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Abstract— This paper investigates the role persistent arcs
play for averaging algorithms to reach a global consensus under
discrete-time or continuous-time dynamics. Each (directed) arc
in the underlying communication graph is assumed to be
associated with a time-dependent weight function. An arc is
said to be persistent if its weight function has infinite L1 or ℓ1
norm for continuous-time or discrete-time models, respectively.
The graph that consists of all persistent arcs is called the
persistent graph of the underlying network. Three necessary
and sufficient conditions on agreement or ϵ-agreement are
established, by which we prove that the persistent graph fully
determines the convergence to a consensus. It is also shown
how the convergence rates explicitly depend on the diameter of
the persistent graph.

Keywords: Consensus, Persistent Graphs, Averaging Al-
gorithms

I. INTRODUCTION

Recent years have witnessed wide research interest in the
the study averaging algorithms throughout social science
[10], [13], [11], [12], computer science [15], [36], [37] and
engineering [38], [39], [32], [16], [22], [20], [21]. Agreement
seeking has been extensively studied in the literature for both
discrete-time and continuous-time models [16], [15], [40],
[20], [18], [27], [28], [19], [17], [25], [30], [26].

The communication graph plays an important role in the
study of consensus. In most existing work, the arc weights,
which reflect the strength of the influence from one node
to another, are assumed to either be constant whenever
two nodes meet with each other [10], [18], [17], or in a
compact set with positive lower and upper bounds [40],
[16], [27], [28], [13]. However, in reality, the arc weights
may vary in a wide range, and may even fade away since
arcs may have different persistency properties. Links can
be impulsive, vanishing, persistent, etc. Then an interesting
question arises: are there certain arcs which are the ones that
actually generate the convergence to consensus and how do
their properties influence the convergence rate?

The central aim of the paper is to build a model to classify
the arcs in the underlying communication graph, and then
give a precise description on how the persistent arcs indeed
determine the agreement seeking. We define the persistent
graph as the graph having links whose weight functions have
infinite L1 or ℓ1 norm for continuous-time and discrete-time
algorithms, respectively. Global agreement and ϵ-agreement
are defined as whether the maximum state difference con-
verges to zero and whether the convergence is exponentially
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fast, respectively. For the discrete-time case, a necessary and
sufficient condition is obtained on ϵ-agreement under general
stochasticity, self-confidence, and arc balance assumptions.
Then for the continuous-time case, two necessary and suffi-
cient conditions are established on global agreement and ϵ-
agreement, respectively. In this way, we precisely state how
the persistent graph plays a fundamental role in consensus
seeking. Additionally, comparisons of our new conditions
are given with existing results and the relations between the
discrete-time and continuous-time evolutions are highlighted.

The rest of the paper is organized as follows. In Section
II, we introduce the network model and define the problem
of interest. Then in Sections III and IV, the main results
and convergence analysis are presented for discrete-time and
continuous-time dynamics, respectively. Finally concluding
remarks are given in Sections V.

II. PROBLEM DEFINITION

In this section, we present the network model and define
the considered problem. To this end, we first introduce some
basic graph theory [4].

A (simple) digraph G = (V, E) consists of a finite set V =
{1, . . . , n} of nodes and an arc set E , where each arc (i, j) ∈
E is an ordered pair from node i ∈ V to another node j ∈ V .
If the arcs are pairwise distinct in an alternating sequence
v0e1v1e2v2 . . . ekvk of nodes vi and arcs ei = (vi−1, vi) ∈ E
for i = 1, 2, . . . , k, the sequence is called a (directed) path
with length k. A path from i to j is denoted i→ j, and the
length of i→ j is denoted |i→ j|. A path with no repeated
nodes is called a simple path. If there exists a path from node
i to node j, then node j is said to be reachable from node
i. Each node is thought to be reachable by itself. A node v
from which any other node is reachable is called a center (or
a root) of G. G is said to be strongly connected if it contains
path i → j and j → i for every pair of nodes i and j; G
is said to be quasi-strongly connected if G has a center [5],
[25].

The distance from i to j, d(i, j), is defined as the length
of a shortest (simple) path i → j when j is reachable
from i, and the diameter of G as d0 = max{d(i, j)|i, j ∈
V, j is reachable from i}.

In this paper, we consider a network model with node
set V = {1, . . . , n}. Let the digraph G∗ = (V, E∗) denote
the underlying graph. The underlying graph indicates all
potential interactions between nodes. Node j is said to be
a neighbor of i at time t when there is an arc (j, i) ∈ E∗;
each node is supposed to be a neighbor of itself. Let Ni =
{i} ∪ {j : (j, i) ∈ E∗} denote the neighbor set of node i.



Fig. 1. The underlying graph consists of persistent arcs (solid) and
vanishing arcs (dashed). The persistent graph is shown to play a fundamental
role for the convergence to an agreement.

Let xi(t) ∈ R be the state of node i at time t. Time is
either discrete or continuous. The initial time is t0 ≥ 0 in
both cases and each node is equipped with an initial value
xi(t0). The consensus algorithm is in discrete time:

xi(t+ 1) =
∑
j∈Ni

Wij(t)xj(t), i = 1, . . . , n (1)

and in continuous time:

ẋi(t) =
∑
j∈Ni

Wij(t)
[
xj(t)− xi(t)

]
, i = 1, . . . , n. (2)

Here Wij(t) : [0,∞) → [0,∞) is a nonnegative scalar
function which represents the weight of arc (j, i). Clearly
Wij(t) describes the strength of the influence of node j on
i. Since Wij(t) = 0 may happen from time to time, the graph
is indeed time-varying.

We define

ψ(t)
.
= min

i∈V
{xi(t)}, Ψ(t)

.
= max

i∈V
{xi(t)}

as the minimum and maximum state value at time t, respec-
tively. Then we introduce

H(t)
.
= Ψ(t)− ψ(t)

The considered global agreement and ϵ-agreement for both
the discrete-time and continuous-time updating rules are
defined as follows.

Definition 2.1: (a) Global agreement is achieved if for any
x(t0)

.
= (x1(t0) . . . xn(t0))

T ∈ Rn, we have

lim
t→∞

H(t) = 0. (3)

(b) Global ϵ-agreement is achieved if there exist two
constants 0 < ϵ < 1 and T0 > 0 such that for any
x(t0) ∈ Rn and t ≥ t0, we have

H(t+ T0) ≤ ϵH(t). (4)
The goal of this paper is to distinguish the arcs from the

underlying graph that are persistent over a long time range
and how they influence global agreement. To be precise,
we impose the following definition for persistent arcs and
persistent graphs based on the L1 or ℓ1 norms of the weight
functions (see Fig. 1).

Definition 2.2: (a) An arc (j, i) ∈ G∗ is a persistent arc
of the discrete-time updating rule (1) if

∞∑
t=0

Wij(t) = ∞,

and a persistent arc of the continuous-time updating rule (2)
if ∫ ∞

s

Wij(t)dt = ∞ for all s ≥ 0.

(b) The graph Gp = (V, Ep) that consists of all persistent
arcs is called the persistent graph.

Next, in Sections III and IV, we will investigate the
discrete-time and continuous-time updating rules, respec-
tively. We will establish sufficient and necessary conditions
on global agreement and ϵ-agreement, which illustrate that
the notion of persistent graphs is critical to the convergence.

III. DISCRETE-TIME SYSTEMS

In this section, we focus on the discrete-time model (1).
In order to obtain the main result, we need the following
assumptions.

A1 (Stochasticity)
∑

j∈Ni
Wij(t) = 1 for all i ∈ V and

t ≥ 0.
A2 (Self-confidence) There exists 0 < η < 1 such that

Wii(t) ≥ η for i ∈ V and t ≥ 0.
A3 (Arc Balance) There exists a constant A > 1 such that

for any two arcs (j, i), (m, k) ∈ Ep and t ≥ 0, we have

A−1Wij(t) ≤Wkm(t) ≤ AWij(t).

The main result for the discrete-time updating rule (1) on
global ϵ-agreement is as follows.

Theorem 3.1: Suppose A1, A2 and A3 hold. Global ϵ-
agreement is achieved for (1) if and only if

(a) Gp is quasi-strongly connected;
(b) there exist a constant a∗ > 0 and an integer T∗ > 0

such that
∑t+T∗−1

s=t Wij(s) ≥ a∗ for all t ≥ 0 and (j, i) ∈
Ep.

In fact, if (a) and (b) hold, then we have

H(t+ d0T∗) ≤
(
1− ηd0T∗

2
·
(a∗
T∗

)d0
)
H(t) (5)

for all t ≥ t0, where d0 represents the diameter of Gp.
Before we state the proof, we introduce some more

notations, which will be used throughout the rest of the paper.
For two sets S1 and S2, S1 \S2 is defined as S1 \S2 = {z :
z ∈ S1, z /∈ S2}. For the underlying graph G∗ = (V, E∗) and
the persistent graph Gp = (V, Ep), we denote

θ(t) =
∑

(j,i)∈E∗\Ep

Wij(t), (6)

ξ+(t;m) =
∑

j∈Nm\{m}

Wmj(t), (7)

and

ξ+0 (t;m) =
∑

j∈Nm\{m},(j,m)∈Ep

Wmj(t). (8)

In the following two subsections, we prove the necessity and
sufficiency parts of Theorem 3.1, respectively.



A. Necessity

We need to show that a global ϵ-agreement cannot be
achieved without either condition (a) or (b).

The upcoming analysis relies on the following well-known
lemmas.

Lemma 3.1: Suppose 0 ≤ pk < 1 for all k. Then∑∞
k=0 pk = ∞ if and only if

∏∞
k=0(1− pk) = 0.

Lemma 3.2: log(1− t) ≥ −2t for all 0 ≤ t ≤ 1/2.
We have the following proposition indicating that Gp being

quasi-strongly connected is not only a necessary condition
for (1) to reach global ϵ-agreement, but also necessary for
(simple) global agreement, even in the absence of assump-
tions A2 and A3.

Proposition 3.1: Suppose A1 holds. If global agreement
is achieved for (1), then Gp is quasi-strongly connected.

We are now in a place to present the following conclusion,
which shows the necessity of condition (b) in Theorem 3.1.

Proposition 3.2: Suppose A1 and A3 hold. If global ϵ-
agreement is achieved for (1), then there exist a constant
a∗ > 0 and an integer T∗ > 0 such that

∑t+T∗
s=t Wij(s) ≥ a∗

for all t ≥ 0 and (j, i) ∈ Gp.
The necessity claim in Theorem 3.1 follows from Propo-

sitions 3.1 and 3.2. We refer to [45] for technical details of
the proofs.

B. Sufficiency

We establish a lemma on the upper and lower bounds for
some particular nodes.

Lemma 3.3: Suppose A1 holds. Let xm(t) = µψ(t)+(1−
µ)Ψ(t) with 0 ≤ µ ≤ 1. Then for any integer T > 0, we
have:

xm(t+ T ) ≤ µ
t+T−1∏
s=t

(
1− ξ+(s;m)

)
· ψ(t)

+
(
1− µ

t+T−1∏
s=t

(
1− ξ+(s;m)

))
·Ψ(t), (9)

and

xm(t+ T ) ≥ µ
t+T−1∏
s=t

(
1− ξ+(s;m)

)
·Ψ(t)

+
(
1− µ

t+T−1∏
s=t

(
1− ξ+(s;m)

))
· ψ(t). (10)

Proof: When xm(t) = µψ(t) + (1− µ)Ψ(t), for time t+ 1,
we have

xm(t+ 1) ≤ µ
(
1− ξ+(t;m)

)
· ψ(t)

+
(
1− µ

(
1− ξ+(t;m)

))
Ψ(t). (11)

For time t+ 2, we obtain

xm(t+ 2) ≤ µ

t+1∏
s=t

(
1− ξ+(s;m)

)
· ψ(t)

+
(
1− µ

t+1∏
s=t

(
1− ξ+(s;m)

))
·Ψ(t). (12)

Continuing, we obtain (9).
In equality (10) can be easily obtained using a symmetric

analysis as for (9). �
We now present the sufficiency proof of Theorem 3.1. In

fact, we are going to prove a stronger statement which does
not rely on the arc balance assumption A3.

Proposition 3.3: Suppose A1 and A2 hold. Global ϵ-
agreement is achieved for (1) if Gp is quasi-strongly con-
nected and there exist a constant a∗ > 0 and an integer
T∗ > 0 such that

∑t+T∗−1
s=t Wij(s) ≥ a∗ for all t ≥ 0 and

(j, i) ∈ Gp.
Proof: Let i0 ∈ V be a center of Gp. Take t0 ≥ 0. Assume
first that

xi0(t0) ≤
1

2
ψ(t0) +

1

2
Ψ(t0). (13)

Then from Lemma 3.3, one has

xi0(t0 + T ) ≤ 1

2

t0+T−1∏
s=t0

(
1− ξ+(s; i0)

)
· ψ(t0)

+
(
1− 1

2

t0+T−1∏
s=t0

(
1− ξ+(s; i0)

))
·Ψ(t0)

≤ ηT

2
ψ(t0) +

(
1− ηT

2

)
Ψ(t0) (14)

for all T = 0, 1, . . . .
Denote V1 as the node set consisting of all the nodes of

which i0 is a neighbor in Gp, i.e., V1 = {j : (i0, j) ∈ Ep}.
Note that V1 is nonempty because i0 is a center. For any
i1 ∈ V1, there exists an instance t̄1 ∈ [t0, t0 + T∗ − 1] such
that Wi1i0(t̄1) ≥ a∗/T∗ because

∑t0+T∗−1
t=t0

Wi1i0(t) ≥ a∗.
Suppose t̄1 = t0 + ϱ1 with ϱ1 ∈ [0, T∗ − 1]. Then with (14),
we have

xi1(t̄1 + 1) = xi1(t0 + ϱ1 + 1)

≤Wi1i0(t0 + ϱ1)xi0(t0 + ϱ1)

+
(
1−Wi1i0(t0 + ϱ1)

)
Ψ(t0)

≤ ηϱ1 · a∗
2T∗

· ψ(t0) +
(
1− ηϱ1 · a∗

2T∗

)
Ψ(t0).

(15)

Based on Lemma 3.3, we can further conclude

xi1(t0 + ϱ1 + T ) ≤ ηϱ1+T−1 · a∗
2T∗

· ψ(t0)

+
(
1− ηϱ1+T−1 · a∗

2T∗

)
Ψ(t0) (16)

for all T = 1, 2, . . . , which implies

xi1(t0 + T∗ +K) ≤ ηT∗+K · a∗
2T∗

· ψ(t0)

+
(
1− ηT∗+K · a∗

2T∗

)
Ψ(t0) (17)

for all K = 0, 1, . . . .
Next, since Gp is quasi-strongly connected, we can denote

V2 as the node set consisting of all the nodes each of which
has a neighbor in {i0}∪V1 within Gp. For any i2 ∈ V2, there
exist a node i∗ ∈ {i0}∪V1 and an instance t̄2 = t0+T∗+ϱ2



with ϱ2 ∈ [0, T∗−1] such that Wi2i∗(t̄1) ≥ a∗/T∗. Similarly
we have

xi2(t̄2 + 1)
ηT∗+ϱ2

2
·
(a∗
T∗

)2 · ψ(t0)
+

(
1− ηT∗+ϱ2

2
·
(a∗
T∗

)2)
Ψ(t0), (18)

and therefore

xi2(t0 + 2T∗ +K) ≤ η2T∗+K

2
·
(a∗
T∗

)2
ψ(t0)

+
(
1− η2T∗+K

2
·
(a∗
T∗

)2)
Ψ(t0)

for all K = 0, 1, . . . .
Proceeding the estimate, V3, . . . ,Vk can be similarly de-

fined until
(
∪k
i=1Vi

)
∪{i0} = V . Moreover, it is not hard to

see that i0 can be selected so that k = d0, where d0 is the
diameter of Gp, and thus

Ψ(t0 + d0T∗) ≤
ηd0T∗

2
·
(a∗
T∗

)d0 · ψ(t0)

+
(
1− ηd0T∗

2
·
(a∗
T∗

)d0
)
Ψ(t0). (19)

With (19), we eventually have

H(t0 + d0T∗) ≤
(
1− ηd0T∗

2
·
(a∗
T∗

)d0
)
H(t0). (20)

For the opposite case of (13) with

xi0(t0) >
1

2
ψ(t0) +

1

2
Ψ(t0), (21)

(20) is obtained using a symmetric argument by bounding
ψ(t0 + d0T∗) from below.

Therefore, the desired conclusion follows with ϵ = 1 −
ηd0T∗

2 ·
(
a∗
T∗

)2 and T0 = d0T∗ since (20) holds independent
with the choice of t0. �

IV. CONTINUOUS-TIME SYSTEMS

In this section, we turn to the continuous-time updating
rule. We need an assumption on the continuity of each weight
function Wij(t) for the existence of trajectories of (2).
A4 (Continuity) Each Wij(t), (j, i) ∈ E∗ is continuous
except for a set with measure zero.

With assumption A4, each solution of (2) is considered in
the sense of Caratheodory in the following [3], [9].

The upper Dini derivative of a function h : (a, b) → R at
t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s

The next result is useful for the calculation of Dini deriva-
tives [6], [25].

Lemma 4.1: Let Vi(t, x) : R × Rm → R, i = 1, . . . , n,
be C1 and V (t, x) = maxi=1,...,n Vi(t, x). If I(t) =

{
i ∈

{1, . . . , n} : V (t, x(t)) = Vi(t, x(t))
}

is the set of indices
where the maximum is reached at t, then D+V (t, x(t)) =
maxi∈I(t) V̇i(t, x(t)).

The following lemma establishes the monotonicity of Ψ(t)
and ψ(t).

Lemma 4.2: For all t ≥ t0 ≥ 0, we have D+Ψ(t) ≤ 0
and D+ψ(t) ≥ 0.
Proof: We prove D+Ψ(t) ≤ 0. The other part can be proved
similarly.

Let I0(t) represent the set containing all the agents that
reach the maximum in the definition of Ψ(t) at time t, i.e.,
I(t) = {i ∈ V| xi(t) = Ψ(t)}. Then according to Lemma
4.1, we obtain

D+Ψ(t) = max
i∈I0(t)

ẋi(t)

= max
i∈I0(t)

[ ∑
j∈Ni

Wij(t)(xj(t)− xi(t))
]

≤ 0, (22)

which completes the proof. �
Lemma 4.2 implies, H(t) is non-increasing for all t ≥

t0, and therefore each (Caratheodory) trajectory of (2) is
bounded within the initial states of the nodes. As a result,
the trajectories exist in [t0,∞) for any initial condition.

The main result on global consensus and ϵ-consensus is
stated in the following two theorems.

Theorem 4.1: Suppose A3 and A4 hold. Global agreement
is achieved for (2) if and only if Gp is quasi-strongly
connected.

Theorem 4.2: Suppose A3 and A4 hold. Global ϵ-
agreement is achieved for (2) if and only if

(a) Gp is quasi-strongly connected;
(b) there exists two constants a∗, τ0 > 0 such that∫ t+τ0

t
Wij(s)ds ≥ a∗ for all t ≥ 0 and (j, i) ∈ Gp.

Moreover, if (a) and (b) hold, then we have

H
(
t+ τ0 ·

⌈d0 log 2
a∗

⌉)
≤

(
1− md0

0

2

)
H(t), (23)

where m0 =
(
ω0

2

)2 1
(n−1)A with ω0 = e−

∫ ∞
0

θ(t)dt, d0 is
the diameter of Gp, and ⌈z⌉ represents the smallest integer
which is no smaller than z.

Theorem 4.1 implies that the connectivity of the persistent
graph Gp totally determines whether an agreement can be
achieved globally. Furthermore, Theorem 4.2 implies that∫ T

0
Wij(t)dt = O(T ) is a critical condition to ensure a

global ϵ-consensus.
Remark 4.1: If we have

∫ T

t=t0
Wij(t)dt = ∞, (j, i) ∈ Gp

for some finite T , it follows from the proof of Theorem 4.1
below that (2) will reach a global agreement in finite time
when t tends to T .

A. Preliminaries
We establish two lemmas which describe the boundaries of

how much each individual arc affects the nodes’ dynamics.
We refer to [45] for the technical proofs.

Lemma 4.3: Suppose xm(s) ≤ µψ(s) + (1 − µ)Ψ(s) for
some s ≥ t0 and m ∈ V with 0 ≤ µ ≤ 1 a giving constant.
Then we have

xm(t) ≤ µe−
∫ t
s
ξ+(τ ;m)dτψ(s) +

[
1− µe−

∫ t
s
ξ+(τ ;m)dτ

]
Ψ(s)
(24)



for all t ≥ s.
Lemma 4.4: Suppose (l,m) ∈ E∗ and there exists a

constant 0 < µ < 1 such that

xl(t) ≤ µψ(s0) + (1− µ)Ψ(s0), t ∈ [s0, s]

for t0 ≤ s0 < s. Then for all t ∈ [s0, s], we have

xm(t) ≤ µ

∫ t

s0

e−
∫ t
u
ξ+(τ ;m)dτWml(u)du · ψ(s0)

+
[
1− µ

∫ t

s0

e−
∫ t
u
ξ+(τ ;m)dτWml(u)du

]
Ψ(s0).

B. Proof of Theorem 4.1

Let i0 ∈ V be a center of Gp. Assume first that

xi0(t0) ≤
1

2
ψ(t0) +

1

2
Ψ(t0). (25)

Denote ω0 = e−
∫ ∞
0

θ(t)dt. Then we have 0 < ω0 ≤ 1. Thus,
based on Lemma 4.3 and noting the fact that ψ(t0) ≤ Ψ(t0),
we have

xi0(t) ≤
ω0

2
e
−

∫ t
t0

ξ+0 (τ ;i0)dτψ(t0)

+
[
1− ω0

2
e
−

∫ t
t0

ξ+0 (τ ;i0)dτ
]
Ψ(t0).

Define

t̂1 = inf
{
t ≥ t0 : e

−
∫ t
t0

ξ+0 (τ ;i0)dτ =
1

2

}
. (26)

We see that t̂1 is finite from the definition of Ep. As a result,
we obtain

xi0(t) ≤
ω0

4
ψ(t0) +

[
1− ω0

4

]
Ψ(t0), t ∈ [t0, t̂1]. (27)

Next, we denote the node set consisting of all the nodes of
which i0 is a neighbor in Gp as V1, i.e., V1 = {j : (i0, j) ∈
Ep}. Note that V1 is nonempty because i0 is a center. Then
for any i1 ∈ V1, we see from Lemma 4.4 that

xi1(t̂1) ≤
ω2
0

4

∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du · ψ(t0)

+
[
1− ω2

0

4

∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du
]
Ψ(s0).

(28)

The arc balance assumption A3 implies that∫ t̂1

u

ξ+0 (t; i1)dt ≤
∫ t̂1

u

(n− 1)AWi1i0(t)dt,

which yields∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du

≥ 1

(n− 1)A
·
[
1− e−(n−1)A

∫ t̂1
t0

Wi1i0 (τ)dτ
]
. (29)

On the other hand, we also have∫ t̂1

t0

ξ+0 (t; i0)dt ≤
∫ t̂1

t0

(n− 1)AWi1i0(t)dt.

Thus, we know from (29) and the definition of t̂1 that∫ t̂1

t0

e−
∫ t̂1
u

ξ+0 (τ ;i1)dτWi1i0(u)du

≥ 1

(n− 1)A
·
[
1− e−

∫ t̂1
t0

ξ+0 (τ ;i0)dτ
]

=
1

2(n− 1)A
. (30)

Equations (28) and (30) result in

xi1(t̂1) ≤
m0

2
ψ(t0) + (1− m0

2
)Ψ(t0) (31)

for all i1 ∈ V1, where m0 =
(
ω0

2

)2 1
(n−1)A .

Since Gp has a center, we can proceed the estimation
to nodes in V2, . . . ,Vk until

(
∪k
j=1 Vj

)
∪ {i0} = V with

t̂2, . . . , t̂k such that

xi(t̂k) ≤
mk

0

2
ψ(t0) + (1− mk

0

2
)Ψ(t0) (32)

for all i ∈ V , which leads to

Ψ(t̂k) ≤
mk

0

2
ψ(t0) + (1− mk

0

2
)Ψ(t0). (33)

We see that i0 can be chosen so that k ≤ d0 always
holds, where d0 is the diameter of Gp. Denoting t1 = t̂k,
we eventually arrive at

H(t1) ≤
md0

0

2
ψ(t0) +

(
1− md0

0

2

)
Ψ(t0)− ψ(t0)

=
(
1− md0

0

2

)
H(t0). (34)

Although the analysis up to now is based on assumption
(25), we see that (34) also holds for the other case with
xi0(t0) >

1
2ψ(t0) +

1
2Ψ(t0) using a symmetric argument by

investigating the lower bound of ψ(t1).
Similar estimate can be carried out for tk, k = 2, 3, . . . ,

which leads to

H(tk+1) ≤
(
1− md0

0

2

)
H(tk) (35)

for all tk, k = 1, 2, . . . , which yields

H(tk) ≤
(
1− md0

0

2

)k

H(t0). (36)

Therefore, we can now conclude that limt→∞ H(t) = 0
because H(t) is non-increasing and 0 < m0 < 1. The
sufficiency statement of Theorem 4.1 is thus proved.

The necessity part follows the same line as the proof of
Proposition 3.1, and therefore omitted.

C. Proof of Theorem 4.2

The necessity statement follows from a similar argument
as the proof of Proposition 3.2. The sufficiency part can be
obtained based on the convergence analysis in Theorem 4.1.
We refer to [45] for technical details.



V. CONCLUSIONS

This paper studied persistent graphs under discrete-time
and continuous-time consensus algorithms. Sufficient and
necessary conditions were established on the persistent graph
for the network to reach global agreement or ϵ-agreement.
It was shown that the persistent graph essentially determines
both the convergence and convergence rate to an agreement.
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