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Abstract— In this paper, we study randomized consensus
processing over general random graphs. At time step k, each
node will follow the standard consensus algorithm, or stick
to current state by a simple Bernoulli trial with success
probability pk. Connectivity-independent and arc-independent
graphs are defined, respectively, to capture the fundamental
independence of random graph processes with respect to a con-
sensus convergence. Sufficient and/or necessary conditions are
presented on the success probability sequence for the network
to reach a global a.s. consensus under various conditions of
the communication graphs. Particularly, for arc-independent
graphs with simple self-confidence condition, we show that∑

k
pk = ∞ is a sharp threshold corresponding to a consensus

0 − 1 law, i.e., the consensus probability is 0 for almost all
initial conditions if

∑
k
pk converges, and jumps to 1 for all

initial conditions if
∑

k
pk diverges.

Keywords: Consensus algorithms, Random graphs, Dy-

namics Randomization, Threshold

I. INTRODUCTION

In recent years, there has been considerable research effort

on distributed algorithms for exchanging information, for

estimating and for computing over a network of nodes, due

to a variety of potential applications in sensor, peer-to-peer

and wireless networks. Targeting design of simple decen-

tralized algorithms for computation or estimation, where

each node exchanges information only in a neighboring

view, distributed averaging serves as a primitive toward more

sophisticated information processing algorithms.

Deterministic consensus over time-invariant or time-

varying graphs has been extensively studied, in which the

problems were typically devoted on sufficient and/or connec-

tivity conditions of the underlying communication graph for

convergence, convergence rate and optimal convergence [16],

[17], [20], [21], [18], [24], [15], [14], [23], [34]. On the other

hand, the network where consensus algorithms are carried

out may be randomized. In [25], the authors studied the linear

consensus dynamics and almost sure convergence was shown

when the communication graph was independent, identically

distributed (i.i.d.) as an Erdös–Rényi random graph model.

Then more general models were studied in [26], [27], [28],

[29], [37], [32], [33], [35], [31].

In this paper, we study consensus algorithms with random-

ized decision-making. At time slot k, each agent indepen-

dently decides to follow the averaging algorithm with prob-

ability pk, and to stick to its current state with probability

1−pk. This randomized decision-making protocol may come

from the random node failure in wireless networks [28], or
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come from nodes’ preference in social networks [40]. The

communication graph is assumed to be a general random di-

graph process independent with the agents’ decision making

process.

The rest of the paper is organized as follows. In Section

II we recall some notations in graph theory. Section III

presents the randomized algorithm and the main results

on the impossibility and possibility for the algorithm to

converge. Then in Section IV, the proof for the impossibility

conclusions is given. In Sections V and VI, the convergence

analysis for connectivity-independent and arc-independent

graphs are proposed, respectively. Finally Section VII gives

some concluding remarks.

II. PRELIMINARIES

In this section, we introduce some notations on directed

graphs. A (simple) directed graph, i.e., digraph, G = (V, E)
consists of a finite set V of nodes and an arc set E , where each

element e = (i, j) ∈ E is an ordered pair of two different

nodes in V from node i to node j [4]. If the arcs are pairwise

distinct in an alternating sequence v0e1v1e2v2 . . . envn of

nodes vi and arcs ei = (vi−1, vi) ∈ E for i = 1, 2, . . . , n,

the sequence is called a (directed) path with length n, and if

v0 = vn a (directed) cycle. A path with no repeated nodes is

called a simple path. A digraph without cycles is said to be

acyclic. A digraph G is called to be bidirectional if (i, j) ∈ E
if and only if (j, i) ∈ E .

A simple path from i to j is denoted as i → j, and the

length of i → j is denoted as |i → j|. If there exists a path

from node i to node j, then node j is said to be reachable

from node i. Each node is thought to be reachable by itself.

A node v from which any other node is reachable is called

a center (or a root) of G. G is said to be strongly connected

if it contains path i → j and j → i for every pair of nodes

i and j. G is said to be quasi-strongly connected if G has a

center [6].

Additionally, if G1 = (V, E1) and G2 = (V, E2) have the

same node set, the union of the two digraphs is defined as

G1 ∪ G2 = (V, E1 ∪ E2).

III. PROBLEM DEFINITION AND MAIN RESULTS

A. Network Model

Consider a network with node set V = {1, 2, . . . , n}. A

(simple) directed graph (digraph), G = (V, E) consists of

a node set V and an arc set E , where each element e =
(i, j) ∈ E is an ordered pair of two different nodes in V from

node i to node j [4]. Then there are as many as 2n(n−1)

different digraphs with node set V . We label these graphs

from 1 to 2n(n−1) by an arbitrary order. In the following, we
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will identify an integer in [1, 2n(n−1)] with the corresponding

graph in this order. Denote Ω = {1, . . . , 2n(n−1)} as the

graph set.

The communication graph of the network over time,

is model as a sequence of random variables, {Gk(ω) =
(V, Ek(ω))}

∞
k=0, which take value in Ω. Where there is no

possible confusion, we write Gk(ω) as Gk.

We call node j a neighbor of i if there is an arc from j
to i in graph G, and each node is supposed to be a neighbor

of itself. Denote the random set Ni(k) = {j ∈ V : (j, i) ∈
Ek}∪ {i} as the neighbor set of node i at time k. The agent

dynamics is described as follows:

xi(k + 1) =

{

∑

j∈Ni(k)
aij(k)xj(k), with prob. pk

xi(k), with prob. 1− pk
(1)

where 0 ≤ pk < 1 and aij(k) denotes the weight of arc

(j, i). For aij(k), we assume the following weights rule as

our standing assumptions.

A1. For all i and k, we have
∑

j∈Ni(k)

aij(k) = 1.

A2. There exists a constant η > 0 such that η ≤ aij(k) for

all i, j and k.

Denote

H(k)
.
= max

i=1,...,n
xi(k), h(k)

.
= min

i=1,...,n
xi(k)

as the maximum and minimum states among all nodes, re-

spectively, and define H(k)
.
= H(k)−h(k) as the consensus

metric. Our interest is in the consensus convergence of the

randomized consensus algorithm and in the (absolute) time

it takes for the network to reach a consensus [31].

Definition 3.1: A global a.s. consensus of (1) is achieved

if

P( lim
k→∞

H(k) = 0) = 1 (2)

for any initial condition x(0) = (x1(0) . . . xn(0))
T ∈ R

n.

Moreover, for any 0 ≤ ǫ < 1, the ǫ-computation time is

denoted by Tcom(ǫ), and is defined as

Tcom(ǫ)
.
= sup

x(0)

inf
{

k : P

(H(k)

H(0)
≥ ǫ

)

≤ ǫ
}

. (3)

B. Main Results

We first present an impossibility conclusion.

Theorem 3.1: If
∑∞

k=0 pk < ∞, then global a.s. con-

sensus cannot be achieved for Algorithm (1). Moreover, a

general lower bound for Tcom(ǫ) can be given by

Tcom(ǫ) ≥ sup
{

k :

k−1
∑

i=0

log(1− pi)
−1 ≤

log ǫ−1

n

}

.

Note that, Theorem 3.1 holds for all possible graph

processes. Plus a simple self-confidence assumption, this

impossibility claim can be improved as follows.

Theorem 3.2: Assume that aii(k) ≥ γ0 for all i and

k, where γ0 > 1/2 is a constant. If
∑∞

k=0 pk < ∞,

then for almost all initial conditions, Algorithm (1) achieves

consensus with probability 0.

In order to establish possibility answers to a global con-

sensus, we need independence and connectivity of the graph

processes.

Definition 3.2: Let {Gk}
∞
0 be a random graph process.

Then {Gk}
∞
0 is called to be

(i) connectivity-independent if events Ck
.
=

{

Gk is quasi-

strongly connected
}

, k = 0, 1, . . . , are independent.

(ii) arc-independent if there exists a (nonempty) determin-

istic graph G∗ = (V, E∗) such that events Ak,τ
.
=

{

(iτ , jτ ) ∈
Gk

}

, (iτ , jτ ) ∈ E∗, k = 0, 1, . . . , are independent. In this

case G∗ is called a basic graph of this random graph process.

Note that, connectivity-independence and arc-

independence are actually different levels of independence

for the sequence of random graphs G0,G1, . . . . This

sequence is not necessarily independent to be either

connectivity-independent or arc-independent. For instance,

G0,G1, . . . can be given by a Markov chain which is clearly

not independent, but it can be connectivity-independence or

arc-independence as long as the transition matrix is properly

chosen.

The sufficiency results for consensus convergence are

stated in the following, respectively, for connectivity-

independent and arc-independent graphs.

Theorem 3.3: Suppose {Gk}
∞
0 is connectivity-

independent and there exists a constant 0 < q < 1
such that P

(

Gk is quasi-strongly connected
)

≥ q for all

k. Assume in addition that pk+1 ≤ pk. Then Algorithm

(1) achieves a global a.s. consensus if
∑∞

s=0 p
n−1
k = ∞.

Moreover, an upper bound for Tcom(ǫ) can be given by

Tcom(ǫ) ≤ inf
{

M :

M
∑

i=1

log
(

1−
(qη)(n−1)2

2
· pn−1

i(n−1)2

)−1

≥ log ǫ−2
}

× (n− 1)2.

(4)
Theorem 3.4: Suppose {Gk}

∞
0 is arc-independent with a

quasi-strongly connected basic graph, and there exists a

constant 0 < θ0 < 1 such that P
(

(i, j) ∈ Ek
)

≥ θ0 for

all k and (i, j) ∈ E∗. Then Algorithm (1) achieves a global

a.s. consensus if and only if
∑∞

k=0 pk = ∞. In this case, we

have

Tcom(ǫ) ≤ inf
{

k :

k−1
∑

i=0

(

1− (1− pi)
n
)

≥
(n− 1)

logA
log

(

Aǫ2/n
)

}

(5)

where A = 1 −
(

ηθ0
n

)(n−1)|E∗|
with |E∗| as the number of

elements in E∗.

Connectivity is a global property for a graph, and it

indeed does not rely on any specific arc. We believe that the

convergence condition given in Theorem 3.3 is quite tight

since the probability that all the links function in Algorithm

(1) at time k is pnk , and connectivity can be lost easily by

losing any single link. Moreover, the convergence conditions

given in Theorems 3.3 and 3.4 are consistent with the widely-

used decreasing gain condition in the study of stochastic

approximations on various adaptive algorithms [3].
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Combing Theorems 3.2 and 3.4, we see that
∑∞

k=0 pk =
∞ is a sharp threshold for Algorithm (1) to reach consensus

with arc-independet graphs and self-confidence assumption

(see Fig. 1). In other words, a similar 0−1 law is established

for consensus dynamics on random graphs as the classical

random graph theory [5].

Consensus  

Probability 

0 

1 

Fig. 1. Consensus appears suddenly for arc-independent graphs with
aii(k) ≥ γ0.

IV. IMPOSSIBILITY ANALYSIS

This section focuses on the proof of Theorems 3.1 and

3.2. The following lemma is well-known.

Lemma 4.1: Suppose 0 ≤ bk < 1 for all k. Then
∑∞

k=0 bk = ∞ if and only if
∏∞

k=0(1− bk) = 0.

A. Proof of Theorem 3.1

From algorithm (1), if
∑∞

k=0 bk < ∞, we have

P

(

xi(k + 1) = xi(k), k = 0, 1, . . .
)

≥
∞
∏

k=0

(1− pk)
.
= r0,

where 0 < r0 < 1 is a well-defined constant according

to Lemma 4.1. Then it is straightforward to see that the

impossibility claim of Theorem 3.1 holds.

Next, we define a scalar random variable ̟(k), by that

̟(k) = H(k + 1)/H(k) when H(k) > 0, and ̟(k) = 1
when H(k) = 0. Obviously, h(k) is non-decreasing, and

H(k) is non-increasing. Thus, it always holds that ̟(k) ≤ 1.

We see from the considered algorithm that

P

(

̟(k) = 1
)

≥ (1− pk)
n. (6)

As a result, we obtain

P

(H(k)

H(0)
≥ ǫ

)

≥ P

(

̟(j) = 1, j = 0, . . . , k − 1
)

≥
k−1
∏

j=0

(1− pj)
n, (7)

and then the lower bound for the ǫ-computation given in

Theorem 3.1 can be easily obtained. The proof of Theorem

3.1 is completed.

B. Proof of Theorem 3.2

In order to prove Theorem 3.2, we need the following

lemma.

Lemma 4.2: Assume that aii(k) ≥ γ0 > 1/2 for all i and

k. Then

H(k + 1) ≥
(

2γ0 − 1
)

H(k)

for all k.

Proof. Suppose xm(k) = h(k) for some m ∈ V . Then we

have
∑

j∈Nm(k)

amj(k)xj(k) ≤ amm(k)h(k) +
(

1− amm(k)
)

H(k)

≤ γ0h(k) +
(

1− γ0
)

H(k),

which implies

h(k + 1) ≤ γ0h(k) +
(

1− γ0
)

H(k). (8)

A symmetric argument leads to

H(k + 1) ≥
(

1− γ0
)

h(k) + γ0H(k). (9)

Based on (8) and (9), we obtain

H(k + 1) = H(k + 1)− h(k + 1)

≥
(

1− γ0
)

h(k) + γ0H(k)

−
[

γ0h(k) +
(

1− γ0
)

H(k)
]

≥
(

2γ0 − 1
)

H(k). (10)

The desired conclusion follows. �

Noting the fact that Lemma 4.2 holds for all possible

communication graphs, we see that

P

(

2γ0 − 1 ≤ ̟(k) ≤ 1
)

= 1 (11)

and

P

(

̟(k) < 1
)

≤ P

(

at least one node takes averaging
)

= 1− (1− pk)
n (12)

where ̟(k) follows the definition in the proof of Theorem

3.1.

Next, by Lemma 4.1, it is not hard to find

∞
∑

k=0

pk < ∞ ⇐⇒
∞
∏

k=0

(1− pk) > 0

⇐⇒
∞
∏

k=0

(1− pk)
n > 0

⇐⇒
∞
∑

k=0

(

1− (1− pk)
n
)

< ∞, (13)

where the last equivalence is obtained by taking bk = 1 −
(1− pk)

n in Lemma 4.1.

Therefore, if
∑∞

k=0 pk < ∞, applying the First Borel-

Cantelli Lemma [2] on (12), it follows immediately that

P

(

̟(k) < 1 for infinitely many k
)

= 0. (14)

Furthermore, based on (11), we eventually have

P

(

lim
k→∞

H(k) = 0 for H(0) > 0
)

≤ P

(

̟(k) < 1 for infinitely many k
)

= 0. (15)

Since {x(0) : H(0) = 0} has zero measure in R
n, Theorem

3.2 follows and this ends the proof. �
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V. CONNECTIVITY-INDEPENDENT GRAPHS

In this section, we present the convergence analysis for

connectivity-independent graphs. We are going to study some

more general cases relying on the joint graphs only.

Joint connectivity has been widely studied in the literature

on consensus seeking [16], [17]. The joint graph of Gk on

time interval [k1, k2] for 0 ≤ k1 ≤ k2 ≤ +∞, is denoted by

G[k1,k2] =
(

V,
⋃

k∈[k1,k2]

Ek
)

.

Then we introduce the following connectivity definition.

Definition 5.1: {Gk}
∞
0 is said to be

(i) stochastically uniformly quasi-strongly connected, if

there exist two constants B ≥ 1 and 0 < q < 1 such that

{G[mB,(m+1)B−1]}
∞
m=0 is connectivity-independent and for

all m, we have

P

(

G[mB,(m+1)B−1] is quasi-strongly connected
)

≥ q.

(ii) stochastically infinitely quasi-strongly connected, if

there exist a sequence 0 = c0 < · · · < cm < . . .
and a constant 0 < q < 1 such that {G[cm,cm+1)}

∞
m=0 is

connectivity-independent and for all m, we have

P

(

G[cm,cm+1) is quasi-strongly connected
)

≥ q.

Roughly speaking, uniform (or infinite) joint-connections

are defined on the union graphs in bounded (or boundless)

time intervals.

A. Uniformly Joint Graphs

The following result is for consensus seeking on stochas-

tically uniformly quasi-strongly connected graphs.

Proposition 5.1: Suppose {Gk}
∞
0 is stochastically uni-

formly quasi-strongly connected. Algorithm (1) achieves a

global consensus almost surely if
∑∞

s=0 p̄s = ∞, where

p̄s = inf
α1,...,αn−1

{
n−1
∏

l=1

pαl
|

s(n− 1)2B ≤ α1 < · · · < αn−1 < (s+ 1)(n− 1)2B}.
The proof is based on the following lemma.

Lemma 5.1: Assume that Gk is stochastically uniformly

quasi-strongly connected. Then for any s = 0, 1, . . . , the

probability that there exists a node i0 ∈ V such that i0 is a

center for at least n − 1 graphs within G[τB,(τ+1)B−1], τ =

s(n− 1)2, . . . , (s+ 1)(n− 1)2 − 1 is no less than q(n−1)2 .

Proof. Since Gk is stochastically uniformly quasi-strongly

connected, the probability that each graph G[τB,(τ+1)B−1]

for τ = s(n − 1)2, . . . , (s + 1)(n − 1)2 − 1, has a center

is no less than q(n−1)2 . We count a time whenever there is

a center node in G[τB,(τ+1)B−1], τ = s(n − 1)2, . . . , (s +
1)(n − 1)2 − 1. These (n − 1)2 graphs will lead to at least

(n−1)2 counts. However, the total number of the nodes is n.

Thus, at least one node is counted more than (n− 2) times.

The conclusion follows. �.

The main result on randomized consensus for SUQSC

graphs is stated as follows.

Proof. Denote

h(k) = min
i=1,...,n

xi(k); H(k) = max
i=1,...,n

xi(k).

Obviously, we have h(k) is non-decreasing, while H(k)
is non-increasing. Then a global almost sure consensus is

achieved for (1) if and only if P{limk→+∞ S(k) = 0} = 1,

where S(k) = H(k)−h(k). Denote ks = s(n−1)2B for s =
0, 1, . . . . Let i0 be the center node defined in Lemma 5.1 such

that the probability that i0 is a center of G[τjB,(τj+1)B−1] for

j = 1, . . . , n− 1 with ks ≤ τjB ≤ ks+1 − 1 is no less than

q(n−1)2 .

Assume that xi0(ks) ≤ 1
2h(ks) + 1

2H(ks). With the

weights rule, we see that
∑

j∈Ni0
(ks)

ai0j(ks)xj(ks) ≤
η

2
h(ks) + (1−

η

2
)H(ks). (16)

Thus, with η < 1, we obtain

xi0(ks + 1) ≤
η

2
h(ks) + (1−

η

2
)H(ks). (17)

Continuing the same estimations, we know that for any ̺ =
0, 1, . . . ,

xi0(ks + ̺) ≤
η̺

2
h(ks) + (1−

η̺

2
)H(ks). (18)

When i0 is a center of G[τ1B,(τ1+1)B−1], there will be a

node i1 ∈ V different with i0 and a time instance k̂1 ∈
[τ1B, (τ1 + 1)B − 1] such that (i0, i1) ∈ E

k̂1
. Denote k̂1 =

ks + ς with τ1B − ks ≤ ς ≤ τ1B − ks +B − 1. If i1 takes

the average option at time step k̂1 + 1, with (18), we obtain

P{xil(ks + ̺) ≤
η̺

2
h(ks) + (1−

η̺

2
)H(ks),

l = 0, 1; ̺ = (τ1 + 1)B − ks, . . . } ≥ p
k̂1
q(n−1)2 .

We proceed the analysis on time interval [τ2B, (τ2+1)B−
1]. When i0 is a center of G[τ2B,(τ2+1)B−1], there will be a

node i2 ∈ V different with i0 and i1 and a time instance

k̂2 ∈ [τ2B, (τ2 + 1)B − 1] such that either (i0, i2) ∈ E
k̂2

or

(i0, i2) ∈ E
k̂2

. By similar analysis, we obtain that

P{xil(ks + ̺) ≤
η̺

2
h(ks) + (1−

η̺

2
)H(ks), l = 0, 1, 2;

̺ = (τ2 + 1)B − ks, . . . } ≥ p
k̂1
p
k̂2
q(n−1)2 .

Repeating the estimations on time intervals [τjB, (τj +
1)B − 1] for j = 3, . . . , n− 1, k̂3, . . . , k̂n−1 can be defined

respectively; and bounds for i3, . . . , in−1 can be similarly

given by

P{xil(ks + ̺) ≤
η̺

2
h(ks) + (1−

η̺

2
)H(ks), l = 0, . . . ,

n− 1; ̺ = (τn−1 + 1)B − ks, . . . } ≥
n−1
∏

l=1

p
k̂l
q(n−1)2 ,

which implies

P{S(ks+1) ≤ (1−
η(n−1)2

2
)S(ks)} ≥ p̄sq

(n−1)2 . (19)
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Moreover, similar analysis will show that (19) also holds

for the other case with xi0(ks) > 1
2h(ks) +

1
2H(ks) by

estimating the lower bound of h(ks+1).
With (19), we have

ES(ks+1) ≤ (1−
(qη)(n−1)2

2
· p̄s)ES(ks), (20)

which implies

ES(kM+1) ≤
M
∏

s=0

(1−
(qη)(n−1)2

2
· p̄s)S(0), M ≥ 1 (21)

because {G[mB,(m+1)B−1]}
∞
m=0 is connectivity-independent.

Thus, according to Lemma 4.1, if
∑∞

s=0 p̄s = ∞, we have
∏∞

s=0(1−
(qη)(n−1)2

2 · p̄s) = 0. Consequently, we obtain

lim
M→∞

ES(kM ) = 0. (22)

Because S(k) is non-increasing, (22) immediately yields

lim
k→∞

ES(k) = 0. (23)

Using Fatou’s lemma, we further obtain

0 ≤ E lim
k→∞

S(k) ≤ lim
k→∞

ES(k) = 0. (24)

Therefore, we have P{limk→+∞ S(k) = 0} = 1. The

desired conclusion follows. �

Suppose pk+1 ≤ pk for all k. Then it is not hard to see that
∑∞

s=0 p̄s = ∞ if and only if
∑∞

k=0 p
n−1
k = ∞. Therefore,

the following corollary holds immediately from Proposition

5.1.

Corollary 5.1: Suppose {Gk}
∞
0 is stochastically uni-

formly quasi-strongly connected and pk+1 ≤ pk for all

k. Then algorithm (1) achieves a global a.s. consensus if
∑∞

k=0 p
n−1
k = ∞.

Now we see that Theorem 3.3 holds as a special case of

Corollary 5.1 with B = 1 in the joint connectivity definition.

B. Bidirectional Connections

Similar to Proposition 5.1, the following conclusion can

be obtained for bidirectional graphs.

Proposition 5.2: Suppose P{Gk is bidirectional, k =
1, 2 . . . } = 1. Suppose {Gk}

∞
0 is stochastically infinitely

connected. Then (1) achieves a global a.s. consensus if
∑∞

s=0 p̂s = ∞ with

p̂s = inf
{

n−1
∏

l=1

pαl
:

cs(n−1) ≤ α1 < · · · < αn−1 < c(s+1)(n−1)

}

.

and also

Tcom(ǫ) ≤ inf
{

cs(n−1) :
s−1
∑

i=0

log
(

1− (qη)(n−1) · p̂i
)−1

≥ log ǫ−2
}

.

C. Acyclic Graphs

Here comes our main result for acyclic graphs.

Proposition 5.3: Assume that P
(

G[0,∞) is acyclic
)

= 1
and {Gk}

∞
0 is stochastically infinitely quasi-strongly con-

nected. Algorithm (1) achieves a global consensus almost

surely if
∑∞

s=0 p̃s = ∞ with p̃s = infcs≤α<cs+1 pα, s =
0, 1, . . . .

Proposition 5.3 leads to the following conclusion with non-

increasing decision probabilities immediately.

Corollary 5.2: Assume that P
(

G[0,∞) is acyclic
)

= 1.

(i) Suppose {Gk}
∞
0 is stochastically infinitely quasi-

strongly connected and pk+1 ≤ pk for all k. Then Algorithm

(1) achieves a global a.s. consensus if
∑∞

m=0 pcm = ∞.

(ii) Suppose either {Gk}
∞
0 is stochastically uniformly

quasi-strongly connected with B = 1 or pk+1 ≤ pk for

all k. Then Algorithm (1) achieves a global a.s. consensus

if and only if
∑∞

k=0 pk = ∞.

VI. ARC-INDEPENDENT GRAPHS

In this section, we turn to the convergence analysis for

the arc-independent graph processes. Different from previous

discussions, we will prove Theorem 3.4 using a stochastic

matrix argument.

Let ei = (0 . . . 1 . . . 0)T be an n× 1 unit vector with the

ith component equal to 1. Denote ri(k) = (ri1 . . . rin)
T as

an n × 1 unit vector with rij(k) = aij(k) if j ∈ Ni(k),
and rij(k) = 0 otherwise for j = 1, . . . , n. Let W (k) =
(w1(k) . . . wn(k))

T ∈ R
n×n be a random matrix with

wi(k) =

{

ri(k), with probability pk

ei, with probability 1− pk
(25)

for i = 1, . . . , n. Algorithm (1) is transformed into a compact

form:

x(k + 1) = W (k)x(k). (26)

A. Key Lemmas

A finite square matrix M = {mij} ∈ R
n×n is called

stochastic if mij ≥ 0 for all i, j and
∑

j mij = 1 for all i.
For a stochastic matrix M , introduce

δ(M) = max
j

max
α,β

|mαj −mβj | (27)

and

λ(M) = 1−min
α,β

∑

j

min{mαj ,mβj}. (28)

If λ(M) < 1 we call M a scrambling matrix. The following

lemma can be found in [10].

Lemma 6.1: For any k (k ≥ 1) stochastic matrices

M1, . . . ,Mk,

δ(M1M2 . . .Mk) ≤
k
∏

i=1

λ(Mi). (29)

We can associate a unique digraph GM = {V, EM} with

node set V = {1, . . . , n} to a stochastic matrix M =
{mij} ∈ R

n×n in the way that (j, i) ∈ EM if and only

if mij > 0, and vice versa.
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We first establish several lemmas. The following lemma

is given on the induced graphs of products of stochastic

matrices.

Lemma 6.2: For any k (k ≥ 1) stochastic matrices

M1, . . . ,Mk with positive diagonal elements, we have
(

⋃k
i=1 GMi

)

⊆ GM1...Mk
.

Proof. We prove the case for k = 2, and the conclusion will

follow by induction for other cases.

Denote āij , âij and a∗ij as the ij-entries of M1, M2 and

M1M2, respectively. Note that, we have

a∗i1i2 =
n
∑

j=1

āi1j âji2 ≥ āi1i2 âi2i2 + āi1i1 âi1i2 . (30)

Then the conclusion follows immediately since āi1i1 , âi2i2 >
0. �

Another lemma holds for determining whether a product

of several stochastic matrices is a scrambling matrix.

Lemma 6.3: Let M1, . . . ,Mn−1 be n−1 stochastic matri-

ces with positive diagonal elements. Assume that GMτ
, τ =

1, . . . , n − 1 are all quasi-strongly connected sharing a

common center. Then Mn−1 . . .M1 is a scrambling matrix.

Next, we define a sequence of random variable related to

the nodes’ decision making. We will call a node i succeeds

at time k if it chooses to take the averaging part. Denote

Ψk =

{

1, if at least one node succeeds at time k;

0, otherwise.
(31)

Then, we have Ψk = 1 with probability 1 − (1 − pk)
n and

Ψk = 0 with probability (1 − pk)
n. Moreover, Ψ0,Ψ1, . . .

are independent. We give another lemma on Ψk.

Lemma 6.4: P{Ψk = 1 for infinitely many k}=1 if and

only if
∑∞

k=0 = ∞.

Proof. We have

∞
∏

k=T

(1− pk) = 0 ⇔
∞
∏

k=T

(1− pk)
n = 0 (32)

for any T ≥ 0. Then Lemmas 4.1 leads to the conclusion

immediately. �

B. Proof of Theorem 3.4

We only need to prove the sufficiency part. Noting the fact

that

1− ny ≤ (1− y)n, y ∈ [0, 1], n ≥ 1,

we obtain

1− (1− pk)
n ≤ npk, k = 0, . . . .

Thus, one has

P{node i succeeds at time k|Φk = 1}

=
pk

1− (1− pk)n
≥

pk
npk

=
1

n
(33)

for all i = 1, . . . , n and k = 0, . . . .

According to Lemma 6.4, we can define the (Bernoulli)

sequence of Φk,

ζ1 < · · · < ζm < ζm+1 < . . . ,

with probability one such that ζm is the mth time which

Φk = 1 for m = 1, 2, . . . .

Denote θ0 = min(i,j)∈E∗ θij . With (33), for any (i, j ∈
E∗), we have

P{(i, j) ∈ GW (ζm)} ≥
θ0
n
. (34)

Therefore, denoting H1 = W (ζ|E∗|) . . .W (ζ2)W (ζ1),
where |E∗| represents the number of elements in E∗, (34)

leads to

P{(iτ , jτ ) ∈ GW (ζτ ), τ = 1, . . . , |E∗|} ≥ (
θ0
n
)|E

∗|, (35)

where (iτ , jτ ) denotes an elements in E∗. As a result, we

see from Lemma 6.2 that

P{G∗ ⊆ GH1
} ≥ P{G∗ ⊆

|E∗|
⋃

τ=1

GW (ζτ )} ≥ (
θ0
n
)|E

∗|. (36)

Similarly, we define Hs = W (ζs|E∗|) . . .W (ζ(s−1)|E∗|+1)
for s = 2, 3, . . . , and

P{G∗ ⊆ GHs
} ≥ (

θ0
n
)|E

∗|. (37)

can also be obtained for all s.

Next, because G∗ is QSC, applying Lemma 6.3 on

H1, . . . , Hn−1 yields

P{λ(Hn−1 . . . H1) < 1} ≥ (
θ0
n
)(n−1)|E∗|. (38)

Moreover, Hn−1 . . . H1 represents a product of (n− 1)|E∗|
stochastic matrices, each of which satisfies the weights rule

A0. Therefore, it is not hard to see that for each nonzero

entry, hij of Hn−1 . . . H1, we have

hij ≥ η(n−1)|E∗|, (39)

which implies

P{λ(Hn−1 . . . H1) < 1− η(n−1)|E∗|} ≥ (
θ0
n
)(n−1)|E∗|.

(40)

Denoting Gτ = Hτ(n−1) . . . H(τ−1)(n−1)+1, τ = 1, 2, . . . ,

we have

P{λ(Gτ ) < 1− η(n−1)|E∗|} ≥ (
θ0
n
)(n−1)|E∗| (41)

for all τ = 1, 2, . . . . Thus,

P{λ(Gτ ) < 1− η(n−1)|E∗| for infinitely many τ} = 1,

which yields

P{ lim
m→∞

δ(

m
∏

τ=1

Gτ ) ≤ lim
m→∞

m
∏

τ=1

λ(Gτ ) = 0} = 1 (42)

from Lemma 6.1. Thus, we finally obtain

P{ lim
k→∞

δ(W (k) . . .W (0)) = 0} = 1

because W (k) is the identical matrix for any k /∈
{ζ1, ζ2, . . . }. This completes the proof. �
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VII. CONCLUSIONS

This paper investigated standard consensus algorithms

coupled with randomized individual node decision-making

over stochastically time-varying graphs. Each node de-

termined its dynamics by a sequence of Bernoulli trials

with time-varying probabilities. We introduced connectivity-

independence and arc-independence for random graph pro-

cesses. An impossibility theorem showed that an a.s. con-

sensus could not be achieved unless the sum of the success

probability sequence diverges. Then a serial of sufficiency

conditions were given for the network to reach a global

a.s. consensus under different connectivity assumptions. Par-

ticularly, when either the graph was arc-independent or

overall acyclic, the sum of the success probability sequence

diverging was a sharp threshold condition for consensus

under a simple self-confidence assumption. In other words,

consensus appeared from probability zero to one as the sum

of the probability sequence goes to infinity. Consistent with

classical random graph theory, this so-called 0− 1 law was

first established in the literature for dynamics on random

graphs.
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