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Abstract— This part of the paper investigates a robust
consensus problem for continuous-time multi-agent systems
with time-varying communication graphs and weight functions.
Convergence rates are presented explicitly with respect to L∞
and L1 norms of disturbances. Sufficient and/or necessary
connectivity conditions are obtained for the system to reach
robust consensus or integral robust consensus.
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I. INTRODUCTION

Coordination of multi-agent networks has attracted a sig-
nificant amount of attention in the past few years, due to
its broad applications in various fields of science including
physics, engineering, biology, ecology and social science
[7], [24], [21], [34], [20]. Concerning the issues of in-
terconnected communication, distributed control design on
individual dynamics via neighboring information flow has
been shown to ensure collective tasks such as formation,
flocking, rendezvous, and aggregation [15], [33], [8], [23],
[25].

Central to multi-agent coordination study is the study of
consensus, or state agreement, which requires that all the
agents achieve the desired relative position and the same
velocity. Consensus seeking is extensively studied in the
literature, in which connectivity of the communication graph
plays a key role, and various connectivity conditions have
been used to describe frequently switching topologies in
different cases [28], [24], [34], [22], [10]. Both continuous-
time and discrete-time models are investigated [17], [18],
[10], [33]. Researchers are not only concerned with what
connectivity conditions can guarantee consensus, but also
with the convergence rate: how fast the network reaches
a consensus under certain connectivity assumptions [17],
[18], [29]. However, few results have been obtained on the
convergence rates for continuous-time multi-agent systems
reaching a consensus with general (uniformly, or [t,∞)) joint
connectivity assumptions, especially when the network is in a
noisy environment. Some exceptions include [11], [13], [14],
but a clear quantitative description on how much noise can
be dealt with by how much communication is still missing.

The primary aim of this paper is to establish the conver-
gence towards a consensus for first-order, continuous-time
nonlinear multi-agent systems when there are disturbances
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entering communication links or in the dynamics with di-
rected and time-varying interconnection graphs. Borrowing
ideas from input-to-state stability (ISS) and integral input-
to-state stability (iISS) in the agent [30], [31], we reconsider
the simple distributed control laws based on relative state
feedback over the neighborhood studied in [21], [33] under
noisy circumstances. We present explicit convergence rate es-
timates with respect to L∞ and L1 norms of the disturbances
respectively. Several necessary and sufficient connectivity
conditions are obtained for the system to reach a robust
consensus or an integral robust consensus from this analysis.
To the best of our knowledge, the results are the first to show
that consensus is reached exponentially in t with uniformly
joint connected graphs, while exponentially in the times that
the joint graph are connected with [t,∞)-joint connection
for the considered systems.

The paper is organized as follows. In section II, some
preliminary concepts are introduced. We formulate the robust
consensus and integral robust consensus problems and the
basic assumptions in section III. We then focus on robust
consensus and integral robust consensus in sections IV and V,
respectively. A number of sufficient and necessary conditions
are presented based on the convergence rate for jointly
connected interconnection graphs. Comparisons with existing
results are given. Finally, concluding remarks are given in
section VI. In part II of this paper [27], an application of the
results of this paper to event-triggered control is presented.

II. PRELIMINARIES

Here we introduce some theory and notation on graphs
and Dini derivatives.

A directed graph (digraph) G = (V, E) consists of a
finite set V of nodes and an arc set E . [3]. An element
e = (i, j) ∈ E is called an arc from node i ∈ V to j ∈ V .
If the arcs are pairwise distinct in an alternating sequence
v0e1v1e2v2 . . . envn of nodes vi and arcs ei = (vi−1, vi) ∈ E
for i = 1, 2, . . . , n, the sequence is called a (directed) path
with length n, and if v0 = vn a (directed) cycle. A path
from i to j is denoted as i→ j, and the length of i→ j is
denoted as |i → j|. A digraph without cycles is said to be
acyclic. G is said to be strongly connected if it contains path
i → j and j → i for every pair of nodes i and j. If there
exists a path from node i to node j, then node j is said to be
reachable from node i. In particular, each node is thought to
be reachable by itself. A node v from which any other node
is reachable is called a center (or a root) of G. G is said to
be quasi-strongly connected (QSC) if G has a center [5].
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A function γ : R≥0 → R≥0 is said to be a K-class
function if it is continuous, strictly increasing, and γ(0) = 0.
Moreover, a function β : R≥0 × R≥0 → R is a KL-class
function if β(·, t) is of class K for each fixed t ≥ 0 and
β(s, t)→ 0 as t→∞ for each fixed s ≥ 0.

The upper Dini derivative of a function h is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s

The next result is given for the calculation of Dini derivative
[4], [33].

Lemma 2.1: Let Vi(t, x) : R × Rm → R, i = 1, . . . , n
be C1 and V (t, x) = maxi=1,...,n Vi(t, x). If I(t) = {i ∈
{1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is the set of indices
where the maximum is reached at t, then D+V (t, x(t)) =
maxi∈I(t) V̇i(t, x(t)).

III. PROBLEM FORMULATION

Consider a multi-agent system with agent set V =
{1, . . . , N}, for which the dynamics of each agent is the
following first-order integrator:

ẋi = ui, i = 1, . . . , N (1)

where xi ∈ R represents the state of agent i, and ui is the
control input. Let x = (x1, . . . , xN )T .

The communication in the network is modeled as a time-
varying graph Gσ(t) = (V, Eσ(t)) with σ : [0,+∞)→ Q as a
piecewise constant function, whereQ is a finite set indicating
all possible graphs. Node j is said to be a neighbor of i at
time t when there is an arc (i, j) ∈ Eσ(t), and Ni(σ(t))
represents the set of agent i’s neighbors at time t.

An assumption is given to the variation of the graph.
A1. (Dwell Time) There is a lower bound τD > 0 between
two consecutive switching time instants of σ(t).

Denote the joint graph of Gσ(t) in time interval [t1, t2)
with t1 < t2 ≤ +∞ as G([t1, t2)) = ∪t∈[t1,t2)G(t) =
(V,∪t∈[t1,t2)Eσ(t)). Then we have the following definition.

Definition 3.1: (i) Gσ(t) is said to be uniformly (jointly)
strongly connected (USC) if there exists a constant T > 0
such that G([t, t+ T )) is strongly connected for any t ≥ 0.

(ii) Gσ(t) is said to be uniformly (jointly) quasi-strongly
connected (UQSC) if there exists a constant T > 0 such that
G([t, t+ T )) is quasi-strongly connected for any t ≥ 0.

Let continuous function aij(x, t) > 0 be the weight of arc
(j, i). The control input for each agent is presented in the
following.

ui =
∑

j∈Ni(σ(t))

aij(x, t)(xj−xi)+wi(t), i = 1, . . . , N (2)

where wi(t) is a disturbance function.
Then the closed loop system is

ẋi =
∑

j∈Ni(σ(t))

aij(x, t)(xj−xi)+wi(t), i = 1, . . . , N (3)

An assumption is given to each aij(x, t).
A2. (Weights Rule) There are two constants 0 < a∗ ≤ a∗

such that a∗ ≤ aij(x, t) ≤ a∗, x ∈ RN , t ∈ R+.

Denote
‖z‖∞ , sup{|z(t)|, t ≥ 0}

with |z(t)| , maxi |zi(t)|. Then we define F , {z :
R≥0 → RN | z(t) is continuous except for a set with measure
zero with ‖z‖∞ < ∞}. Then denoting An disturbance
assumption is given to the regularity of the function w(t) =
(w1(t), . . . , wn(t))T in order to ensure the existence of the
solutions of (3).
A3. (Noise Regularity) w(t) ∈ F .

In this paper, we assume that A1–3 always are standing
assumptions. With assumptions A1 and A3, the set of dis-
continuous points for the right hand side of equation (3) has
measure zero. Therefore, Caratheodory solutions [2] of (3)
exist for arbitrary initial conditions, and they are absolutely
continuous functions that satisfy (3) for almost all t on the
maximum interval of existence. Furthermore, it is not hard to
see that assumption A2 ensures each (Caratheodory) solution
of (3) exists on [t0,∞) without finite time escape. In the
following, each solution of (3) is considered in the sense of
Caratheodory without explicit mention.

Consider (3) with initial condition x(t0) = x0 =
(x1(t0), . . . , xN (t0))T ∈ RN , t0 ≥ 0. Let

~(t) = max
i∈V
{xi(t)}, `(t) = min

i∈V
{xi(t)}

be the maximum and minimum agent state value at time t .
Moreover, denote

H(x(t)) = ~(t)− `(t)

Inspired by ISS [30], we present the following definitions.
Definition 3.2: (i) System (3) achieves a global robust

consensus (GRC) if there exist a KL-function β and a K-
function γ such that

H(x(t)) ≤ β(H(x0), t) + γ(‖w‖∞) (4)

for all w ∈ F and initial conditions x(t0) = x0.
(ii) System (3) achieves a global integral robust consensus

(GIRC) if there exist a KL-function β and a K-function γ
such that

H(x(t)) ≤ β(H(x0), t) +

∫ t

0

γ(|w(s)|)ds, (5)

for all w ∈ F and initial conditions x(t0) = x0.
Remark 3.1: In this paper, |·| denotes the maximum norm.

All the results obtained hold if | · | denotes the Euclidean
norm.

We define global consensus and global asymptotic con-
sensus in the following way.

Definition 3.3: (i) A global consensus (GC) is achieved
for system (3) if

lim
t→∞

H(x(t)) = 0

for any initial condition x(t0) = x0.
(ii) Assume that F0 ⊆ F . Then a global asymptotic

consensus (GAC) with respect to F0 is achieved for system
(3) if ∀w ∈ F0, ∀ε > 0, ∀c > 0, ∃T > 0 such that ∀t0 ≥ 0,

H(x0) ≤ c⇒ H(x(t)) ≤ ε, ∀t ≥ t0 + T.
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IV. ROBUST CONSENSUS

In this section, we study the robust consensus for system
(3) with uniformly jointly quasi-strongly connected (UQSC)
topology. With out loss of generality, we assume N ≥ 2 in
the sequel.

A. Main Result

Before we present the main result on GRC, we present
several useful lemmas.

Lemma 4.1: The following inequalities hold:

D+~(t)| ≤ |w(t)|; D+`(t) ≥ −|w(t)|

for all t ≥ 0.
Proof: We just focus on the proof of D+~(t) ≤ |w(t)|, and
the other inequality can be proved in the same way.

Let I(t) represent the set containing all the agents that
reach the maximum in the definition of ~(t) at time t, i.e.,
I(t) , {i| xi(t) = ~(t)}. Then according to Lemma 2.1, we
obtain

D+~(t) = max
i∈I(t)

ẋi(t)

= max
i∈I(t)

[
∑

j∈Ni(σ(t))

aij(x, t)(xj − xi) + wi(t)]

≤ max
i∈I(t)

wi(t)

≤ |w(t)|. (6)

Then we complete the proof. �
Lemma 4.2: Suppose Gσ(t) is UQSC. Then there exists a

center i0 from which there is a path i0 → i for all i ∈ V in
G([t, t+T̂ )) with T̂ , T+2τD, and each arc of i0 → i exists
in a time interval with length τD at least during [t, t+ T̂ ).
Proof: Denote t1 as the first moment when the interaction
topology switches within [t, t+T̂ ) (suppose there are switch-
ings without loss of generality).

If t1 ≥ t + τD, then, there exists a center i0 from which
there is a path i0 → i for all i ∈ V in G([t, t + T )) since
G([t, t+T )) is QSC, and moreover, each arc of path i0 → i
stays there for at least the dwell time τD during [t, t+T+τD)
due to the definition of τD.

On the other hand, if t1 < t+ τD, we have t1 +T + τD <
t + T̂ . Then, for any i ∈ VF , there is also a center i0 from
which there is a path i0 → i for all i ∈ V in G([t1, t1 +T )),
each arc of which exists for at least τD during [t1, t1 + T +
τD). This completes the proof. �

Based on Lemma 4.2, for all i = 1, 2, . . . , we can define
f(i) = {j|j is a center in G([(i − 1)T̂ , iT̂ )) satisfying
the condition of Lemma 4.2}. Therefore, we get a set-

valued function f : Z+ → 2{1,...,N}, where 2{1,...,N}

represent the set containing all the subsets of {1, . . . , N}.
Moreover, one has f(i) 6= ∅, i = 1, 2, . . . . The following
lemma is given to establish an important property for this
set-valued function.

Lemma 4.3: For any t = 1, 2, . . . , there exists k0 ∈
{1, 2, . . . , N} such that k0 ∈ f(i) for as many as at least
N − 1 i′s during i ∈ [t, t+ (N − 2)N ].

Proof: Suppose k ∈ f(i) for less than N − 1 times (i.e.
less than or equal N − 2) during [t, t + (N − 2)N ] for all
k ∈ {1, 2, . . . , N}. Then, the total number of the elements
of all the preimages of f on interval i ∈ [t, t+ (N −2)N ] is
no larger than (N − 2)N . However, on the other hand, there
are at least (N − 2)N + 1 elements (counting times for the
same node) belonging to f(i) during i ∈ [t, t + (N − 2)N ]
since f(j) 6= ∅, j = 1, 2, . . . . Then we get the contradiction
and the conclusion is proved. �

Suppose w ∈ F . Then we have the main result on GRC,
which is consistent with the study for robust consensus for
discrete-time dynamics in [11], [12].

Theorem 4.1: System (3) achieves a global robust consen-
sus (GRC) if and only if Gσ(t) is UQSC.
Proof: (Sufficiency.) Assume that the initial time is t0 =
0 for simplicity. We will estimate the convergence rate for
H(x(t)) during time interval t ∈ [sK0, (s + 1)K0], where
s = 0, 1, 2, . . . and K0 = (N − 1)2T̂ .

Based on Lemma 4.1, one has

~(t) ≤ ~(sK0) + ‖w‖∞K0; `(t) ≥ `(sK0)− ‖w‖∞K0

(7)
for any t ∈ [sK0, (s+ 1)K0].

We divide the rest of the proof into 3 Steps.
Step 1. Lemma 4.3 shows that during [sK0, (s + 1)K0],

in all (N − 1)2 subintervals defined by [jT̂ , (j + 1)T̂ ), j =
s(N −1)2, s(N −1)2 + 1, . . . , (s+ 1)(N −1)2−1, the joint
graphs on at least N−1 of them share a common center, k0.
We denote the N − 1 subintervals with k0 being a center of
the joint graph as [jmT̂ , (jm + 1)T̂ ),m = 1, 2, . . . , N − 1.
In this step, we show estimations for xk0(t) on time interval
[sK0, (s+ 1)K0].

Without less of generality, we assume that

xk0(sK0) ≤ `(sK0) + ~(sK0)

2
(8)

because the other condition with xk0(sK0) ≥ `(sK0)+~(sK0)
2

can be proved similarly. Then with (7), we obtain

d

dt
xk0(t) ≤ −(N − 1)a∗xk0(t) + (N − 1)a∗(~(sK0)+

‖w‖∞K0) + ‖w‖∞ (9)

for all t ∈ [sK0, (s+ 1)K0]. As a result, by (8), we have

xk0(t) ≤ e−(N−1)a
∗(t−sK0)xk0(sK0) + (1−

e−(N−1)a
∗(t−sK0))·

(N − 1)a∗(~(sK0) + ‖w‖∞K0) + ‖w‖∞
(N − 1)a∗

≤ α0`(sK0) + (1− α0)~(sK0) + λ0‖w‖∞ (10)

for all t ∈ [sK0, (s+1)K0], where α0 , 1
2e
−(N−1)a∗K0 and

λ0 , K0 + 1
(N−1)a∗ .

Step 2. Based on Lemma 4.2, since k0 is a center in
G([j1T̂ , (j1 + 1)T̂ )), there exist a node k1 ∈ N different
from k0 and a moment t̂1 such that (k0, k1) ∈ Gσ(t) for
t ∈ [t̂1, t̂1 + τD) ⊆ [j1T̂ , (j1 + 1)T̂ ). Then in this step, we
estimate xk1(t) on time interval [t̂1, (s+ 1)K0].
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There are two cases.
• There exists a moment t̄1 ∈ [t̂1, t̂1 + τD] such that

xk1(t̄1) ≤ xk0(t̄1). (11)

• Otherwise, we have xk1(t) ≥ xk0(t), t ∈ [t̂1, t̂1 + τD).
Thus, one has
d

dt
xk1(t) ≤ −((N − 2)a∗ + a∗)xk1(t) + (N − 2)a∗

(~(sK0) + ‖w‖∞K0) + a∗(α0`(sK0)

+ (1− α0)~(sK0) + λ0‖w‖∞) + ‖w‖∞

for t ∈ [t̂1, t̂1 + τD). Therefore, denoting m0 =
e−((N−2)a

∗+a∗)τD , we have

xk1(t̂1 + τD) ≤ ζα0`(sK0) + (1− ζα0)~(sK0)

+ (λ0 + λ1)‖w‖∞ (12)

where

ζ ,
(1−m0)a∗

(N − 2)a∗ + a∗
, λ1 , K0+

(1−m0)(1− a∗K0)

(N − 2)a∗ + a∗
.

Noting the fact that ζ < 1 and (9) also holds for xk1(t), both
(11) and (12) lead to

xk1(t) ≤ α1`(sK0)+(1−α1)~(sK0)+λ0‖w‖∞+λ̂0‖w‖∞,

for t ∈ [(j1 + 1)T̂ , (s + 1)K0], where α1 = ζ̂ · α0 with
ζ̂ = e−(N−1)a

∗K0ζ, and λ̂0 = λ0 + λ1.

Step 3. We proceed similar analysis on time intervals
[jmT̂ , (jm+1)T̂ ) for m = 3, . . . , N−1, and estimations for
nodes km,m = 3, . . . , N − 1 can be given by

xkm(t) ≤ αm`(sK0) + (1− αm)~(sK0) + λ0‖w‖∞
+mλ̂0‖w‖∞,

for t ∈ [(jm + 1)T̂ , (s+ 1)K0], where αm = ζ̂m · α0,m =
2, . . . , N − 1. Moreover, every two km’s are distinct.

Therefore, noting the fact that α0 < α1 < · · · < αN−1 <
1, we obtain

~((s+ 1)K0) ≤ αN−1`(sK0) + (1− αN−1)~(sK0)

+ λ0‖w‖∞ + (N − 1)λ̂0‖w‖∞, (13)

which implies

H(x((s+ 1)K0)) ≤ (1− αN−1)H(x(sK0)) + γ0‖w‖∞,

where γ0 , λ0 + (N − 1)λ̂0 + K0. Because it holds that
0 < αN−1 = ζ̂N−1 · α0 < 1, we obtain

H(x(nK0)) ≤ (1− αN−1)nH(x0) +
γ0

αN−1
· ‖w‖∞

for any n = 0, 1, . . . . The global robust consensus is
therefore obtained by

β(H(x0), t) = (1− αN−1)b
t
K0
cH(x0),

and
γ(‖w‖∞) = (2K0 +

γ0
αN−1

) · ‖w‖∞,

where b t
K0
c denotes the largest integer no greater than t

K0
.

(Necessity.) Assume that Gσ(t) is not UQSC. Then for any
T∗ > 0 there exists t∗ ≥ 0 such that G([t∗, t∗ + T∗)) is
not quasi-strongly connected. Thus, there exists two distinct
nodes i and j such that V1 ∩ V2 = ∅, where V1 = {nodes
from which i is reachable in G([t∗, t∗ + T∗))} and V2 =
{nodes from which j is reachable in G([t∗, t∗+T∗))}. Taking
wi(t) ≡ 0, i ∈ V1 and wi(t) ≡ 1, i ∈ V2 when t ∈ [t∗, t∗ +
T∗]. Let initial condition t0 = t∗ with xi(t∗) = 0,∀i ∈
V . Then it is not hard to find that H(x(t∗ + T∗)) = T∗.
Therefore, the global robust consensus cannot be achieved
since T∗ can be arbitrarily large. �

Remark 4.1: If we assume that w(t) ≡ 0 in (3), we obtain

H(x(t)) ≤ (1− αN−1)b
t
K0
cH(x0)

≤ (1− αN−1)
t
K0
−1H(x0)

=
1

1− αN−1
· et·

ln(1−αN−1)

K0 H(x0),

which implies that the multi-agent network will reach a
consensus exponentially.

B. Consensus with Noise

We define a set

F1 , {z(t) ∈ F∞ : lim
t→∞

z(t) = 0}.

Then the following conclusion holds on GC.
Proposition 4.1: System (3) achieves a GC for any w ∈

F1 if Gσ(t) is UQSC.
Proof: Let w0 ∈ F1 be a fixed function. Then, ∀ε > 0,
∃T (ε) > 0 such that |w0(t)| < γ−1(ε),∀t ≥ T (ε). Thus,
applying Theorem 4.1 on system (3) with t0 = T (ε), we
obtain

H(x(t)) ≤ β(H(x(T (ε))), t− T (ε)) + ε. (14)

Then since ε can be arbitrarily small, the global consensus
follows immediately by taking t→∞ in (14). �

Let F0
1 ⊆ F1 be a subset with limt→∞ supz∈F0

1
|z(t)| =

0. Then the following result is given on GAC.
Proposition 4.2: System (3) achieves a GAC with respect

to F0
1 if and only if Gσ(t) is UQSC.

Proof: The necessity part follows by the same argu-
ment as the proof of Theorem 4.1. We focus on the
sufficiency part. ∀ε > 0, ∃T̃ (ε) > 0 such that
|w(t)| < γ−1( ε2 ),∀t ≥ T̃ (ε),∀w ∈ F0

1 . Denoting ω∗ =
supt∈[t0,T̃ ]{supz∈F0

1
|z(t)|}, there will be two cases.

• When t0 < T̃ (ε), one has ∀t ≥ t0,

H(x(t)) ≤ β(H(x(T̃ (ε))), t− T̃ (ε)) +
ε

2

≤ β(β(H(x0) + γ(ω∗), 0), t− T̃ (ε)) +
ε

2
.

Furthermore, ∀c > 0, ∃T1(c, T̃ (ε)) > 0 such that

β(β(c+ γ(ω∗), 0), t− T̃ (ε)) ≤ ε

2
,∀t > T1,

• When t0 ≥ T̃ (ε), one has ∀t ≥ t0,

H(x(t)) ≤ β(H(x0), t− t0) +
ε

2
. (15)
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Then ∀c > 0, ∃T2(c) > 0 such that β(H(x0), t− t0) <
ε
2 ,∀t > T2.

Taking T = max{T1, T2}, we obtain

H(x0) ≤ c⇒ H(x(t)) ≤ ε, ∀t ≥ t0 + T, ∀w ∈ F0
1 .

This completes the proof. �
Remark 4.2: When w(t) ≡ 0, t ≥ t0, Proposition 4.2 is

consistent with the main result, that is, Theorem 3.8 in [33].

C. Discussions: USC Graph

Note that, if Gσ(t) is USC, k0 will be the center of joint
graphs on N−1 subintervals [t, t+T̂ ), . . . , [t+(N−2)T̂ , t+
(N−1)T̂ ). Therefore, we can replace K0 by K∗ , (N−1)T̂
in the proof of Theorem 4.1, and then the GRC inequality
can also be given by β∗(H(x0), t) = (1−α∗N−1)b

t
K∗ cH(x0)

and γ∗(‖w‖∞) = (2K∗ +
γ∗
0

α∗
N−1

) · ‖w‖∞, where α∗N−1 and
γ∗0 are defined by replacing K0 by K∗ in the definition of
αN−1 and γ0, respectively.

Moreover, if w(t) ≡ 0 in (3), we have

H(x(t)) ≤ 1

1− α∗N−1
· et·

ln(1−α∗
N−1)

K∗ H(x0). (16)

Then a faster convergence rate is achieved since we have that
α∗N−1 < αN−1 and K∗ < K0.

V. INTEGRAL ROBUST CONSENSUS

In this section, we study the global integral robust consen-
sus for system (3). We present the main results in the first
subsection, and then the detailed proofs are given.

A. Main Results

Previous discussions show that UQSC is sufficient and
necessary for GRC. However, it is not true in regard to GIRC.
The following conclusion shows that UQSC is still sufficient
to ensure GIRC.

Theorem 5.1: System (3) achieves a GIRC if Gσ(t) is
UQSC.

Furthermore, we present two sufficient and necessary
conditions for GIRC under more restrictive communications.

Theorem 5.2: Suppose Gσ(t) is undirected for any t ≥ 0.
Then System (3) achieves a GIRC if and only if G([t,∞))
is QSC for any t ≥ 0.

Theorem 5.3: Suppose G([0,+∞)) is acyclic. Then Sys-
tem (3) achieves a GIRC if and only if G([t,∞)) is QSC for
any t ≥ 0.

Furthermore, we define another set

F2 , {z ∈ F|
∫ ∞
0

|z(t)|dt <∞}

Then we present the following conclusions on GC and GAC.
Proposition 5.1: Let F0

2 ⊆ F2 be a subset with∫∞
0

supz∈F0
2
|z(t)|dt <∞. Then System (3) achieves a GAC

with respect to F0
2 if Gσ(t) is UQSC.

Proposition 5.2: Assume that either Gσ(t) being undi-
rected for any t ≥ 0, or G([0,+∞)) being acyclic. Then
system (3) achieves a GC for all w ∈ F2 if and only if
G([t,∞)) is QSC for any t ≥ 0.

B. Proofs

In this subsection, we prove the various statements which
are given in previous subsection. We will use the same no-
tations for parameters α0, . . . , αN−1, ζ, ζ̂, which are defined
in the proof of Theorem 4.1 in the following.
Proof of Theorem 5.1 Denote θs =

∫ (s+1)K0

sK0
|w(t)|dt, s =

0, 1, 2, . . . . Based on Lemma 4.1, one has

~(t) ≤ ~(sT̂ ) + θs; `(t) ≥ `(sT̂ )− θs (17)

for any t ∈ [sK0, (s+ 1)K0].
We divide the rest of the proof into 3 Steps.
Step 1. There is also a node k0 which is a center of

joint graphs on N − 1 time intervals [jmT̂ , (jm + 1)T̂ ) ⊆
[sK0, (s + 1)K0],m = 1, 2, . . . , N − 1. Then we give
estimations for xk0(t) on time interval [sK0, (s + 1)K0] in
condition that xk0(sK0) ≤ `(sK0)+~(sK0)

2 in this step.
We see that
d

dt
xk0(t) ≤ (N − 1)a∗(~(sK0) + θs − xk0(t)) + |w(t)|

for t ∈ [sK0, (s+ 1)K0], which implies

xk0(t) ≤ α0`(sK0) + (1− α0)~(sK0) + θs

+

∫ t

sK0

e−(N−1)a
∗(t−τ)|w(τ)|dτ

≤ α0`(sK0) + (1− α0)~(sK0) + 2θs

for t ∈ [sK0, (s+1)K0]. Step 2. In this step, we also estimate
xk1(t) on time interval [t̂1, (s+ 1)K0] with (k0, k1) ∈ Gσ(t)
for t ∈ [t̂1, t̂1+τD) ⊆ [j1T̂ , (j1+1)T̂ ). There are two cases.
• There exists a moment t̃1 ∈ [t̂1, t̂1 + τD] such that

xk1(t̃1) ≤ xk0(t̃1) ≤ α0`(sK0)+(1−α0)~(sK0)+2θs.
(18)

• Otherwise, we have xk1(t) ≥ xk0(t), t ∈ [t̂1, t̂1 + τD).
Similarly one has

xk1(t̂1 + τD) ≤ ζα0`(sK0) + (1− ζα0)~(sK0) + 3θs

Thus, we have

xk1(t) ≤ α1`(sK0) + (1− α1)~(sK0) + 4θs (19)

with t ∈ [(j1 + 1)T̂ , (s+ 1)K0] for both of the two cases.
Step 3. Proceeding similar analysis on time intervals

[jmT̂ , (jm + 1)T̂ ) for m = 3, . . . , N − 1, estimations for
distinct nodes km,m = 3, . . . , N − 1 can be given by

xkm(t) ≤ αm`(sK0) + (1− αm)~(sK0) + 4mθs, (20)

for t ∈ [(jm + 1)T̂ , (s+ 1)K0], which implies

H(x((s+ 1)K0)) ≤ (1− αN−1)H(x(sK0)) + (4N − 3)θs.

Because it holds that 0 < αN−1 = ζ̂N−1 ·α0 < 1, we obtain

H(x(nK0)) ≤ (1− αN−1)nH(x0) + (4N − 3)
n−1∑
j=0

(1− αN−1)n−1−jθj (21)
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for any n = 0, 1, 2, . . . . Therefore, we obtain

H(x(t)) ≤ (1− αN−1)b
t
K0
cH(x0) + (4N − 3)∫ t

0

(1− αN−1)b
t
K0
c−g(τ)|w(τ)|dτ (22)

where

g(τ) =

{
i+ 1, τ ∈ [iK0, (i+ 1)K0), i = 0, . . . , b t

K0
c − 1

b t
K0
c, τ ∈ [b t

K0
c ·K0, t]

(23)
Then it is straightforward to see the global integral robust
consensus holds. �
Proof of Theorem 5.2 See [26].
Proof of Theorem 5.3 See [26].
Proofs of Propositions 5.1 and 5.2 Note that, suppose

{bj , j = 1, 2, . . . } is a sequence with
∞∑
j=1

|bj | <∞ and 0 <

a < 1, then we have limn→∞
∑n
j=1 a

n−jbj = 0. Then the
conclusions hold immediately from the GIRC estimations. �

Remark 5.1: When Gσ(t) is USC, similar estimation as
(22) can also be given by similar form with K∗ and α∗N−1.

VI. CONCLUSIONS

This paper focused on the multi-agent consensus problem
in a noisy environment. Our central aim was to draw a
clear picture, on “how much connectivity is required on how
much uncertainties” for the networks to agree asymptotically.
The ideas of input-to-state stability and integral input-to-state
stability inspired us to build the definitions of robust consen-
sus and integral robust consensus. Sufficient and necessary
connectivity conditions were given, and convergence rates
are shown explicitly.
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