sets is a challenging problem. We construct a set that
consists of all Sarymsakov matrices plus one specific pattern of
SIA matrices, which is thus slightly larger than the Sarymsakov
class, and show that it is closed under matrix multiplication and
each of its compact subsets is a consensus set. The other class
of generalized Sarymsakov matrices, called Type-II generalized
Sarymsakov matrices, contains matrices that may not be SIA.
For this class, we provide sufficient conditions for the conver-
gence of the product of an infinite sequence of matrices from
this class to a rank-one matrix. A special case in which all the
generalized Sarymsakov matrices are doubly stochastic is also
discussed. To elucidate the importance of Sarymsakov matrices,
we provide an alternative proof for the necessary and sufficient
combinatorial condition given in [36] for deciding whether a
compact set of stochastic matrices is a consensus set using the
property of Sarymsakov matrices, and establish a necessary and
sufficient condition for deciding whether a compact set of dou-
bly stochastic matrices is a consensus set.

Consensus and distributed averaging (a particular type of
consensus process, which aims to compute the average of all
agents’ initial values [42]) problems have found applications in
a wide range of fields including sensor networks [43], robotic
teams [44], social networks [45], and electric power grids [46].
Extending the existing conditions for reaching a consensus or
seeking conditions for more general scenarios will facilitate the
implementation of a consensus process in those applications.
This paper makes contributions toward this direction in the fol-
lowing three ways. First, a key difference between this paper and
the existing literature is that the stochastic matrices considered
in this paper are not required to have positive diagonal entries.

This relaxation is important in the sense that when each agent
in a network updates its own variable, it can completely ignore
the current value of its own variable, which provides more free-
dom in the design of each agent’s local update rule. Second,
this paper constructs a larger set of stochastic matrices whose
compact subsets are all consensus sets. Naturally the larger such
a set becomes, the more choices for its subsets one will have
and thus more freedom to construct consensus sets. Third, this
paper establishes sufficient conditions for the convergence of
the product of an infinite sequence of stochastic matrices (or
doubly stochastic matrices) to a rank-one matrix by considering
the generalized Sarymsakov matrices, which are novel in view
of the existing results, and thus useful in the design of consensus
(or distributed averaging) processes.

The common theme that runs throughout this paper is the fol-
lowing. Considering the fact that the set of Sarymsakov matrices
is the largest known subset of the class of stochastic matrices
whose compact subsets are all consensus sets, this paper stud-
ies two types of generalized Sarymsakov matrices in order to
construct a larger such set and establishes novel conditions for
reaching a consensus. Type-I generalized Sarymsakov matrices
generalize the “one-stage consequent indices” in the definition
of Sarymsakov matrices to “k-stage consequent indices” for any
integer k ≥ 1 (see Definition 2). By investigating the properties
of this type of generalized Sarymsakov matrices for different
values of k, we reveal why constructing a set larger than the
set of Sarymsakov matrices whose compact subsets are all con-
sensus sets is a challenging problem (see Theorem 4), and ex-
plore a possible way to construct such a set (see Theorem 5).
Type-II generalized Sarymsakov matrices allow one inequality
in the definition of Sarymsakov matrices not to be strict (see
Definition 5). With this type of generalized Sarymsakov matri-
ces, we establish sufficient conditions for the convergence of
the product of an infinite sequence of stochastic matrices to a
rank-one matrix, which are novel in view of the results avail-
able in the existing literature (see Theorem 6 and Corollary 2),
and then apply the conditions to doubly stochastic matrices (see
Theorem 7). We also establish necessary and sufficient condi-
tions for deciding whether a compact set of doubly stochastic
matrices is a consensus set or not (see Theorems 10 and 11).

The rest of this paper is organized as follows. Some pre-
liminaries are introduced in Section II. Section III introduces
the SIA index and Type-I generalized Sarymsakov matrices,
and studies the properties of the set of stochastic matrices
with SIA indices no larger than k (see Section III-A), where
k is a positive integer, constructs a set of stochastic matrices,
larger than the set of Sarymsakov matrices, whose compact
subsets are all consensus sets (see Section III-B), and discusses
pattern-symmetric stochastic matrices (see Section III-C). In
Section IV, the class of Type-II generalized Sarymsakov ma-
trices are introduced, sufficient conditions are provided for the
convergence of the left-product of an infinite sequence of ma-
trices from the class to a rank-one matrix (see Section IV-
A), and the results are applied to doubly stochastic matrices
(see Section IV-B). Section V revisits the necessary and suf-
ficient condition for deciding consensus, derived in [36], and
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establishes a necessary and sufficient condition for deciding
whether a set of doubly stochastic matrices is a consensus set.
This paper ends with some concluding remarks in Section VI,
and several appendices that contain complete proofs of several
of the results in the main part.

II. PRELIMINARIES

We begin with some notations and definitions. Let n be a
positive integer and N denote the set {1, 2, . . . , n}. For any
set A ⊆ N , we use Ā to denote the complement of A with
respect to N . A square matrix P =

[
pij

]
n×n

is said to be a
stochastic matrix if pij ≥ 0 for all i, j ∈ N and

∑n
j=1 pij = 1

for all i ∈ N .
Consider an n × n nonnegative matrix P . For a set A ⊆ N ,

the set of one-stage consequent indices [39] of A is defined by

FP (A) = {j : pij > 0 for some i ∈ A}

which we call the consequent function of P . In the case when
A is a singleton {i}, we write FP (i) instead of FP ({i}) for
simplicity. An important property of the consequent function
FP is as follows.

Lemma 1 (see Lemma 4.1 of [41]): Let P and Q be two n ×
n nonnegative matrices. Then, FP Q (A) = FQ (FP (A)) for all
subsets A ⊆ N .

A stochastic matrix P is indecomposable and aperiodic if
limk→∞ Pk = 1cT , where 1 is the n-dimensional column vec-
tor whose entries all equal 1, and c =

[
c1 c2 · · · cn

]T
is some

column vector satisfying ci ≥ 0 for all i ∈ N and
∑n

i=1 ci = 1.
Such matrices are called SIA matrices in the literature [35].

A stochastic matrix P is said to belong to the Sarymsakov
class, or equivalently, P is a Sarymsakov matrix, if for any two
disjoint nonempty sets A, Ã ⊆ N , either

FP (A) ∩ FP (Ã) �= ∅ (2)

or

FP (A) ∩ FP (Ã) = ∅ and |FP (A) ∪ FP (Ã)| > |A ∪ Ã| (3)

where |A| denotes the cardinality ofA. We say that P is a scram-
bling matrix if for any pair of distinct indices i, j ∈ N , there
holds FP (i) ∩ FP (j) �= ∅, which is equivalent to the property
that there always exists an index k ∈ N such that both pik and
pjk are positive.

From the preceding definitions, it is clear that a scrambling
matrix belongs to the Sarymsakov class. It has been shown in
[39] that any product of n − 1 matrices of size n × n from the
Sarymsakov class is a scrambling matrix. Since a scrambling
matrix is SIA (see [47, Th. 4.11]), any Sarymsakov matrix must
be an SIA matrix.

To better understand the notions of the consequent function
FP , the Sarymsakov matrix, and the scrambling matrix, we
provide here a graphical description in terms of one node influ-
encing another. For a given n × n stochastic matrix P , define
a directed graph G(P ) associated with P as: G(P ) = (N , E),
where E is the edge set and (j, i) ∈ E if and only if pij > 0.
In view of the consensus dynamics (1) with P (k) ≡ P, k ≥ 1,

(j, i) ∈ E means that j has influence on i and i takes j’s state
into account when updating. Therefore, FP (A) is indeed the set
of nodes having influence on the nodes in the set A. Regarding
the Sarymsakov matrix, (2) says that sets A and Ã have influ-
encing nodes in common; (3) says that sets A and Ã have no
influencing nodes in common but the number of influencers is
greater than that of influences. A scrambling matrix is one for
which each pair of distinct nodes share at least one common
influencing node.

Definition 1: Let P be a set of n × n stochastic matrices.
We say that P is a consensus set if for each infinite sequence
of matrices P (1), P (2), P (3), . . . from P , the product P (k) · · ·
P (2)P (1) converges to a rank-one matrix 1cT as k → ∞.

Deciding whether a set of stochastic matrices is a consensus
set or not is critical in establishing the convergence of the state
of system (1) to a common value. Necessary and sufficient con-
ditions for P to be a consensus set have been established [35],
[36], [47]–[49]. Specifically, we will make use of the following
result.

Theorem 1 (see Theorem 3 of [49]): Let P be a compact set
of n × n stochastic matrices. The following conditions are
equivalent.

1) P is a consensus set.
2) For each integer k ≥ 1 and any P (i) ∈ P , 1 ≤ i ≤ k, the

matrix P (1) · · ·P (k − 1)P (k) is SIA.
3) There is an integer ν ≥ 1 such that for each k ≥ ν and any

P (i) ∈ P , 1 ≤ i ≤ k, the matrix P (1) · · ·P (k − 1)P (k)
is scrambling.

4) There is an integer μ ≥ 1 such that for each k ≥ μ and any
P (i) ∈ P , 1 ≤ i ≤ k, the matrix P (1) · · ·P (k − 1)P (k)
has a column with only positive elements.

5) There is an integer α ≥ 1 such that for each k ≥ α and any
P (i) ∈ P , 1 ≤ i ≤ k, the matrix P (1) · · ·P (k − 1)P (k)
belongs to the Sarymsakov class.

In view of condition (2) in Theorem 1, for a compact set P to
be a consensus set, it is necessary that every matrix in P be SIA.
If a set of SIA matrices is closed under matrix multiplication,
then from condition (2), its compact subsets are all consensus
sets. However, it is well known that the product of two SIA
matrices may not be SIA [35]. The Sarymsakov class is the
largest known set of stochastic matrices, which is closed under
matrix multiplication. Whether there exists a larger class of
SIA matrices, which is closed under matrix multiplication and
contains the Sarymsakov class as a proper subset, has remained
unknown. We will explore this issue by taking a closer look at
the definition of the Sarymsakov class, and study the properties
of classes of generalized Sarymsakov matrices that contain the
Sarymsakov class as a subset.

III. TYPE-I GENERALIZED SARYMSAKOV MATRICES

The key notion in the definition of the Sarymsakov class is
the set of one-stage consequent indices. In this section, we gen-
eralize the notion to the set of k-stage consequent indices, and
introduce a larger matrix set, which subsumes the Sarymsakov
class, using the new notion.
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For a stochastic matrix P and a set A ⊆ N , the set of k-stage
consequent indices of A, written Fk

P (A), is defined by

F 1
P (A) = FP (A)

Fk
P (A) = FP (Fk−1

P (A)), k ≥ 2.

It directly follows from Lemma 1 that FP k (A) = Fk
P (A) for any

stochastic matrix P , any integer k ≥ 1, and any subset A ⊆ N .
With the above-mentioned notion, we introduce the following
class of generalized Sarymsakov matrices, called Type-I gener-
alized Sarymsakov matrices, which turns out to be equal to the
class of SIA matrices (see Theorem 2).

Definition 2 (see [49]): A stochastic matrix P is said to be-
long to the class W if for any two disjoint nonempty subsets
A, Ã ⊆ N , there exists an integer k ≥ 1 such that either

Fk
P (A) ∩ Fk

P (Ã) �= ∅ (4)

or

Fk
P (A) ∩ Fk

P (Ã) = ∅ and |Fk
P (A) ∪ Fk

P (Ã)| > |A ∪ Ã|.
(5)

From a graphical point of view, k-stage consequent indices
are nodes which influence (possibly indirectly) the set A in k
time steps. Regarding Type-I generalized Sarymsakov matrices
(see Definition 2): (4) says that sets A and Ã have at least one
k-stage influencer in common; (5) says that sets A and Ã have
no k-stage influencing nodes in common, but the total number of
k-stage influencers is greater than the total number of influences
in A and Ã.

The intuition behind Definition 2 will be given shortly (see
Remark 1).

It is easy to see that the Sarymsakov class is a subset of
the class W . The following theorem establishes the relationship
between the matrices in the class W and SIA matrices.

Theorem 2 (see Theorem 1 of [49]): Class W is equal to the
class of SIA matrices.

More can be said. The following corollary implies that the
integer k in (4) and (5) can be bounded.

Corollary 1: A stochastic matrix P is SIA if and only if for
any pair of disjoint nonempty sets A, Ã ⊆ N , there exists an
index k, k ≤ n(n − 1)/2, such that Fk

P (A) ∩ Fk
P (Ã) �= ∅.

This corollary is an immediate consequence of the following
result.

Theorem 3 (see Theorem 4.4 of [50]): A stochastic matrix
P is SIA if and only if for every pair of indices i and j, there
exists an integer k, k ≤ n(n − 1)/2, such that Fk

P (i) ∩ Fk
P (j)

�= ∅.
Remark 1: Theorem 3 reveals the key feature of the SIA

matrices, namely that a stochastic matrix is an SIA matrix as
long as for each pair of distinct indices, their sets of some
finite stage of consequent indices contain a common index.
Definition 2 naturally extends the class of Sarymsakov matrices
to a larger class that turns out to be the set of SIA matrices.
Indeed, Definition 2 and Theorem 2 imply that given an SIA
matrix and for each pair of distinct indices, which is a special
case of a pair of nonempty disjoint subsets of N , if (4) does not
hold, then the cardinalities of their sets of k-stage consequent
indices must increase because of (5). Since the matrix is of finite

dimensions, the sets of some finite stage of consequent indices
must contain a common index, which verifies the property of
the SIA matrices. �

Example 1: Consider the following stochastic matrix

P =

⎡

⎣
1
3

1
3

1
3

1 0 0
0 1 0

⎤

⎦

and two disjoint nonempty setsA = {2}, Ã = {3}. It is straight-
forward to verify that FP (A) = {1} and FP (Ã) = {2}, which
implies that FP (A) ∩ FP (Ã) = ∅ and |FP (A) ∪ FP (Ã)| =
|A ∪ Ã|. Therefore, P is not a Sarymsakov matrix. However,
the facts that F 2

P (A) = {1, 2, 3} and F 2
P (Ã) = {2} imply that

F 2
P (A) ∩ F 2

P (Ã) �= ∅. This means that (4) holds for k = 2. For
every other pair of disjoint nonempty sets A, Ã ⊆ N , it can be
verified that FP (A) ∩ FP (Ã) �= ∅. Thus, although P is not a
Sarymsakov matrix, P is an SIA matrix from Corollary 1. �

From the above-mentioned example and Corollary 1, the class
of SIA matrices may contain a large number of matrices that do
not belong to the Sarymsakov class. Starting from the Sarym-
sakov class, with k = 1 in (4) and (5), we relax the constraint
on the value of the integer k in (4) and (5) (i.e., allowing for
k ≤ 2, k ≤ 3, . . . ), and obtain a larger set containing the Sarym-
sakov class. We formalize the idea below and study whether the
derived set is closed under matrix multiplication or not.

Fix a positive integer n and denote all possible unordered
pairs of disjoint nonempty sets of N by (A1 , Ã1), (A2 , Ã2),
. . . , (Am , Ãm ), where m is a finite number.

Definition 3: Let P ∈ IRn×n be an SIA matrix. For each pair
of disjoint nonempty sets Ai , Ãi ⊆ N , i ∈ {1, 2, . . . ,m}, let si

be the smallest integer such that either (4) or (5) holds. The SIA
index s of P is s = max{s1 , s2 , . . . , sm}.

We provide an example to further elaborate on Definition 3.
Example 2: Consider again the matrix P given in Example 1.

The number of all possible unordered pairs of disjoint nonempty
sets ofN is 6. For the pair of nonempty setsA = {2}, Ã = {3},
from the discussions in Example 1, one knows that the smallest
integer such that (4) or (5) holds is 2. For all other pairs of
nonempty sets A, Ã, the smallest integer is 1. We, therefore,
conclude that the SIA index of P is s = 2. �

From Corollary 1, for any SIA matrix P of size n × n, its
SIA index s is bounded above by n(n − 1)/2. Assume that the
largest value of the SIA indices of all n × n SIA matrices is
l, which depends on the order n. For our purposes, we define
the following subsets of the class of SIA matrices. For each
k ∈ {1, 2, . . . , l}, let

Vk = {P ∈ IRn×n |P is SIA with SIA index k} (6)

and

Wk = ∪k
r=1Vr . (7)

It is clear thatW1 ⊂ W2 ⊂ · · · ⊂ Wl , andW1 = V1 is the set of
n × n Sarymsakov matrices. Moreover, Theorem 2 implies that
Wl is the set of n × n SIA matrices. The relationships among
the set of Sarymsakov matrices, the sets Wi , and the set of SIA
matrices are illustrated in Fig. 1.
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Fig. 1. Relationships among the set of SIA matrices, the sets Wi , and
the set of SIA matrices.

It is straightforward to check that when n = 2, all SIA ma-
trices are scrambling matrices and hence belong to the Sarym-
sakov class. When n ≥ 3, the set Vn−1 is nonempty. To see this,
consider the following example.

Example 3: Let

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
n

1
n · · · 1

n
1
n

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

be an n × n stochastic matrix. For an index i ∈ N , i �= n,
it is easy to check that Fn−1

P (i) = N . Hence, for any two
nonempty disjoint sets A, Ã ∈ N , it must be true that Fn−1

P (A)
∩ Fn−1

P (Ã) �= ∅, which implies that P is an SIA matrix.
Consider the specific pair of sets A = {n}, Ã = {n − 1}.
Then, Fn−2

P (n) = {2}, Fn−2
P (n − 1) = {1}, and Fn−1

P (n) ∩
Fn−1

P (n − 1) �= ∅, which imply that P ∈ Vn−1 . From this ex-
ample, we know that a lower bound for l is n − 1. �

Lemma 2: For n ≥ 2, the maximum SIA index l of all n × n
SIA matrices satisfies n − 1 ≤ l ≤ n(n − 1)/2.

In the next three sections, we first discuss the properties of
Wi , i ∈ {1, 2, . . . , l}, then construct a set of stochastic matrices,
which consists of a specific pattern of SIA matrices and all
Sarymsakov matrices, and is closed under matrix multiplication,
and finally discuss the class of “pattern-symmetric matrices.”

A. Properties of Wi

The following theorem, which is one of the main results
of this paper, reveals an important property of the sets Wi ,
i ∈ {1, 2, . . . , l}.

Theorem 4: Suppose that n ≥ 3. Among the sets W1 ,W2 ,
. . . ,Wl , the set W1 is the only set that is closed under matrix
multiplication.

The proof of Theorem 4 is given in Appendix A.
Note that a compact subset P of W1 is a consensus set.

However, if P is a compact set consisting of matrices in Vi ,

i ≥ 2, as defined in (6),P may not be a consensus set any more as
can be seen from Lemma 6 in the proof of Theorem 4. Although
a set of stochastic matrices can be a consensus set even if it is not
closed under matrix multiplication, the closure property under
matrix multiplication is important in that if a set of SIA matrices
has this property, then from condition (2) in Theorem 1, all of its
compact subsets are consensus sets. So this property leads to a
sufficient condition to identify consensus sets that will be useful
in practice. Naturally the larger such a set becomes, the more
choices for its subsets one will have, and thus more freedom to
construct consensus sets. The Sarymsakov class is the largest
known set that is closed under matrix multiplication. Theorem
4 reveals why it is challenging to explore a set larger than the
set of Sarymsakov matrices.

In the literature, there has been work on defining another class
of stochastic matrices that is a subset of the SIA matrices and
larger than the set of scrambling matrices (see [47, Ch. 4]), as
follows.

Definition 4: (see [47, Ch. 4]) A stochastic matrix P is said
to belong to the class G if P is SIA and for any SIA matrix Q,
QP is SIA.

The following proposition establishes the relationship be-
tween the class G and the Sarymsakov class, whose proof is
given in Appendix B.

Proposition 1: For n ≥ 3, the class G is a proper subset of
the class of Sarymsakov matrices W1 .

B. Set Closed Under Matrix Multiplication

In this section, we construct a subset of W , which is closed
under matrix multiplication. This subset consists of the set W1
and a specific pattern of matrices in V2 , introduced in more
precise terms as follows.

Let R be a matrix in V2 , which satisfies the property that for
any disjoint nonempty sets A, Ã ⊆ N , either

FR (A) ∩ FR (Ã) �= ∅ (8)

or

FR (A) ∩ FR (Ã) = ∅ and |FR (A) ∪ FR (Ã)| ≥ |A ∪ Ã|.
(9)

Such a matrix exists as can be seen from the example given as
follows.

Example 4: Let

R∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
n

1
n

1
n

1
n · · · 1

n

1 0 0 0 · · · 0
0 1 0 0 · · · 0
1
n

1
n

1
n

1
n · · · 1

n

...
...

...
...

. . .
...

1
n

1
n

1
n

1
n · · · 1

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

To verify that R∗ satisfies the above-mentioned condition, it
is enough to consider the pair of sets A = {2} and Ã = {3},
since for any other pair of A and Ã, there holds FR∗(A) ∩
FR∗(Ã) �= ∅. Note that |FR∗(2) ∪ FR∗(3)| = |{1, 2}| = |A ∪
Ã| and F 2

R∗(2) ∩ F 2
R∗(3) = {1}. Thus, R∗ satisfies the condi-



3090 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 8, AUGUST 2019

tion. It is worth emphasizing that any stochastic matrix that has
the same zero-nonzero pattern as R∗ satisfies the condition. �

Given a stochastic matrix R, let

C(R) = {P |P is a stochastic matrix and

has the same zero-nonzero pattern as R}.
Theorem 5: Suppose that R is a matrix inV2 such that for any

disjoint nonempty sets A, Ã ⊆ N , either (8) or (9) holds. Then,
the set T = W1 ∪ C(R) is closed under matrix multiplication,
and any compact subset of T is a consensus set.

The proof of Theorem 5 is given in Appendix C.
For a set consisting of the set W1 , and two or more different

patterns of matrices in V2 , which satisfy the property that for
any disjoint nonempty sets A, Ã ⊆ N , either (8) or (9) holds,
whether the set is closed under matrix multiplication or not
depends on those matrices in V2 .

Example 5: Let

R1 =

⎡

⎣
1
3

1
3

1
3

1 0 0
0 1 0

⎤

⎦, R2 =

⎡

⎣
0 1 0
0 0 1
1
3

1
3

1
3

⎤

⎦

R3 =

⎡

⎣
0 1 0
1
3

1
3

1
3

1 0 0

⎤

⎦. (11)

Note that for each Ri, i = 1, 2, 3, either (8) or (9) holds
for any disjoint nonempty sets A, Ã ⊆ N . Let T1 = W1 ∪
{C(R1), C(R2)} and T2 = W1 ∪ {C(R1), C(R3)}. It is straight-
forward to verify that T1 is not closed under multiplication, and
in addition

R1R2 =

⎡

⎣
+ + +
0 1 0
0 0 1

⎤

⎦ (12)

is not an SIA matrix. However, T2 is closed under multiplication.
To see this, note that R2

1 , R
2
3 , R1R3 , R3R1 are all scrambling

matrices and hence belong to the Sarymsakov class. Note that
the product of a Sarymsakov matrix and R1 or R3 is still a
Sarymsakov matrix. It then follows that for any P1 , P2 ∈ T2 ,
the product P2P1 is a Sarymsakov matrix. By induction, T2 is
closed under matrix multiplication. �

C. Pattern-Symmetric Matrices

In this section, we focus on a class of n × n “pattern-
symmetric” stochastic matrices, where by a pattern-symmetric
matrix we mean a square nonnegative matrix P =

[
pij

]
n×n

such that

pij > 0 if and only if pji > 0 for all i �= j. (13)

A linear consensus process (1) with bidirectional interactions
between neighboring agents induces update matrices satisfying
(13), which arises often in the literature [4], [12], [17]. The
stochastic matrices satisfying (13) have the following property.

Proposition 2: Suppose that P is an SIA matrix and satisfies
(13). Then, P ∈ W2 , and if, in addition, P is symmetric, then
P ∈ W1 .

Proof:

1) Suppose that, to the contrary, P is not in W2 . Then, there
must exist two disjoint nonempty sets A, Ã ⊆ N such
that

F 2
P (A) ∩ F 2

P (Ã) = ∅ and |F 2
P (A) ∪ F 2

P (Ã)| ≤ |A ∪ Ã|.

From (13), for any nonempty set C ⊆ N , there holds
C ⊆ F 2

P (C), which implies that |F 2
P (A) ∪ F 2

P (Ã)| ≥
|A ∪ Ã|. It follows that |F 2

P (A) ∪ F 2
P (Ã)| = |A ∪ Ã|.

Then, F 2
P (A) = A and F 2

P (Ã) = Ã, which implies that
Fk

P (A) ∩ Fk
P (Ã) = ∅ for any positive integer k. This

contradicts the fact that P is an SIA matrix in view of
Corollary 1. Therefore, P ∈ W2 .

2) Suppose that, to the contrary, P �∈ W1 . Then, there exist
two disjoint nonempty sets A, Ã ⊆ N such that

FP (A) ∩ FP (Ã) = ∅ and |FP (A) ∪ FP (Ã)| ≤ |A ∪ Ã|.

Since for any set C ⊆ N
∑

i∈C,j∈FP (C)

pij = |C| =
∑

i∈C,j∈FP (C)

pji ≤ |FP (C)|

it follows that |FP (A)| = |A| and |FP (Ã)| = |Ã|. This
implies that

∑

i∈A,j∈FP (A)

pji = |FP (A)|.

Combined with the fact that A ⊆ F 2
P (A), there holds

F 2
P (A) = A. Similarly, F 2

P (Ã) = Ã. Thus, Fk
P (A) ∩

Fk
P (Ã) = ∅ for any positive integer k. This contradicts

the fact that P is SIA. Therefore, P ∈ W1 . �
For symmetric stochastic matrices, conditions for deciding

whether a set of such matrices is a consensus set or not have
existed in the literature. Specifically, it has been established in
[36, Example 7] that a compact set P of symmetric stochastic
matrices is a consensus set if and only if P is an SIA matrix
for every P ∈ P . Note that the necessary condition holds for
any consensus set. From Proposition 2, a symmetric stochastic
matrix P is SIA if and only if P is a Sarymsakov matrix. Then,
the sufficient condition follows immediately from the fact that
the Sarymsakov class is closed under matrix multiplication.

The above-mentioned condition for symmetric stochastic ma-
trices cannot be extended to nonsymmetric stochastic matrices
that satisfy (13). To see this, note that a stochastic matrix sat-
isfying (13) is not necessarily a Sarymsakov matrix. Hence, in
view of Theorem 4, the product of two such matrices may not
be SIA.

Example 6: Consider the set consisting of the following two
matrices:

P1 =

⎡

⎢
⎢
⎣

0 1 0 0
1
2 0 1

2 0
0 1

3
1
3

1
3

0 0 1 0

⎤

⎥
⎥
⎦, P2 =

⎡

⎢
⎢
⎣

0 1
2 0 1

2
1 0 0 0
0 0 0 1
1
3 0 1

3
1
3

⎤

⎥
⎥
⎦.

It is straightforward to verify that both P1 and P2 satisfy (13), but
P1 ∈ W2 , P1 �∈ W1 . In addition, (P1P2)k does not converge to
a rank-one matrix as k → ∞. �



XIA et al.: GENERALIZED SARYMSAKOV MATRICES 3091

IV. TYPE-II GENERALIZED SARYMSAKOV MATRICES

We have shown in Theorem 5 that the class of Sarymsakov
matrices plus some specific SIA matrices constitute a set of
stochastic matrices that is closed under matrix multiplication
and contains W1 . The property (9) of the matrix R turns out
to be critical in the analysis. We next consider a class of ma-
trices containing all such matrices, called Type-II generalized
Sarymsakov matrices, whose definition is as follows.

Definition 5: A stochastic matrix P is said to belong to the
class M if for any two disjoint nonempty sets A, Ã ⊆ N , either

FP (A) ∩ FP (Ã) �= ∅ (14)

or

FP (A) ∩ FP (Ã) = ∅ and |FP (A) ∪ FP (Ã)| ≥ |A ∪ Ã|.
(15)

The definition of the class M relaxes that of the Sarymsakov
class W1 by allowing the inequality in (3) not to be strict. Thus,
it is clear that W1 is a subset of M. More can be said.

Lemma 3: The set M is closed under matrix multiplication.
Proof: Let P,Q ∈ M. For any two disjoint nonempty sets

A, Ã ⊆ N , suppose that FP Q (A) ∩ FP Q (Ã) = ∅. It follows
from (15) that

|FP Q (A) ∪ FP Q (Ã)| = |FQ (FP (A)) ∪ FQ (FP (Ã))|

≥ |FP (A) ∪ FP (Ã)|
≥ |A ∪ Ã|

which implies that PQ ∈ M. �
Although the sets M and W1 are both closed under matrix

multiplication and have similar definitions, their elements can
have significantly different properties. Specifically, a matrix in
M is not necessarily SIA. For example, permutation matrices1

belong to the class M since for any disjoint nonempty sets
A, Ã ⊆ N , there hold

FP (A) ∩ FP (Ã) = ∅ and |FP (A) ∪ FP (Ã)| = |A ∪ Ã|.
(16)

But it can be verified that permutation matrices are not SIA.
The relationships among Type-I generalized Sarymsakov matri-
ces W , Type-II generalized Sarymsakov matrices M, and the
Sarymsakov matrices are illustrated in Fig. 2.

Remark 2: One may conjecture that the setM∩W is closed
under matrix multiplication, which is, however, false, as shown
by the following counterexample. Consider the two matrices R1
and R2 given in (11), which are both SIA and in M. But their
product, as shown in (12), is not SIA. �

In the sequel, we will explore sufficient conditions for the con-
vergence of infinite sequences of products of stochastic matrices
from M, and their applications to doubly stochastic matrices.

1A permutation matrix is a square matrix that has exactly one entry of 1
in each row and each column, and zeros elsewhere. Permutation matrices are
stochastic and include the identity matrix as a special case.

Fig. 2. Relationships among Type-I generalized Sarymsakov matrices
W, Type-II generalized Sarymsakov matrices M, and the Sarymsakov
matrices.

A. Sufficient Condition for Consensus

The following theorem provides a sufficient condition for
the convergence of infinite sequences of products of stochastic
matrices from a compact subset of M.

Theorem 6: Let P be a compact subset of M and let P (1),
P (2), . . . be an infinite sequence of matrices from P . Suppose
that j1 , j2 , . . . is a strictly increasing, infinite sequence of the
indices such that P (jr ) ∈ P′ ⊆ P ∩W1 , r = 1, 2, . . . , where
P′ is a compact set. Then, P (k) · · ·P (2)P (1) converges to a
rank-one matrix as k → ∞ if there exists a positive integer T
such that jr+1 − jr ≤ T for all r ≥ 1.

The proof of Theorem 6 is given in Appendix D.
Remark 3: Set Tr = jr+1 − jr for each r ≥ 1. Suppose that

Tr is not uniformly upper bounded. Then, ∪∞
r=1QTr

(QTr
is

defined similarly to QT in (32) in the proof of Theorem 6) is
not necessarily compact so that the conditions in Theorem 1 do
not apply. Thus, in this case, the result of Theorem 6 may not
hold. �

Remark 4: For a set of stochastic matrices P , consider two
assumptions: (A1) P is a compact set, and (A2) the positive
entries of all the matrices inP are uniformly lower bounded by a
positive scalar. In this paper, we mainly consider the assumption
(A1). In Theorems 1 and 6, if the assumption thatP is a compact
set is replaced by (A2), then the same conclusions still hold [47].
However, it is worth noting that (A1) does not imply (A2), and
(A2) does not imply (A1) either. For example, consider the
following set:

P1 =
∞⋃

n≥2

{[
1 − 1

n
1
n

1
2

1
2

]}
⋃
{[

1 0
1
2

1
2

]}

.

The set P1 is compact; however, the positive entries do not
have a uniform positive lower bound. On the other hand,
consider

P2 =
∞⋃

n≥2

{[
1
2 − 1

n
1
2 + 1

n

0 1

]}

.

The positive entries of all the matrices in P2 have a uniform
positive lower bound 1

6 , but P2 is not compact. �
Remark 5: In the existing studies of the discrete-time con-

sensus process (1), it is usually assumed that the diagonal
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entries of each P (k) are positive, and the nonzero entries of
each P (k) are uniformly bounded below by some positive con-
stant [3], [4], [6]–[8], [10], [12], [18], [51]. The sufficient condi-
tions for reaching a consensus are then given in terms of a joint
graphical connectivity, namely there exists an infinite sequence
of time instants t1 , t2 , . . . such that the union of the graphs
of the stochastic matrices P (t) across each interval [ti , ti+1)
has a directed spanning tree and there exists a positive in-
teger T for which tr+1 − tr ≤ T for all r ≥ 1, although the
form of the connectivity may vary slightly from publication
to publication. These assumptions guarantee that each prod-
uct P (kT ) · · ·P ((k − 1)T + 2)P ((k − 1)T + 1), k ≥ 1, is a
stochastic matrix with positive diagonal entries and its graph
has a directed spanning tree. Moreover, it can be easily shown
that such a product is indeed a Sarymsakov matrix. Then, reach-
ing a consensus is implied by condition (2) in Theorem 1. The
difference between Theorem 6 and those existing results [3],
[4], [6]–[8], [10], [12], [18], [51] is that the stochastic matrices
P (t) considered in this paper are not required to have positive
diagonal entries (but instead to belong to the class M). This
relaxation is important in the sense that when each agent in a
multiagent network updates its own variable, it can completely
ignore the current value of its own variable, which provides
more freedom in the design of each agent’s local update rule.
It is worth noting that the uniform bound on the time instants
of the appearance of a Sarymsakov matrix in Theorem 6 plays
a similar role to the above-mentioned joint graphical connec-
tivity in the existing literature, and thus also guarantees that
each P (kT ) · · ·P ((k − 1)T + 2)P ((k − 1)T + 1), k ≥ 1, is a
Sarymsakov matrix. �

Remark 6: There exist other results on the discrete-time con-
sensus process (1) that do not require the assumptions (A1) or
(A2) in Remark 4. The absolute infinite flow condition is nec-
essary and sufficient for the ergodicity of a chain of doubly
stochastic matrices [52] and, in addition, is necessary and suffi-
cient for the ergodicity of a chain of stochastic matrices under
the balanced asymmetry condition [53]. The notion has also
been used to study the ergodicity of random chains of stochastic
matrices [54]. �

In the case when the setP is a finite set, we have the following
corollary that is a direct consequence of Theorem 6.

Corollary 2: Let P be a finite subset of M and let P (1),
P (2), . . . be an infinite sequence of matrices from P . Suppose
that j1 , j2 , . . . is a strictly increasing, infinite sequence of the
indices such that P (j1), P (j2), . . . are Sarymsakov matrices.
Then, P (k) · · ·P (2)P (1) converges to a rank-one matrix as
k → ∞ if there exists a positive integer T such that jr+1 − jr ≤
T for all r ≥ 1.

B. Applications to Doubly Stochastic Matrices

A square nonnegative matrix is called doubly stochastic if its
row sums and column sums all equal one. Thus, the set of doubly
stochastic matrices is a proper subset of stochastic matrices. In
fact, the following result shows that the set of doubly stochastic
matrices is also a proper subset of M.

Proposition 3: If P is a doubly stochastic matrix, then
P ∈ M.

This proposition is an immediate consequence of the follow-
ing property of doubly stochastic matrices.

Lemma 4: Let P be a doubly stochastic matrix. Then, for
any nonempty set A ⊆ N , there holds |FP (A)| ≥ |A|.

Proof: From the Birkhoff–von Neumann Theorem (see [55,
Th. 8.7.1]), P is doubly stochastic if and only if P is a con-
vex combination of permutation matrices, i.e., P =

∑n !
i=1 αiPi ,

where
∑n !

i=1 αi = 1, ai ≥ 0 for all i ∈ {1, 2, . . . , n!}, and each
Pi is a permutation matrix. For each permutation matrix Pi ,
there holds |FPi

(A)| = |A| for any set A ⊆ N . In view of the
Birkhoff–von Neumann Theorem, it must be true that

FP (A) = ∪αi �=0FPi
(A).

It then immediately follows that |FP (A)| ≥ |A|. �
From the above-mentioned lemma, it is easy to see that for

any doubly stochastic matrix P , either (14) or (15) holds. Hence,
doubly stochastic matrices belong to the set M.

The following result establishes a relationship between dou-
bly stochastic matrices and Sarymsakov matrices, which is help-
ful for establishing a similar result to Theorem 6.

Proposition 4: Let P be a doubly stochastic matrix. Then,
P is a Sarymsakov matrix if and only if for every nonempty set
A � N , there holds |FP (A)| > |A|.

Proof: The sufficiency part is clearly true. It remains, there-
fore, to prove the necessity. Suppose that, to the contrary, there
exists a nonempty set A � N such that |FP (A)| ≤ |A|. It fol-
lows from Lemma 4 that

|FP (A)| = |A| =
∑

i∈A,j∈FP (A)

pij . (17)

Since P is doubly stochastic,
∑

i∈N ,j∈FP (A) pij = |FP (A)|.
Hence

∑

i∈Ā,j∈FP (A)

pij =
∑

i∈N ,j∈FP (A)

pij −
∑

i∈A,j∈FP (A)

pij

= |FP (A)| − |A|
= 0. (18)

It follows that FP (Ā) ⊆ FP (A). Note that Lemma 4 implies
that

|FP (Ā)| ≥ |Ā| = n − |A| = |FP (A)|.

It follows that |FP (Ā)| = n − |A| and FP (Ā) = FP (A). Then

FP (A) ∩ FP (Ā) = ∅, and |FP (A) ∪ FP (Ā)| = n = |A ∪ Ā|

which contradicts the fact that P is a Sarymsakov matrix. There-
fore, it must be true that for every nonempty set A � N , there
holds |FP (A)| > |A|. �

Theorem 7: Let P be a set of doubly stochastic matrices, and
let P (1), P (2), . . . be an infinite sequence of matrices from P .
Suppose that k1 , k2 , . . . is a strictly increasing, infinite sequence
of the indices such that P (kr ) ∈ P′ ⊆ P ∩W1 , r = 1, 2, . . . ,
where P′ is a compact set. Then, P (k) · · ·P (2)P (1) converges
to 11T /n as k → ∞.

The proof of Theorem 7 is given in Appendix E.
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Remark 7: The assumption on uniform boundedness of
kr+1 − kr , r ≥ 1, is removed for the case of doubly stochas-
tic matrices compared with Theorem 6. The above-mentioned
result claims that as long as the sequence of doubly stochastic
matrices contains infinitely many Sarymsakov matrices chosen
from a compact subset of the Sarymsakov class, then the infi-
nite product of this sequence converges to the rank-one matrix
11T /n.

Proposition 4 provides a condition to decide whether a doubly
stochastic matrix belongs to W1 or not. For a doubly stochastic
matrix, a necessary and sufficient condition for the matrix in W
is stated as follows.

Proposition 5: Let P be a doubly stochastic matrix. P is an
SIA matrix if and only if for every nonempty set A � N , there
exists a positive integer k such that |Fk

P (A)| > |A|.
The proof of the proposition makes use of the following result.
Lemma 5: Let P be a doubly stochastic matrix. For two

disjoint nonempty subsets A, Ã ⊆ N , if FP (A) ∩ FP (Ã) �= ∅,
then |FP (A)| > |A| and |FP (Ã)| > |Ã|.

Proof: Suppose to the contrary that |FP (A)| = |A| or |FP

(Ã)| = |Ã|. We first consider the case when |FP (A)| = |A|.
Then obviously (17) holds. Since P is doubly stochastic, (18)
holds and implies that pij = 0 for i ∈ Ā, j ∈ FP (A). Since A
and Ã are disjoint sets, Ã is a subset of Ā. Therefore, for any
j ∈ FP (A), there holds j �∈ FP (Ã), which contradicts the fact
that FP (A) ∩ FP (Ã) �= ∅. We conclude that |FP (A)| > |A|.
The conclusion that |FP (Ã)| > |Ã| can be proved in a similar
manner. �

Proof of Proposition 5: (Necessity) For a nonempty subset
A � N , let Ã = Ā. Since A and Ã are disjoint sets, accord-
ing to Corollary 1, there exists a positive integer k such that
Fk

P (A) ∩ Fk
P (Ã) �= ∅. Noting that F i+1

P (A) = FP (F i
P (A)),

applying Lemmas 4 and 5 yields

|Fk
P (A)| > |Fk−1

P (A)| ≥ |Fk−2
P (A)| ≥ · · · ≥ |A|.

(Sufficiency) For every two disjoint nonempty subsets A, Ã
⊆ N , there exist positive integers k1 and k2 such that |Fk1

P (A)
| > |A| and |Fk2

P (Ã)| > |Ã|. Let k = max{k1 , k2}. If Fk
P (A) ∩

Fk
P (Ã) = ∅, then using Lemma 4, there holds

|Fk
P (A)| ≥ |Fk1

P (A)| > |A|

and

|Fk
P (Ã)| ≥ |Fk2

P (Ã)| > |Ã|.

It then follows that |FP (Ã) ∪ Fk
P (Ã)| > |A ∪ Ã|. Therefore, P

is SIA. �
For doubly stochastic matrices satisfying (13), more can be

said.
Proposition 6: Let P be a doubly stochastic matrix satisfying

(13). If P is SIA, then P ∈ W1 .
Proof: Suppose that, to the contrary, P is not a Sarymsakov

matrix. In view of Proposition 4, there exists a set A ⊆ N such
that |A| = |FP (A)|. From the proof of Proposition 4, it fol-
lows that (17) and (18) hold, and |Ā| = |FP (Ā)| = |FP (A)|.
Note that (13) and (17) imply that pij = 0 for any i ∈ FP (A)
and j ∈ Ā. Thus, F 2

P (A) ⊆ A. Combining this and the fact

that A ⊆ F 2
P (A), it follows that A = F 2

P (A). Similarly, there
holds Ā = F 2

P (Ā). Thus, Fk
P (A) ∩ Fk

P (Ā) = ∅, which contra-
dicts the assumption that P is an SIA matrix. Therefore, P must
be a Sarymsakov matrix. �

V. NECESSARY AND SUFFICIENT CONDITIONS FOR

DECIDING CONSENSUS

To elucidate the importance of the class of Sarymsakov ma-
trices, in this section, we first provide an alternative proof for a
necessary and sufficient combinatorial condition, the “avoiding
set condition,” established in [36] for deciding whether or not a
compact set of stochastic matrices is a consensus set and then
carry out the discussion to doubly stochastic matrices.

Theorem 8 (see Theorem 2.2 of [36]): A compact set P of
n × n stochastic matrices is not a consensus set if and only if
there exist two sequences of nonempty subsets ofN , S1 , S2 , . . . ,
Sl and S ′

1 , S
′
2 , . . . , S

′
l of length l ≤ 3n − 2n+1 + 1, and a se-

quence of matrices P (1), P (2), . . . , P (l) from P such that

Si ∩ S ′
i = ∅ for all i ∈ {1, 2, . . . , l}

and for all i ∈ {1, 2, . . . , l − 1}

FP (i)(Si) ⊆ Si+1 , FP (l)(Sl) ⊆ S1

FP (i)(S ′
i) ⊆ S ′

i+1 , FP (l)(S ′
l) ⊆ S ′

1 .

Remark 8: From [50, Th. 4.7], the values of ν and α, respec-
tively, in conditions (3) and (5) of Theorem 1 can be chosen as
1
2 (3n − 2n+1 + 1). For our purposes, we choose ν = α = 3n

− 2n+1 + 1. The reason for relaxing this upper bound will be
clear shortly. Hence, a specific conclusion based on condition
(5) of Theorem 1 yields that a compact set P of n × n stochas-
tic matrices is not a consensus set if and only if there exists
a sequence of matrices Q(1), Q(2), . . . , Q(m) from P such
that Q(1) · · ·Q(m − 1)Q(m) is not a Sarymsakov matrix with
m ≥ 3n − 2n+1 + 1. �

In view of Remark 8, Theorem 8 is a direct consequence of
the following result, whose proof makes use of the properties of
Sarymsakov matrices and is given in Appendix F.

Theorem 9: Let P be a compact set of n × n stochastic ma-
trices. Then, there exists a sequence of matrices Q(1), Q(2), . . . ,
Q(m) from P such that Q(1) · · ·Q(m − 1)Q(m) is not a
Sarymsakov matrix with m ≥ 3n − 2n+1 + 1 if and only if
there exist two sequences of nonempty subsets ofN , S1 , S2 , . . . ,
Sl and S ′

1 , S
′
2 , . . . , S

′
l of length l ≤ 3n − 2n+1 + 1, and a se-

quence of matrices P (1), P (2), . . . , P (l) from P such that

Si ∩ S ′
i = ∅ for all i ∈ {1, 2, . . . , l} (19)

and for all i ∈ {1, 2, . . . , l − 1}

FP (i)(Si) ⊆ Si+1 , FP (l)(Sl) ⊆ S1

FP (i)(S ′
i) ⊆ S ′

i+1 , FP (l)(S ′
l) ⊆ S ′

1 . (20)

For doubly stochastic matrices, the necessary and sufficient
condition for deciding consensus can be obtained using Propo-
sition 5. We first prove the following result.
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Theorem 10: Let P be a compact set of n × n doubly
stochastic matrices, and let

b(n) �
(

n
�n−1

2 �

)

where �n − 1/2� is the greatest integer that is no larger than
n − 1/2 and

(
n

�n−1
2 �

)
=

n!
�n−1

2 �!
(
n − �n−1

2 �
)
!
.

Then, P is a consensus set if and only if for each k ≥ b(n) and
any P (i) ∈ P, 1 ≤ i ≤ k, the matrix P (1) · · ·P (k − 1)P (k)
belongs to the Sarymsakov class.

Proof: In view of Theorem 1, it is sufficient to prove the
necessity. Suppose, therefore, that P is a consensus set. Assume
that there exists a matrix P (1) · · ·P (k − 1)P (k) with k ≥ b(n)
and P (1) · · ·P (k − 1)P (k) is not a Sarymsakov matrix. Note
that the product of doubly stochastic matrices remains a doubly
stochastic matrix. By Lemma 4 and Proposition 4, there exists
a nonempty subset A � N such that

|FP (1)···P (k−1)P (k)(A)| = |A|. (21)

Let A0 = A and Ai = FP (i)(Ai−1) for 1 ≤ i ≤ k. Hence,
Lemma 4 and (21) imply that |A0 | = |A1 | = · · · | = |Ak |.

We check the total number of nonempty proper subsets with
the same cardinality of N . If n is an even number, this number
is at most ( n

n/2 ); if n is an odd number, this number is at most
( n

n−1/2 ). In both cases, this number is at most b(n). Since k ≥
b(n), there exist two indices j, l, 0 ≤ j < l ≤ k, such thatAj =
Al . It follows that (P (j + 1) · · ·P (l))s is not a Sarymsakov
matrix for each s = 1, 2, . . . and P is not a consensus set by
Theorem 1. �

Remark 9: Theorem 10 shows that “α” in condition (5) in
Theorem 1 can be taken as b(n) when all the matrices in P are
doubly stochastic matrices, instead of 1/2(3n − 2n+1 + 1) for
general stochastic matrices. �

Theorem 11: Let P be a compact set of n × n doubly
stochastic matrices. Then, P is not a consensus set if and only if
there exist a sequence of nonempty subsets of N , S1 , S2 , . . . , Sl

of length l ≤ b(n), and a sequence of matrices P (1), P (2),
. . . , P (l) from P such that for all i ∈ {1, 2, . . . , l − 1}

FP (i)(Si) ⊆ Si+1 , FP (l)(Sl) ⊆ S1 . (22)

Proof: (Necessity) Suppose that P is not a consensus
set. By Theorem 10, there exists a sequence of matrices
Q(1), Q(2), . . . , Q(m) from P such that Q(1) · · ·Q(m −
1)Q(m) is not a Sarymsakov matrix with m ≥ b(n). Then, from
Proposition 4, there exists a nonempty set A � N such that

|FQ(1)···Q(m )(A)| = |A|.

Let S1 = A, Si+1 = FQ(1)···Q(i)(A), for all i ∈ {1, 2, . . . ,
m}. It follows that |S1 | = |S2 | = · · · | = |Sm+1 |. Note that the
number of proper subsets with the same cardinality of N is at
most b(n). Since m ≥ b(n), there must exist two sets that are
the same, i.e., Sk = Sr for 1 ≤ k < r ≤ b(n) + 1. Without loss
of generality, assume that k = 1. Then, S1 , S2 , . . . , Sr−1 with

r − 1 ≤ b(n) and the sequence of matrices Q(1), Q(2), . . . ,
Q(r − 1) satisfy the condition (22).

(Sufficiency) Suppose that a sequence S1 , S2 , . . . , Sl and a
sequence of matrices P (1), P (2), . . . , P (l) exist. Let S1 = A.
Then similar to the proof of Theorem 9 in Appendix A, we have

FP (1)···P (l)(A) ⊆ FP (l)(Sl) ⊆ S1 = A.

In view of the fact that |FP (1)···P (l)(A)| ≥ |A|, it is clear that
FP (1)···P (l)(A) = A. Hence, Fk

P (1)···P (l)(A) = A for all inte-

gers k ≥ 1 and, therefore, (P (1) · · ·P (l))k is not a Sarym-
sakov matrix by Proposition 4. P is not a consensus set by
Theorem 10.

Remark 10: It has been shown in [36] that deciding whether
a finite set of stochastic matrices is a consensus set or not is
NP-hard. Theorem 11 can be used to decide whether a finite
set of doubly stochastic matrices is a consensus set and may be
helpful for checking the complexity. �

VI. CONCLUSION

In this paper, we have introduced two classes of generalized
Sarymsakov matrices and studied their products. Type-I gener-
alized Sarymsakov matrices are defined using the notion of the
SIA index. We have shown that the set of all SIA matrices with
SIA indices no larger than k is closed under matrix multiplica-
tion only when k = 1, which is the set of Sarymsakov matrices.
We have constructed a larger subset of SIA matrices than the
class of Sarymsakov matrices that is closed under matrix mul-
tiplication, and of which any compact subset is a consensus set.
For Type-II generalized Sarymsakov matrices, we have provided
sufficient conditions for the convergence of the product of an in-
finite sequence of matrices from this class to a rank-one matrix,
and discussed their application to doubly stochastic matrices.
We have established a combinatorial necessary and sufficient
condition for deciding whether or not a compact set of doubly
stochastic matrices is a consensus set.

The results obtained in this paper underscore the critical role
of the Sarymsakov class in the set of SIA matrices, and the im-
portance of the generalized Sarymsakov classes in constructing
consensus sets and convergent infinite sequences of stochastic
matrices. Establishing an even larger set than the one constructed
in this paper, which is closed under matrix multiplication and
whose compact subsets are all consensus sets, can be very chal-
lenging and is a subject for future research. Another important
future direction is to study the complexity problem of deciding
consensus sets for specific classes of stochastic matrices.

APPENDIX A

Theorem 4 is an immediate consequence of the forthcoming
Lemma 6. To state the lemma, we need to define a matrix Q in
terms of a matrix P ∈ Vi , i ≥ 2, as follows.

For a given matrix P ∈ Vi , i ≥ 2, from the definition of
the Sarymsakov class, there exist two disjoint nonempty sets
A, Ã ⊆ N such that FP (A) ∩ FP (Ã) = ∅ and

|FP (A) ∪ FP (Ã)| ≤ |A ∪ Ã|. (23)
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Define a matrix Q =
[
qij

]
n×n

by setting

qij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|A| , i ∈ FP (A), j ∈ A

0, i ∈ FP (A), j ∈ Ā
1
|Ã| , i ∈ FP (Ã), j ∈ Ã

0, i ∈ FP (Ã), j ∈ ¯̃A
1
n , otherwise.

(24)

Note that whether a stochastic matrix is SIA or not only
depends on the positions of its nonzero entries, not on their
values. Thus, we can construct other matrices, based on Q in
(24), by adjusting the values of the positive entries of Q, as long
as each row sum equals 1 and the zero-nonzero pattern does not
change.

Lemma 6: Suppose that n ≥ 3. Then, for any i ∈ {2, 3, . . . ,
l} and any stochastic matrix P ∈ Vi , the matrix Q given in (24)
belongs to the set W2 , and PQ,QP are not SIA. In addition,
Q ∈ V2 if (23) holds with the equality sign, and Q ∈ V1 if the
inequality in (23) is strict.

Proof of Lemma 6: Q is obviously a stochastic matrix. Note
that for any index i ∈ N , the set of its one-stage consequent
indices FQ (i) can only be A, Ã, or N . We first show that Q
belongs to the set W2 .

Consider two arbitrary disjoint nonempty sets C, C̃ ⊆ N .
Then, one of the following cases must occur.

a) C ∪ C̃ contains some element in FP (A) ∪ FP (Ã).
b) C ∪ C̃ ⊆ FP (A) ∪ FP (Ã), C ∩ FP (A) �= ∅, and C̃ ∩

FP (A) �= ∅.
c) C ∪ C̃ ⊆ FP (A) ∪ FP (Ã), C ∩ FP (Ã) �= ∅, and C̃ ∩

FP (Ã) �= ∅.
d) C ⊆ FP (A) and C̃ ⊆ FP (Ã).
e) C ⊆ FP (Ã) and C̃ ⊆ FP (A).

We treat the five cases separately.
Case (a): From the definition of the matrix Q in (24), one

of FQ (C) and FQ (C̃) must be N , which implies that FQ (C) ∩
FQ (C̃) �= ∅.

Case (b): It is easy to see that A is a subset of both FQ (C)
and FQ (C̃). Hence, FQ (C) ∩ FQ (C̃) �= ∅.

Case (c): Similar to case (b), Ã is a subset of both FQ (C) and
FQ (C̃). Hence, FQ (C) ∩ FQ (C̃) �= ∅.

Case (d): From the definition of Q

FQ (C) = A, FQ (C̃) = Ã. (25)

Following (23)

|FQ (C) ∪ FQ (C̃)| = |A ∪ Ã| ≥ |FP (A) ∪ FP (Ã)| ≥ |C ∪ C̃|.

If |FP (A) ∪ FP (Ã)| > |C ∪ C̃|, then |FQ (C) ∪ FQ (C̃)| > |C ∪
C̃|. If |FP (A) ∪ FP (Ã)| = |C ∪ C̃|, then we consider the fol-
lowing two cases, separately.

d1) |A ∪ Ã| > |FP (A) ∪ FP (Ã)|.
d2) |A ∪ Ã| = |FP (A) ∪ FP (Ã)|.

Case (d1): It immediately follows that |FQ (C) ∪ FQ (C̃)| >

|C ∪ C̃|.

Case (d2): Since

|A ∪ Ã| = |FP (A) ∪ FP (Ã)| = |C ∪ C̃|

there hold C = FP (A) and C̃ = FP (Ã). We further look at the
sets of two-stage consequent indices of C and C̃, and obtain from
(25) that

F 2
Q (C) = FQ (A), F 2

Q (C̃) = FQ (Ã).

We claim that FQ (A) ∩ FQ (Ã) �= ∅, which implies that k =
2 is the smallest integer such that (4) holds for this pair of sets, C
and C̃, and the matrix Q. To establish the claim, suppose that, to
the contrary, FQ (A) ∩ FQ (Ã) = ∅. Since for any i ∈ N , FQ (i)
can only be A, Ã, or N , the fact that FQ (A) ∩ FQ (Ã) = ∅
implies that either

FQ (A) = A, FQ (Ã) = Ã (26)

or

FQ (A) = Ã, FQ (Ã) = A. (27)

If (26) holds, then it is inferred from the structure of the matrix Q
thatA ⊆ FP (A) and Ã ⊆ FP (Ã). Combining with the fact that
|FP (A) ∪ FP (Ã)| = |A ∪ Ã|, it must be true that FP (A) = A
and FP (Ã) = Ã. It then follows that Fk

P (A) = A and Fk
P (Ã) =

Ã for any positive integer k. In view of Corollary 1, P is not
an SIA matrix. We conclude that F 2

Q (C) ∩ F 2
Q (C̃) �= ∅. If (27)

holds, then one can similarly show that F 2
Q (C) ∩ F 2

Q (C̃) �= ∅.
Case (e): The discussion is similar to that in case (d).
Therefore, summarizing the discussions in all five cases, we

have shown that Q ∈ V2 if (23) holds with the equality sign, and
Q ∈ V1 if the inequality in (23) is strict.

We next consider the matrix product PQ. For the pair of sets
A and Ã, there hold

FP Q (A) = FQ (FP (A)) = A, FP Q (Ã) = FQ (FP (Ã)) = Ã.
(28)

Thus, for any positive integer k, Fk
P Q (A) = A and Fk

P Q (Ã) =
Ã, which implies that PQ is not an SIA matrix. Similarly, there
hold

FQP (FP (A)) = FP (A), FQP (FP (Ã)) = FP (Ã) (29)

which implies that QP is not an SIA matrix. �

APPENDIX B

Proof of Proposition 1: It is clear that G is a subset of W .
For any P ∈ Vi , i ≥ 2, P is not an element of G, since there
exists an SIA matrix Q such that QP is not SIA from Lemma 6.
Hence, G is a subset of W1 .

For n ≥ 3, let

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2 0 0 · · · 0

0 0 1 0 · · · 0
1
n

1
n

1
n

1
n · · · 1

n
1
n

1
n

1
n

1
n · · · 1

n
...

...
...

...
. . .

...
1
n

1
n

1
n

1
n · · · 1

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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It can be verified that P ∈ W1 . We claim that P /∈ G. To estab-
lish the claim, consider the following matrix:

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 · · · 0

1 0 0 0 · · · 0
0 1 0 0 · · · 0
1
n

1
n

1
n

1
n · · · 1

n
...

...
...

...
. . .

...
1
n

1
n

1
n

1
n · · · 1

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since the first column of Q2 is positive, Q is an SIA matrix.
Note that

QP =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2 0 0 · · · 0

1
2

1
2 0 0 · · · 0

0 0 1 0 · · · 0
+ + + + · · · +
...

...
...

...
. . .

...
+ + + + · · · +

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where “+” denotes an element that is positive. For two disjoint
nonempty sets A = {1, 2} and Ã = {3}, there hold Fk

QP (A) =
A and Fk

QP (Ã) = Ã for any positive integer k, which implies
that QP is not an SIA matrix. Thus, P is not in G. �

APPENDIX C

Proof of Theorem 5: Since the matrices in C(R) have the same
zero-nonzero pattern, for P ∈ T and R1 , R2 ∈ C(R), R1P and
R2P have the same zero-nonzero pattern. To check the product
of two matrices in T , we only have to consider the product of a
matrix in T and R.

We first show that for any matrix P ∈ W1 , both RP and
PR are in W1 . Suppose that we are given two disjoint
nonempty sets A, Ã ⊆ N such that FRP (A) ∩ FRP (Ã) = ∅.
Since FRP (A) = FP (FR (A)) and FRP (Ã) = FP (FR (Ã)),
from Lemma 1, FR (A) ∩ FR (Ã) = ∅. Since P is a Sarymsakov
matrix

|FRP (A) ∪ FRP (Ã)| = |FP (FR (A)) ∪ FP (FR (Ã))|
> |FR (A) ∪ FR (Ã)|
≥ |A ∪ Ã|.

It follows that RP is a Sarymsakov matrix. Similarly, for any
two disjoint nonempty sets A, Ã ⊆ N such that FP R (A) ∩
FP R (Ã) = ∅, there holds

|FP R (A) ∪ FP R (Ã)| = |FR (FP (A)) ∪ FR (FP (Ã))|
≥ |FP (A) ∪ FP (Ã)|
> |A ∪ Ã|.

Therefore, PR is also a Sarymsakov matrix.
We next show that R2 ∈ W1 . Since R ∈ V2 , for any disjoint

nonempty sets A, Ã ⊆ N , there must exist a positive integer
k ≤ 2 such that either

Fk
R (A) ∩ Fk

R (Ã) �= ∅ (30)

or

Fk
R (A) ∩ Fk

R (Ã) = ∅ and |Fk
R (A) ∪ Fk

R (Ã)| > |A ∪ Ã|.
(31)

In the case when (30) holds, it follows from Lemma 1 that
FR2 (A) ∩ FR2 (Ã) �= ∅. In the case when (31) holds, suppose
that FR2 (A) ∩ FR2 (Ã) = ∅. If (31) holds for k = 1, then from
the assumption on R, there holds

|FR2 (A) ∪ FR2 (Ã)| ≥ |FR (A) ∪ FR (Ã)| > |A ∪ Ã|.

If (31) holds for k = 2, then it immediately follows that |FR2 (A)
∪ FR2 (Ã)| > |A ∪ Ã|. Hence, R2 ∈ W1 .

Since the set W1 is closed under matrix multiplication, for
any P1 , P2 ∈ T , the product P2P1 is a Sarymsakov matrix. By
induction, it follows that Pk · · ·P2P1 ∈ W1 for any integer k ≥
2 and Pi ∈ T , i ∈ {1, 2, . . . , k}, which implies that T is closed
under matrix multiplication. Then, it follows from Theorem 1
(5) that any compact subset of T is a consensus set. �

APPENDIX D

Proof of Theorem 6: Let k0 be an integer such that (k0 −
1)T + 1 ≥ j1 . Since jr+1 − jr ≤ T for all r ≥ 1, for any in-
teger k ≥ k0 , the matrix sequence P ((k − 1)T + 1), P ((k −
1)T + 2), . . . , P (kT ) contains at least one Sarymsakov matrix,
i.e., there exists an integer ik depending on k, 1 ≤ ik ≤ T , such
that P ((k − 1)T + ik ) ∈ W1 .

We claim that for every integer k ≥ k0 , the product P (kT ) · · ·
P ((k − 1)T + 2)P ((k − 1)T + 1) is a Sarymsakov matrix. To
establish the claim, we consider those pairs of disjoint nonempty
sets A, Ã ⊆ N satisfying

FP (kT )···P ((k−1)T +1)(A) ∩ FP (kT )···P ((k−1)T +1)(Ã) = ∅.

Since P ((k − 1)T + ik ) ∈ W1 , combining with the properties
of the class M, it follows that

|FP (kT )···P ((k−1)T +1)(A) ∪ FP (kT )···P ((k−1)T +1)(Ã)|

≥ |FP (kT )···P ((k−1)T +2)(A) ∪ FP (kT )···P ((k−1)T +2)(Ã)|
≥ · · ·
≥ |FP (kT )···P ((k−1)T +ik )(A)

∪ FP (kT )···P ((k−1)T +ik )(Ã)|
> |FP (kT )···P ((k−1)T +ik +1)(A)

∪ FP (kT )···P ((k−1)T +ik +1)(Ã)|
≥ · · ·

≥ |A ∪ Ã|.

Therefore, P (kT ) · · ·P ((k − 1)T + 2)P ((k − 1)T + 1) is a
Sarymsakov matrix.

Define

QT =
{

PT · · ·P2P1 | Pi ∈ P for all i ∈ {1, 2, . . . , T}

Ps ∈ P′ for some 1 ≤ s ≤ T
}
. (32)
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Since both P and P′ are compact sets, so is QT . Note that from
the above-mentioned discussion, the product P (kT ) · · ·P ((k −
1)T + 2)P ((k − 1)T + 1) ∈ QT for all k ≥ k0 and all matri-
ces in QT are Sarymsakov matrices. From Theorem 1

lim
k→∞

P (kT ) · · ·P ((k0 − 1)T + 2)P ((k0 − 1)T + 1) = 1cT

for some nonnegative normalized column vector c. For any in-
teger s ≥ 1, there exists an integer k such that kT + 1 ≤ s <
(k + 1)T . Let || · || be the induced infinity norm on IRn×n . Then

||P (s) · · ·P (2)P (1) − 1cT P ((k0 − 1)T ) · · ·P (1)||
= ||P (s) · · ·P (1)

− P (s) · · ·P (kT + 1)1cT P ((k0 − 1)T ) · · ·P (1)||
≤ ||P (s) · · ·P (kT + 1)||

· ||P (kT ) · · ·P ((k0 − 1)T + 1) − 1cT ||
· ||P ((k0 − 1)T ) · · ·P (1)||

≤ ||P (kT ) · · ·P ((k0 − 1)T + 1) − 1cT ||.

Thus, the matrix product P (s) · · ·P (2)P (1) converges to a
rank-one matrix as s goes to infinity. �

APPENDIX E

The proof of Theorem 7 makes use of some notions and [52,
Th. 5], which we review first.

A chain of matrices {P (k)} is a stochastic chain if P (k) is
a stochastic matrix for all k ≥ 1, and it is a doubly stochastic
chain if P (k) is a doubly stochastic matrix for all k ≥ 1. A chain
P (k) is ergodic if

lim
k→∞

P (k − 1)P (k − 2) · · ·P (s) = 1cT (s)

for all s ≥ 1, where c(s) is a stochastic vector for all s ≥ 1.
Let {S(k)} be a sequence of proper index subsets of N , k ≥ 1.
The sequence {S(k)} is regular if S(k) have the same nonzero
cardinality, i.e., |S(k)| = |S(1)| for all k ≥ 1 and 0 < |S(1)|
< n.

For a stochastic chain {P (k)} and a regular sequence {S(k)},
let the flow associated with the entries of the matrix P (k) across
S(k + 1) and S(k) be defined as follows:

PS(k+1),S(k)(k) =
∑

i∈S(k + 1 )

j ∈S(k )

pij (k) +
∑

i∈S(k + 1 )
j ∈S(k )

pij (k) (33)

for k ≥ 1, where S(k) is the complement of S(k). Let the total
flow of the chain {P (k)} over {S(k)} be defined as follows:

F ({P (k)}; {S(k)}) =
∞∑

k=1

PS(k+1),S(k)(k). (34)

A stochastic chain {P (k)} has the absolute infinite flow prop-
erty if F ({P (k)}; {S(k)}) = ∞ for every regular sequence
{S(k)}.

Lemma 7 (see Theorem 5 of [52]): A doubly stochastic
chain {P (k)} is ergodic if and only if it has the absolute infinite
flow property.

Proof of Theorem 7: Since P (kr ) ∈ P′, r = 1, 2, . . . , and P′

is compact, there exists a subsequence of P (kr ), r = 1, 2, . . . ,
still denoted as P (kr ), r = 1, 2, . . . , and a matrix P ∈ P′

such that limr→∞ P (kr ) = P . The infinite sequence of doubly
stochastic matrices P (1), P (2), . . ., forms a doubly stochastic
chain {P (k)}. For this chain and any regular sequence {S(k)},
note that

F ({P (k)}; {S(k)})

≥
∞∑

r=1

⎛

⎜
⎜
⎝

∑

i∈S(k r + 1 )

j ∈S(k r )

pij (kr ) +
∑

i∈S(k r + 1 )
j ∈S(k r )

pij (kr )

⎞

⎟
⎟
⎠ .

For the regular sequence {S(k)}, there exist S1 ,S2 ⊆ N and a
subsequence of k1 , k2 , . . . , still denoted as k1 , k2 , . . . , such that
Skr

= S1 and Skr +1 = S2 . Then it follows that

F ({P (k)}; {S(k)}) ≥
∞∑

r=1

⎛

⎜
⎜
⎝
∑

i∈S2
j ∈S1

pij (kr ) +
∑

i∈S2
j ∈S1

pij (kr )

⎞

⎟
⎟
⎠ .

For the Sarymsakov matrix P and the two subsets S1 , S2 of
N , we can show that

∑

i∈S2
j ∈S1

pij +
∑

i∈S2
j ∈S1

pij > 0. (35)

Suppose, to the contrary, that the inequality does not hold. Then
pij = 0 for i ∈ S2 , j ∈ S1 . This implies that FP (S2) ⊆ S1 and
hence |FP (S2)| ≤ |S1 | = |S2 |, which contradicts the conclu-
sion in Proposition 4. Therefore, (35) holds.

Since limr→∞ P (kr ) = P

lim
r→∞

⎛

⎜
⎜
⎝
∑

i∈S2
j ∈S1

pij (kr ) +
∑

i∈S2
j ∈S1

pij (kr )

⎞

⎟
⎟
⎠−

⎛

⎜
⎜
⎝
∑

i∈S2
j ∈S1

pij +
∑

i∈S2
j ∈S1

pij

⎞

⎟
⎟
⎠= 0.

This, together with (35), implies that

∞∑

r=1

⎛

⎜
⎜
⎝
∑

i∈S2
j ∈S1

pij (kr ) +
∑

i∈S2
j ∈S1

pij (kr )

⎞

⎟
⎟
⎠ = ∞.

Hence, the stochastic chain {P (k)} has the absolute infinite
flow property. It follows from Lemma 7 that limk→∞ P (k −
1)P (k − 2) · · ·P (1) = 11T /n. �

APPENDIX F

Proof of Theorem 9: We first prove the necessity. Suppose,
therefore, that Q(1) · · ·Q(m − 1)Q(m) is not a Sarymsakov
matrix with m ≥ 3n − 2n+1 + 1. Then, from the definition of
Sarymsakov matrices, there exist two disjoint nonempty sets A
and Ã such that

FQ(1)···Q(m )(A) ∩ FQ(1)···Q(m )(Ã) = ∅
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and

|FQ(1)···Q(m )(A) ∪ FQ(1)···Q(m )(Ã)| ≤ |A ∪ Ã|.

Since

FQ(1)···Q(m )(A) = FQ(m )(FQ(1)···Q(m−1)(A))

FQ(1)···Q(m )(Ã) = FQ(m )(FQ(1)···Q(m−1)(Ã))

there holds

FQ(1)···Q(m−1)(A) ∩ FQ(1)···Q(m−1)(Ã) = ∅. (36)

By induction, it must be true that for all i ∈ {1, 2, . . . ,m}

FQ(1)···Q(i)(A) ∩ FQ(1)···Q(i)(Ã) = ∅. (37)

To proceed, let

S1 = A
Si+1 = FQ(1)···Q(i)(A)

S ′
1 = Ã

S ′
i+1 = FQ(1)···Q(i)(Ã)

for all i ∈ {1, 2, . . . ,m}. From (37) and Lemma 1, it follows
that Si ∩ S ′

i = ∅

Si+1 = FQ(1)···Q(i)(A)

= FQ(i)(FQ(1)···Q(i−1)(A))

= FQ(i)(Si)

and similarly, S ′
i+1 = FQ(i)(S ′

i). Note that each pair of sets Si

and S ′
i are disjoint and nonempty. By [50, Th. 4.7], the number

of ordered partitions (B1 , B2 , B3) of N such that B1 ∪ B2 ∪
B3 = N , B1 ∩ B2 = ∅, B1 ∩ B3 = ∅, B2 ∩ B3 = ∅, and B1
and B2 nonempty, is 3n − 2n+1 + 1. Consider the sequence
of triples of sets (S1 , S

′
1 ,N\(S1 ∪ S ′

1)), (S2 , S
′
2 ,N\(S2 ∪

S ′
2)), . . . , (Sm+1 , S

′
m+1 ,N\(Sm+1 ∪ S ′

m+1)). Since m + 1 >
3n − 2n+1 + 1, there must exist two pairs of sets that are
the same, i.e., Sk = Sr and S ′

k = S ′
r for 1 ≤ k < r ≤ 3n −

2n+1 + 2. Without loss of generality, assume that k = 1.
Then, the two sequences of nonempty sets, S1 , S2 , . . . , Sr−1
and S ′

1 , S
′
2 , . . . , S

′
r−1 with r − 1 ≤ 3n − 2n+1 + 1, and the se-

quence of matrices Q(1), Q(2), . . . , Q(r − 1) satisfy the con-
ditions (19) and (20).

Now, we prove the sufficiency. Suppose, therefore, that such
two sequences of sets, S1 , . . . , Sl and S ′

1 , . . . , S
′
l , and a sequence

of matrices P (1), P (2), . . . , P (l) exist. Let S1 = A and S ′
1 =

Ã. Then, from (20), it follows that

FP (1)(A) = FP (1)(S1) ⊆ S2

FP (1)(Ã) = FP (1)(S1) ⊆ S ′
2 .

Furthermore

FP (1)P (2)(A) = FP (2)(FP (1)(S1)) ⊆ FP (2)(S2) ⊆ S3

FP (1)P (2)(Ã) ⊆ S ′
3 .

Continuing this process, it follows that for all i ∈ {1, 2, . . . ,
l − 1}

FP (1)···P (i)(A) = FP (1)···P (i)(S1) ⊆ Si+1

FP (1)···P (i)(Ã) = FP (1)···P (i)(S ′
1) ⊆ S ′

i+1

and for i = l

FP (1)···P (l)(A) ⊆ FP (l)(Sl) ⊆ S1 = A

FP (1)···P (l)(Ã) ⊆ FP (l)(S ′
l) ⊆ S ′

1 = Ã.

It immediately follows that for any positive integer k

F(P (1)···P (l))k (A) = Fk
P (1)···P (l)(A) ⊆ A

F(P (1)···P (l))k (Ã) ⊆ Ã.

Thus

F(P (1)···P (l))k (A) ∩ F(P (1)···P (l))k (Ã) = ∅

and

|F(P (1)···P (l))k (A) ∪ F(P (1)···P (l))k (Ã)| ≤ |A ∪ Ã|.

This implies that (P (1)P (2) · · ·P (l))k is not a Sarymsakov ma-
trix for any positive integer k. Let k be a positive integer such that
kl ≥ 3n − 2n+1 + 1. Then, the matrix product (P (1)P (2) · · ·
P (l))k is not a Sarymsakov matrix. �
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[34] J. Liu, X. Chen, T. Başar, and M.-A. Belabbas, “Stability of discrete-time
Altafini’s model: A graphical approach,” in Proc. 54th IEEE Conf. Decis.
Control, 2015, pp. 2835–2840.

[35] J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic matri-
ces,” Proc. Amer. Math. Soc., vol. 14, no. 5, pp. 733–737, 1963.

[36] V. D. Blondel and A. Olshevsky, “How to decide consensus: A combi-
natorial necessary and sufficient condition and a proof that consensus is
decidable but NP-hard,” SIAM J. Control Optim., vol. 52, no. 5, pp. 2707–
2726, 2014.

[37] J. Liu, A. S. Morse, B. D. O. Anderson, and C. Yu, “Contractions for
consensus processes,” in Proc. 50th IEEE Conf. Decis. Control, 2011,
pp. 1974–1979.

[38] T. A. Sarymsakov, “Inhomogeneous Markov chains,” (in Russian) Teor.
Verojatnost. i Primen., vol. 6, pp. 194–201, 1961.

[39] E. Seneta, “Coefficients of ergodicity: Structure and applications,” Adv.
Appl. Probab., vol. 11, no. 3, pp. 576–590, 1979.

[40] D. J. Hartfiel and E. Seneta, “A note on semigroups of regular stochastic
matrices,” Linear Algebra Appl., vol. 141, pp. 47–51, 1990.

[41] D. J. Hartfiel, Nonhomogeneous Matrix Products. Singapore: World Sci-
entific, 2002.

[42] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[43] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. 4th Int. Conf. Inf. Process.
Sensor Netw., 2005, pp. 63–70.

[44] J. A. Fax and R. M. Murray, “Information flow and cooperative control of
vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–
1476, Sep. 2004.

[45] J. Liu, N. Hassanpour, S. Tatikonda, and A. S. Morse, “Dynamic threshold
models of collective action in social networks,” in Proc. 51st IEEE Conf.
Decis. Control, 2012, pp. 3991–3996.

[46] F. Dörfler, M. Chertkov, and F. Bullo, “Synchronization in complex os-
cillator networks and smart grids,” Proc. Nat. Acad. Sci., vol. 110, no. 6,
pp. 2005–2010, 2013.

[47] E. Seneta, Non-negative Matrices and Markov Chains. New York, NY,
USA: Springer-Verlag, 1981.

[48] J. M. Anthonisse and H. Tijms, “Exponential convergence of products of
stochastic matrices,” J. Math. Anal. Appl., vol. 59, no. 2, pp. 360–364,
1977.

[49] W. Xia and M. Cao, “Sarymsakov matrices and asynchronous implementa-
tion of distributed coordination algorithms,” IEEE Trans. Autom. Control,
vol. 59, no. 8, pp. 2228–2233, Aug. 2014.

[50] A. Paz, Introduction to Probabilistic Automata. New York, NY, USA:
Academic, 1971.

[51] D. Angeli and P. Bliman, “Convergence speed of unsteady distributed
consensus: Decay estimate along the setting spanning-trees,” SIAM J.
Control Optim., vol. 48, pp. 1–32, 2009.
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