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Abstract— In the first part of the paper, robust consensus
was discussed for continuous-time multi-agent systems with
uncertainties in the dynamics. As an application of the robust
consensus analysis, this part of the paper further investi-
gates distributed multi-agent coordination via event-triggered
strategies, where the control input of each agent is piece-
wise constant. Each agent chooses the instances to update its
control input by checking whether its state error meets a given
time-dependent function or not. Proper triggering conditions
are given for the system to reach a global consensus using
piecewise costant control with directed time-varying communi-
cation graphs under neighbor-synchronous and asynchronous
updating protocols, respectively.

Keywords: Multi-agent systems, Joint connection, Event-
triggered coordination

I. INTRODUCTION

In recent years, there has been tremendous interest on
multi-agent coordination problem, due to its broad back-
grounds and applications in various fields of science in-
cluding physics, engineering, biology, ecology and social
science [18], [15], [23], [14]. Central to the multi-agent
coordination study is distributed control design of a group of
autonomous agents using local information only and limited,
usually time-varying interconnections over the networks to
achieve a consensus or state agreement for the whole group,
which requires that all the agents achieve the desired relative
position and the same velocity [14], [8], [20].

Efforts have been made for consensus seeking in the
literature, and both continuous-time and discrete-time models
are investigated [20], [18], [17], [7], [22], [19]. Furthermore,
distributed control laws via event-triggered or self-triggered
approaches result in new multi-agent dynamics somehow
in between, where agents’ dynamics are piecewise constant
which update the value when certain events are executed
[27], [31], [32]. Event-triggered feedback control was shown
to be able to preserve desired properties such as stability
and convergence with proper design [29], [28]. It has been
shown that event-based control needs fewer samples than
time-triggered control to achieve the same performance for
stochastic systems [26], while up to event-triggered coor-
dination rules, the system also benefits from reducing the
communication frequency over the network.

Connectivity of the communication graph plays a key
role, and various connectivity conditions have been used to
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describe frequently switching system topology. The “joint
connection”, i.e., the union graph over a time interval, and
similar concepts are important in the analysis of consensus
stability with time-dependent topology. Uniformly joint con-
nectedness, which requests the joint connection is connected
for all intervals which are longer than some positive con-
stant, has been employed for different consensus problems
from discrete-time to continuous-time agent dynamics, from
directed to undirected interconnection topologies [20], [18],
[22], [13], [4]. [20] studied the distributed asynchronous
iterations, while [18] proved the consensus of a simplified
Vicsek model. Furthermore, [13] and [4] investigated the
jointly-connected coordination for second-order agent dy-
namics, while [22] worked on nonlinear continuous-time
agent dynamics with directed communications, in which
convergence to a consensus is shown to be uniform within
bounded initial conditions. [10] and [11] presented the
convergence analysis and convergence rate estimations for
discrete-time agents’ state updating, and furthermore, [21]
showed that the convergence time is of order O(n2B),
where n is the number of nodes in the network and B is a
lower bound for the time interval in definition of uniformly
joint connectedness. [t,∞)-joint connection requires the joint
connection is connected for infinitely many disjoint intervals
in [0,+∞], was discussed in [23], in order to achieve the
consensus for discrete-time agents. This connectivity concept
was then extended in continuous-time distributed control
analysis for target set convergence and state agreement in
[19].

This part of the paper considers the multi-agent coor-
dination via event-triggered strategies with directed time-
varying communication graph. The trigger function time for
a agent to decide when it is triggered is defined when the
state measurement error equals a given function. Two types
of protocols are studied respectively, relying on whether or
not each agent will update its control immediately when it
receives its neighbor’s broadcasting or the communication
graph is changing. Based on the robust consensus analysis
given in Part I of the paper [16], the results show that a
consensus can be achieved with jointly connected, directed
interconnections when the class of trigger function is well
selected, and Zeno behavior [30] can also be avoided.

The paper is organized as follows. In section II, some
preliminary concepts and necessary knowledge are intro-
duced. Neighbor-synchronous updating strategy is studied
in section III, in which several conditions are given on the
trigger function and connectivity to ensure a consensus for
the system. Then in section IV, we turn to asynchronous
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updating strategy. Finally, concluding remarks are given in
section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we describe the considered consensus
problem, and introduce some preliminary knowledge used
in the subsequent analysis.

In this paper, we consider a multi-agent system with agent
set V = {1, . . . , N}, for which the dynamics of each agent
is the following first-order integrator:

ẋi = ui, i = 1, . . . , N (1)

where xi ∈ R represents the state of agent i, and ui
is the control input which should be designed based on
neighborhood information.

A. Communication Graph
In this subsection, we define the communication graph

over the network. First we introduce some preliminary
knowledge related to directed graph.

A directed graph (digraph) G = (V, E) consists of a finite
set V of nodes and an arc set E , in which an arc is an ordered
pair of distinct nodes of V [2]. An element e = (i, j) in E is
called an arc leaving from node i ∈ V and entering node j ∈
V . If the ej’s are pairwise distinct in an alternating sequence
v0e1v1e2v2 . . . envn of nodes vi and arcs ei = (vi−1, vi) ∈ E
for i = 1, 2, . . . , n, the sequence is called a (directed) path
with length n, and for v0 = vn a (directed) cycle. A path
from i to j is denoted as i→ j, and the length of i→ j is
denoted as |i → j|. A digraph without cycles is said to be
acyclic. G is said to be strongly connected if it contains path
i→ j and j → i for every pair of nodes i and j. The length
If there exists a path from node i to node j, then node j is
said to be reachable from node i. In particular, each node is
thought to be reachable by itself. A node v from which any
other node is reachable is called a center (or a root) of G.
G is said to be quasi-strongly connected (QSC) if G has a
center [3].

The communication in the network is modeled as a time-
varying graph Gσ(t) = (V, Eσ(t)) with σ : [0,+∞) → Q as
a piecewise constant function, where Q is a finite set with
all the possible graphs with node set V . Moreover, node j
is said to be a neighbor of i at time t when there is an arc
(i, j) ∈ Eσ(t), and Ni(σ(t)) represents the set of agent i’s
neighbors at time t.

An assumption is given to the time-varying topology.
A1. (Dwell Time) There is a τD > 0 for σ(t), as a lower
bound between two switching time instants.

Denote the joint graph of Gσ(t) in time interval [t1, t2)
with t1 < t2 ≤ +∞ as G([t1, t2)) = ∪t∈[t1,t2)G(t) =
(V,∪t∈[t1,t2)Eσ(t)). Then we have the following definition.

Definition 2.1: (i) Gσ(t) is said to be uniformly (jointly)
quasi-strongly connected (UQSC) if there exists a constant
T > 0 such that G([t, t+T )) is quasi-strongly connected for
any t ≥ 0.

(ii) Gσ(t) is said to be uniformly (jointly) strongly con-
nected (USC) if there exists a constant T > 0 such that
G([t, t+ T )) is strongly connected for any t ≥ 0.

B. Continuous-time Dynamics
Suppose the state of agent i is xi ∈ R (i = 1, . . . , n).

Denote x = (x1, . . . , xN )T ∈ RN and let continuous
function aij(x, t) > 0 be the weight of arc (j, i), if any,
for i, j ∈ V . The control input for each agent is presented in
the following.

ui =
∑

j∈Ni(σ(t))

aij(x, t)(xj−xi)+wi(t), i = 1, . . . , N (2)

where wi(t) is a function to describe the disturbances in
communication links and individual dynamics to agent i.

An assumption is given to each aij(x, t).
A2. (Weights Rule) There are two constants 0 < a∗ ≤ a∗

such that a∗ ≤ aij(x, t) ≤ a∗, x ∈ RN , t ∈ R+.
Remark 2.1: In practice, the weights for a multi-agent

network, aij , may not be constant because of the complex
communication and environment uncertainties, and then the
multi-agent system become time-varying or nonlinear (refer-
ring to [22], [19], [23]). Here aij(x, t) is written in a general
form simply for convenience, and global information is not
required in the study. For example, aij can depend only on
the state of xi, time t and xj (j ∈ Ni), which is certainly
a special form of aij(x, t). In this case, the control laws of
form (2) are still decentralized.

Denote ‖z‖∞ < ∞} with ‖z‖∞ , sup{|z(t)|, t ≥ 0}.
Here we take |z(t)| , maxi |zi(t)| as the maximum norm of
z(t). Then define F , {z : R≥0 → RN |z(t) is continuous
except for a set with measure zero with ‖z‖∞ < ∞}.

Then denoting w(t) , (w1(t), . . . , wn(t))
T , another as-

sumption is given to the regularity of the noise functions
in order to ensure the existence of the solutions of system
(2).
A3. (Noise Regularity) w(t) ∈ F .

In this paper, we assume that assumptions A1, A2 and A3
always hold as the standing assumptions. With assumptions
A1 and A3, the set of discontinuous points for the right
hand side of equation (2) has measure 0. Therefore, the
Caratheodory solutions [1] for (2) are existent for arbitrary
initial conditions, which are absolutely continuous function
such that satisfies (2) for almost all t on the maximum
interval of existence. Furthermore, it is not hard to see that
assumption A2 ensures each Caratheodory solution of (2)
exists on [t0,∞] without finite time escape. In the following
of the paper, the trajectories of system (2) mentioned are
Caratheodory solutions.

Suppose x(t) = (x1, . . . , xN )T ∈ RN is the trajec-
tory of system (2) with initial condition x(t0) = x0 =
(x1(t0), . . . , xN (t0))

T ∈ RN , where t0 ≥ 0 is the initial
time. Furthermore, let

~(t) = max
i∈V
{xi(t)}, `(t) = min

i∈V
{xi(t)}

be the maximum and minimum within all the agents at time
t along x(t). Moreover, denote

H(x(t)) , ~(t)− `(t).

Remark 2.2: In this paper, |·| denotes the maximum norm
for a vector or the absolute value of a scalar. All the results
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obtained in this paper will also hold if |·| takes the Euclidean
norm.

Furthermore, we define global consensus and global
asymptotic consensus in the following way.

Definition 2.2: (i) A global consensus (GC) is achieved
for system (2) if

lim
t→∞

H(x(t)) = 0

for any initial condition x(t0) = x0;
(ii) Assume that F0 ⊆ F . Then a global asymptotic

consensus (GAC) with respect to F0 is achieved for system
(2) if ∀w ∈ F0, ∀ε > 0, ∀c > 0, ∃T > 0 such that ∀t0 ≥ 0,

H(x0) ≤ c⇒ H(x(t)) ≤ ε, ∀t ≥ t0 + T.
Remark 2.3: GAC is to say, with bounded initial condition

H(x0), H(x(t)) not only converges to 0, but also converge
uniformly in t for all w ∈ F0 along trajectories of system
(2).

C. Preliminary Results
The following results were proved in Part I of the paper

[16].
Proposition 2.1: (i) System (1) with control rule (2)

achieves a GC for any w ∈ F1 if Gσ(t) is UQSC, where

F1 , {z(t) ∈ F∞ : lim
t→∞

z(t) = 0}.

(ii) System (1) with control rule (2) achieves a GAC with
respect to F0

1 if and only if Gσ(t) is UQSC, where F0
1 ⊆ F1

is a subset with limt→∞ supz∈F0
1
|z(t)| = 0.

Proposition 2.2: (i) Assume that either Gσ(t) being undi-
rected for any t ≥ 0, or G([0,+∞)) being acyclic. Then
system (1) with control rule (2) achieves a GC for all w ∈ F2

if and only if G([t,∞)) is QSC for any t ≥ 0, where

F2 , {z ∈ F|
∫ ∞
0

|z(t)|dt <∞}.

(ii) Let F0
2 ⊆ F2 be a subset with

∫∞
0

supz∈F0
2
|z(t)|dt <

∞. Then system (1) with control rule (2) achieves a GAC
with respect to F0

2 if Gσ(t) is UQSC.
Moreover, the following estimation was also obtained on

the convergence rates in Part I of the paper [16]. When Gσ(t)
is UQSC, we have

H(x(t)) ≤ (1− αN−1)b
t

K0
cH(x0) + (4N − 3)∫ t

0

(1− αN−1)b
t

K0
c−g(τ)|w(τ)|dτ (3)

where K0 = (N −1)2T̂ with T̂ = T0+2τD, 0 < αN−1 < 1
are two constants, and

g(τ) =

{
i+ 1, τ ∈ [iK0, (i+ 1)K0), i = 0, . . . , b t

K0
c − 1

b t
K0
c, τ ∈ [b t

K0
c ·K0, t]

(4)
On the other hand, when Gσ(t) is USC, similar estimation

can also be given by

H(x(t)) ≤ (1− α∗N−1)
b t
K∗ cH(x0) + (4N − 3)∫ t

0

(1− α∗N−1)
b t
K∗ c−g(τ)|w(τ)|dτ (5)

where K∗ = (N − 1)T̂ , 0 < αN−1 < α∗N−1 < 1 are
constants, and

g(τ) =

{
i+ 1, τ ∈ [iK∗, (i+ 1)K∗), i = 0, . . . , b t

K∗
c − 1

b t
K∗
c, τ ∈ [b t

K∗
c ·K∗, t]

(6)

D. Event-Triggered Coordination

Control laws via event-triggered or self-triggered ap-
proaches are piecewise constant inputs which update the
value when certain events are executed [31], [32].

In this paper, we study the trigger condition in the follow-
ing. Let ti1 < ti2 < · · · < tik < . . . be the time sequence
when agent i is triggered. Denote ei(t) , xi(t)− xi(tik) as
the state measurement error for node i.

Let ti1 = t0. Having got tik, tik+1 is determined by the
solution of the following equation:

|ei(t)| = δ(t), (7)

where δ(t) : R≥0 → R>0 is a given function.
In the next two sections, we will discuss neighbor-

synchronous and asynchronous updating rule respectively,
which study event-triggered coordination under two different
communication protocols.

III. NEIGHBOR-SYNCHRONOUS COORDINATION

In this section, we study a class of self-triggered coordi-
nation rule in which each agent will update its control input
when it is triggered or its neighbor updates the control.

Denote âij(k) = aij(x(t
i
k), t

i
k). Then the control input for

agent i, i = 1, . . . , N is defined in the following:

ui(t) =
∑

j∈Ni(σ(t))

âij(k)(xj(t
j
Tj(t)))−xi(t

i
k)), t ∈ [tik, t

i
k+1)

(8)
where Tj(t) , arg max

l
{tjl |t

j
l ≤ t} for j = 1, . . . , N .

Remark 3.1: With (8), agent i will update the control in-
put on the time instants when it is triggered, or its neighbors
are changing or triggered. However, it is not hard to see that
ui(t) is still piece-wise constant.

The communications of protocol (8) over the network can
be described in the following way: (i) Each agent i broadcasts
its state xi(tik) during [tik, t

i
k+1) until it is triggered another

time. (ii) Agent i’s neighbors update the parts related to i’s
state in their control inputs once they receive the broadcasting
states. (iii) The control inputs also updates synchronously as
the communication graph switches.

Denote ŵi(t) =
∑

j∈Ni(σ(t))

âij(k)(ei(t)− ej(t)). Then (8)

can be transformed into the following form:

ui(t) =
∑

j∈Ni(σ(t))

âij(k)(xj(t)− xi(t)) + ŵi(t). (9)

Noting the fact that

|ŵi(t)| ≤
∑

j∈Ni(σ(t))

âij(k)|ei(t) + ej(t)|

≤ 2(N − 1)a∗|δ(t)|. (10)
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we obtain following conclusions immediately based on
Propositions 2.1 and 2.2.

Theorem 3.1: (i) System (1) with control law (8) achieves
a GC for any δ ∈ F1 ∪ F2 if Gσ(t) is UQSC.

(ii) System (1) with control law (8) achieves a GAC with
respect to δ ∈ F0

1 ∪ F0
2 if Gσ(t) is UQSC.

Theorem 3.2: Assume that either Gσ(t) being undirected
for any t ≥ 0, or G([0,+∞)) being acyclic. Then System
(1) with control law (8) achieves a GC for any δ ∈ F2 if
G([t,∞)) is QSC for any t ≥ 0.

Furthermore, denote τ ik+1 , t
i
k+1 − tik, k = 0, 1, . . . , i =

1, . . . , N as the spaces between two trigged time instants for
each agent, and denote τ0 , mini infk{τ ik+1} as their lower
bound. Then Zeno behavior [30] is avoided if τ0 > 0.

The following conclusion holds.
Theorem 3.3: (i) Assume that Gσ(t) is UQSC and δ(t) =

c0e
−λt with c0 > 0. Then System (1) with control law (8)

achieves a GAC with τ0 > 0 if 0 < λ < − ln(1−αN−1)
K0

.
(ii) Assume that Gσ(t) is USC and δ(t) = c0e

−λt with
c0 > 0. Then System (1) with control law (8) achieves a
GAC with τ0 > 0 if 0 < λ < − ln(1−α∗

N−1)

K∗
.

Proof: The proof of (i) results from (3), and (ii) can be
obtained in the same way based on (5). Therefore, we just
focus on part (i) of the conclusion. We just have to prove
τ0 > 0. With (18), we have

|ui(t)| ≤ (N−1)a∗H(x(t))+2(N−1)a∗δ(t), i = 1, . . . , N.
(11)

Then according to the event condition (7), (11) will lead to

τ ik+1 =
δ(tik+1)

|ui(tik)|

≥ δ(tik)

(N − 1)a∗H(x(tik)) + 2(N − 1)a∗δ(tik)
· e−λτ

i
k+1 .

(12)

Furthermore, combing (3) and (10), one has

H(x(t)) ≤ (1− αN−1)b
t

K0
cH(x0) + 2(N − 1)

· (4N − 3)a∗
∫ t

0

(1− αN−1)b
t

K0
c−g(τ)δ(τ)dτ.

Therefore, denoting F (t) , δ(t)
(N−1)a∗H(x(t))+2(N−1)a∗δ(t) ,

we obtain

F (t) ≥ δ(t)

(1− αN−1)b
t

K0
cH(x0) + g(t) + 2δ(t)

· 1

(N − 1)a∗
, (13)

where

g(t) = 2(N − 1)(4N − 3)a∗
∫ t

0

(1− αN−1)b
t

K0
c−g(τ)δ(τ)dτ.

Furthermore, recalling that (1 − αN−1)b
t

K0
c ≤ c∗e

−λ∗t,
where c∗ = 1

1−αN−1
and λ∗ = − ln(1−αN−1)

K0
, and also

noticing the fact that (1− αN−1)−g(τ) ≤ c∗eλ∗τ , we have

F (t) ≥ δ(t)

c∗e−λ∗tH(x0) + g0e−λ∗t
∫ t
0
eλ∗τδ(τ)dτ + 2δ(t)

· 1

(N − 1)a∗

=
c0

c∗e(λ−λ∗)tH(x0) + g0c0
λ−λ∗

(e(λ−λ∗)t − 1) + 2c0

· 1

(N − 1)a∗

≥ c0
c∗H(x0) + g0c0

λ∗−λ + 2c0
· 1

(N − 1)a∗

,M∗. (14)

where g0 = 2(N − 1)(4N − 3)a∗c2∗. As a result, (12) leads
to

τ ik+1 ≥M∗e−λτ
i
k+1 , (15)

which implies

τ0 ≥M∗e−λτ0 (16)

immediately since τ ik+1 is arbitrarily chosen in (15). Then it
is not hard to find τ0 ≥ m∗, where m∗ > 0 is the unique
solution of equation y =M∗e

−λy . This completes the proof.
�

IV. ASYNCHRONOUS EVENT-TRIGGERED
COORDINATION

In this subsection, we consider asynchronous self-triggered
coordination when the agents’ control updating no longer
synchronize with the neighbors.

To be precise, an asynchronous self-triggered coordination
rule should include the following properties.
(i) (Broadcasting) Each agent i broadcasts its state xi(tik)

during [tik, t
i
k+1) until it is triggered another time at

tik+1.
(ii) (Receiving) Agent j can receive xi(tik) if and only if

there exists a time t1 ∈ [tik, t
i
k+1) such that i is a

neighbor of j at time t1. Moreover, agent j can store
this message until another message from i is received.

(iii) (Updating) Each agent i updates its control input at time
xi(t

i
k) with k ≥ 2 once it is triggered, based on the

messages it receives from the neighbor set N̂i(k)
.
=

∪t∈[tik−1,t
i
k)
Ni(σ(t)).

Note that, when the upper restrictions are satisfied, the
control input of an agent i may equals 0 at some time tik,
and then it will never be triggered again according to the
trigger condition (7). Consequently, a global consensus will
not be achieved. In order to avoid this, we have to modify the
definition of the event condition. Having got tik, we redefine
the solution of (7) as t̂ik+1, and another assumption is given
as follows for the definition of tik+1.

A4. (Forcing Waking Up) There is a constant L∗ such that

(i) tik+1 = t̂ik+1 if t̂
i
k+1 − tik ≤ L∗;

(ii) tik+1 = tik + L∗ if t̂ik+1 − tik > L∗.
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We present the following distributed asynchronous self-
triggered coordination rule:

ui(t) =
∑

j∈N̂i(k)

âij(k)(xj(t
j

T j
i (k)

)− xi(tik)), t ∈ [tik, t
i
k+1),

(17)
where T ji (k); i, j = 1, . . . , N are defined by T ji (k) ,
maxl{l|tjl ≤ T ∗ij(k)} with T ∗ij(k) , maxt{t ∈ [tik−1, t

i
k)|j ∈

Ni(σ(t))}. It is not hard to see (17) satisfies properties
(i)− (iii).

Remark 4.1: In [12], an asynchronous consensus protocol
is studied, where each node independently updates its state at
times determined by its own clock and each node’s position
between two event times is formulated as a given piece-
wise continuous signal. In (17), each node also independently
updates its control by its own clock. From this point, we have
the same meaning by saying “asynchronous” as in [12]. Here
using piece-wise constant control, the trajectory of each node
is a linear function between two event times.

Denote

w̃i(t) =
∑

j∈N̂i(k)

âij(k)(ei(t)− ej(t))

+
∑

j∈N̂i(k)

âij(k)(xj(t
j

T j
i (k)

)− xj(tjTj(t))).

Then (17) can be transformed into the following form:

ui(t) =
∑

j∈N̂i(k)

âij(k)(xj(t)− xi(t)) + w̃i(t). (18)

Then we propose our main result on asynchronous self-
triggered coordination.

Theorem 4.1: Assume that δ(t) = c0e
−λt with 0 < λ <

− ln(1−αN−1)
K0

, and L∗ is chosen to satisfy the following
inequality:

2L∗e2λL
∗
[
(N − 1)(4N − 3)a∗c2∗

λ∗ − λ
+1](N −1)a∗ < 1. (19)

Then System (1) with control law (17) achieves a GAC with
τ0 > 0 if Gσ(t) is UQSC.
Proof: We define a function

M(t) , inf{τ ik+1|tik+1 < t, i = 1, . . . , N ; k = 0, . . . }

as the lower bound for the inter-event times before time t.
Then M(t) is obviously non-increasing. Thus, based on the
definition of T ji (k), it is not hard to find that every agent
j ∈ N̂i(k) is triggered as many as L∗

M(t) times during time
interval [tik−1, t

i
k+1) for tik+1 ≤ t.

Suppose δ(t) = c0e
−λt, and therefore we have

|xj(tjT j
i (k)

)− xj(tjTj(t))| ≤
2L∗

M(t)
δ(tik−1) ≤

2L∗

M(t)
δ(t)eλ2L

∗

for any j ∈ N̂i(k) and t ∈ [tik−1, t
i
k+1), which leads to

|w̃i(t)| ≤ (N − 1)a∗[2 +
2L∗e2λL

∗

M(t)
]δ(t). (20)

Noting the fact that in the communication graph defined
by N̂i(k), k = 1, . . . for every agent i, every arc exists longer
than in the graph Gσ(t), we can also obtain

H(x(t)) ≤ (1− αN−1)b
t

K0
cH(x0) + (N − 1)(4N − 3)a∗∫ t

0

(1− αN−1)b
t

K0
c−g(τ)[2 +

2e2λL
∗
L∗

M(τ)
]δ(τ)dτ.

(21)

Moreover, since M(t) is non-increasing, (21) leads to

H(x(t)) ≤ (1− αN−1)b
t

K0
cH(x0) + (N − 1)(4N − 3)a∗

[2 +
2e2λL

∗
L∗

M(t)
]

∫ t

0

(1− αN−1)b
t

K0
c−g(τ)δ(τ)dτ.

Therefore, based on similar analysis by which we obtain
(15), it is not hard to obtain that for i = 1, . . . , N and k =
0, 1, . . . ,

τ ik+1

≥ c0M(tik)

[c∗H(x0) + g0c0
λ∗−λ + 2c0]M(tik) + [ g0c0λ∗−λ + 2c0]L∗e2λL

∗

· 1

(N − 1)a∗
e−λτ

i
k+1 , (22)

where g0 = (N − 1)(4N − 3)a∗c2∗. Next, we prove τ0 >
0 by contradiction. Assume that τ0 = 0. Then we have
limt→∞M(t) = 0. Therefore, for any fixed number 0 <
µ < 1, there exists N1 > 0 such that when k > N1, one has

τ ik+1 ≥
M(tik)

[ g0
λ∗−λ + 2](N − 1)a∗L∗e2λL∗ · µe−λτ

i
k+1 . (23)

It is not hard to see that if τ ik+1 ≥ M(tik) for all i and
k > N1, then M(tik) is nondecreasing when k > N1, and
therefore trivially we have τ0 > 0. Otherwise, there has to
be τ i0k0+1 → 0 as k0 tends to infinity such that τ i0k0+1 =

M(ti0k0 + τ
i0
k0+1). According to (19), choosing k0 sufficiently

large to enforce
1

[ g0
λ∗−λ + 2](N − 1)a∗L∗e2λL∗ · µe

−λτ i0
k0+1 > 1,

(23) will lead to

M(ti0k0 + τ i0k0+1) > M(ti0k0), (24)

which contradicts the fact that M(t) is non-increasing.
Therefore, we have proved that τ0 > 0.

As a result, we finally obtain

|ŵi(t)| ≤ (N − 1)a∗[2 +
2L∗e2λL

∗

τ0
]δ(t), (25)

which guarantees GAC for system (1) immediately according
to Proposition 2.2. This completes the proof. �

Similarly, we also have the following conclusion for the
USC case, whose proof is omitted.

Theorem 4.2: Assume that δ(t) = c0e
−λt with 0 < λ <

λ̂∗, where λ̂∗ = − ln(1−α∗
N−1)

K∗
, and L∗ is chosen to satisfy

the following inequality:

2L∗e2λL
∗
[
(N − 1)(4N − 3)a∗ĉ2∗

λ̂∗ − λ
+](N − 1)a∗ < 1, (26)
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where ĉ∗ = 1
1−α∗

N−1
. Then System (1) with control law (17)

achieves a GAC with τ0 > 0 if Gσ(t) is USC.

V. CONCLUSIONS

The paper studied event-triggered coordination for multi-
agent systems with directed switching communication
graphs. Both neighbor-synchronous and asynchronous updat-
ing rules are investigated, and proper conditions on trigger
function and connectivity were proposed for the system to
each a consensus. In practice, multi-agent systems reaching a
consensus with event-triggered control under communication
constraints deserves more attention since in many cases the
communication costs can be reduced using event-triggered
feedback over the networks.
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