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Abstract: Recently, necessary and sufficient conditions for output synchronization of linear systems via
diffusive couplings have been reported. In this paper, we study the case when such conditions are not
satisfied and exact synchronization is impossible. In particular, we study two kinds of heterogeneous
linear networks: (i) non-identical harmonic oscillators and (ii) double-integrators. We show that static
diffusive couplings render heterogeneous networks of harmonic oscillators asymptotically stable. Net-
works of non-identical double-integrators, in contrast, are not asymptotically stable but synchronize with
bounded synchronization error depending on the network topology and the heterogeneity in the agent
dynamics. Numerical examples illustrate the results.

1. INTRODUCTION

Over the last decade, large-scale and distributed dynamical
systems have attracted great attention in the field of control
theory. Of particular interest are so-called multi-agent systems
consisting of individual subsystems which interact with neigh-
boring subsystems, or agents, according to some distributed
control law. Such models are suitable to describe and analyze
consensus and synchronization phenomena.

A common approach to consensus and synchronization prob-
lems in networks of dynamic agents is static diffusive cou-
plings, i.e., distributed controllers without dynamics that take
into account the output differences of neighboring agents. Fa-
mous examples are the classical consensus protocol, cf., Olfati-
Saber and Murray [2004], Moreau [2004], Ren and Beard
[2005], and its extensions to double-integrators, Ren and Atkins
[2007], harmonic oscillators, Ren [2008], Su et al. [2009],
and general linear agents, Wieland et al. [2011a]. It has been
shown by Scardovi and Sepulchre [2009], Wieland [2010],
Wieland et al. [2011b] that dynamic diffusive couplings provide
more flexibility and allow to solve synchronization problems
in a larger class of networks of linear systems. A major chal-
lenge is synchronization in heterogeneous linear networks, i.e.,
multi-agent systems consisting of non-identical linear agents.
Wieland [2009] presents a necessary condition for synchroniza-
tion in heterogeneous linear networks. The result resembles the
internal model principle of classical output regulation and states
that the agents have to embed a common internal model in order
to synchronize.
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In this paper, we study heterogeneous linear networks with
static diffusive couplings and focus on the case when such nec-
essary conditions are not fulfilled. We analyze the dynamics of
heterogeneous linear networks in which exact synchronization
is not possible. The goal is to see whether we can achieve
“practical” synchronization with a small synchronization error
in such situations and assess the robustness of synchronization
with respect to heterogeneities in the agent dynamics.

The contributions of this paper are the following: First, the
internal model principle for synchronization stated by Wieland
[2009] is formulated for the special case of static diffusive cou-
plings. Then, heterogeneous networks of harmonic oscillators
are studied. We show that the internal model condition is not
satisfied and that static diffusive couplings have a stabilizing
effect in such networks. In particular, the network of oscillators
is rendered asymptotically stable if and only if there are os-
cillators with non-identical frequency in the network. Last, het-
erogeneous networks of double-integrators are analyzed. In this
case, the trajectories stay “close” to synchronization, depending
on the graph topology and the heterogeneity in the network.

The remainder of this paper is organized as follows. Section 2
contains mathematical preliminaries and the graph theoretic
background. In Section 3 the internal model principle for syn-
chronization is reviewed. Our main results on heterogeneous
networks of harmonic oscillators and double-integrators are
presented in Section 4 and Section 5, respectively. Section 6
concludes the paper.

2. PRELIMINARIES

2.1 Mathematical Preliminaries

The following notation is used in this paper. For a vector v∈Rn,
diag(v) is the diagonal matrix with the elements vi, i = 1, ...,n,
of v on the diagonal. The all ones and all zeros vectors are
denoted by 1 and 0, respectively, and I = diag(1) is the identity



matrix. The null space and image of a linear map defined by
a matrix M are denoted by ker(M) and im(M), respectively.
The norm ‖ ·‖ is understood as 2-norm for vectors and induced
2-norm for matrices. The spectrum of a square matrix M is
denoted by σ(M). With a slight abuse of notation, σ(M) is to be
understood as the set of roots of the characteristic polynomial
of M, i.e., it respects the multiplicity of the eigenvalues. For
a complex number z ∈ C, ℜ(z) is the real part and ℑ(z) the
imaginary part of z. The closed right-half complex plane is
denoted by C̄+.

2.2 Graph Theory

The network topology is modeled by a time-invariant directed
graph G = {V ,E ,AG }. In the following, we review selected
definitions and results on directed graphs, which are needed in
the remainder of this paper. For a comprehensive discussion,
the reader is referred to Godsil and Royle [2001], Wu [2005],
Wieland [2010], Wieland et al. [2011a]. Each vertex vk in the set
V = {v1, ...,vN} corresponds to a dynamical subsystem (agent)
k in the network. There is a directed edge from vertex v j to
vk, i.e., (v j,vk) ∈ E , if and only if vk is influenced by (receives
information from) v j. The vertexes vk,v j are called head and
tail of edge (v j,vk), respectively. A consecutive sequence of
directed edges is called a directed path. The adjacency matrix
AG ∈ RN×N describes the graph structure and edge weights,
i.e., ak j > 0⇔ (v j,vk) ∈ E . The Laplacian matrix L ∈ Rn×n is
defined as L = diag(AG 1)−AG . By construction, L is a Metzler
matrix and has zero row sums, i.e., L1 = 0. The vector of
ones 1 is the eigenvector corresponding to the zero eigenvalue
λ1(L) = 0.
Definition 1. (connected graph). The graph G is called con-
nected if it contains a directed spanning tree, i.e., if there exists
a vertex vk such that there is a path from vk to every other vertex
v j ∈ V . In this case, vk is called centroid.
Definition 2. (strongly connected graph). The graph G is called
stongly connected if there exists a directed path from any vertex
to any other vertex in V . In this case, every vertex is a centroid.
Lemma 3. (Ren and Beard [2005]). All eigenvalues of L are
contained in the closed right-half plane, i.e., λk(L) ∈ C̄+ for
k = 1, ...,N. The zero eigenvalue λ1(L) = 0 is simple and all
other eigenvalues have positive real parts ℜ(λk(L)) > 0 for
k = 2, ...,N, if and only if G is connected.
Lemma 4. (Li and Duan [2009], Brualdi and Ryser [1991]). If
the graph G is connected, then there exists a vertex permutation
such that L reduces to the Frobenius normal form

L =


L11 0 · · · 0
L21 L22 · · · 0

...
...

. . .
...

Lm1 Lm2 · · · Lmm

 , (1)

where Lii, i = 1, ...,m−1, are irreducible square matrices, each
Lii has at least one row with positive row sum, and Lmm is
irreducible or a scalar zero.
Definition 5. (induced subgraph). An induced subgraph of G =
{V ,E } is a graph G̃ = {Ṽ , Ẽ } with Ṽ ⊆ V and Ẽ = {(v,w) ∈
E : v,w ∈ Ṽ }.
Definition 6. (iSCC, Wieland [2010]). An independent strongly
connected component (iSCC) of a directed graph G = {V ,E }
is an induced subgraph G̃ = {Ṽ , Ẽ } which is maximal, subject
to being strongly connected, and satisfies (v, ṽ) /∈ E for any
v ∈ V \Ṽ and ṽ ∈ Ṽ .

In other words, an iSCC G̃ = {Ṽ , Ẽ } is strongly connected and
the directed graph induced by any set V̂ with Ṽ ⊆ V̂ ⊆ V is
strongly connected if and only if Ṽ = V̂ . Furthermore, there is
no edge in E with tail outside Ṽ and head inside Ṽ .

Figure 1 shows a directed graph which is connected. It is not
strongly connected since there is, e.g., no path from v6 to any
other node. The iSCC contains vertexes ViSCC = {v1,v2,v3,v4},
any vertex in ViSCC is a centroid in this example.
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Fig. 1. A connected directed graph G . The dashed box indicates
the iSCC of the graph.

Theorem 7. (Wieland et al. [2011a]). If G has r distinct iSCCs
ViSCC, j ⊆ V , j = 1, ...,r, then

(1) rank(L) = N− r,
(2) the null space of LT admits a non-negative orthogonal

basis p j ∈ RN , j = 1, ...,r,
(3) the basis vectors p j, j = 1, ...,r, can be ordered such that

for any vertex k ∈ V , k ∈ ViSCC, j⇔ pTj ek 6= 0, j = 1, ...,r,
where ek is the k-th canonical basis vector.

Lemma 8. (Wieland et al. [2011a]). If G is connected, then G
has exactly one iSCC.
Corollary 9. If G is connected, then ker(L) = im(1) and the
left eigenvector p of L corresponding to eigenvalue zero with
pT1 = 1 is non-negative, i.e., pTL = 0T and p ≥ 0 element-
wise. If G is strongly connected, then p is positive, i.e., p > 0
element-wise.
Lemma 10. (Zhang et al. [2012]). Suppose G is strongly con-
nected and P = diag(p), where pTL = 0T and pT1 = 1. Then,

(1) P > 0,
(2) (PL+LTP)≥ 0,
(3) ker(PL+LTP) = im(1).

3. THE INTERNAL MODEL PRINCIPLE

The internal model principle for synchronization of heteroge-
neous linear systems has originally been presented by Wieland
[2009]. It provides a necessary and sufficient condition for
synchronization, Wieland et al. [2011b]. In Wieland [2009],
Wieland et al. [2011b], dynamic diffusive couplings are consid-
ered. Here the internal model principle is reviewed and formu-
lated for the special case of static diffusive couplings. Consider
a heterogeneous group of N linear agents, given by

ẋk = Akxk +Bkuk (2)
yk =Ckxk,

with state xk ∈ Rnk , input uk ∈ Rqk , and output yk ∈ Rp, for
k = 1, ...,N. Suppose the agents are interconnected by static
diffusive couplings according to

uk = Kk

N

∑
j=1

ak j(y j− yk), (3)



where Kk ∈ Rqk×p is a coupling gain matrix and ak j are the
elements of the adjacency matrix AG of the underlying commu-
nication graph G . The network of N agents (2) with couplings
(3) is said to reach non-trivial output synchronization, if

(y j(t)− yk(t))→ 0 as t→ ∞

for all pairs k, j ∈ {1, ...,N} and the closed-loop system has
no asymptotically stable equilibrium set on which yk(t) = 0,
k = 1, ...,N. We impose the following standing assumption.
Assumption 11. The pair (Ak,Ck) is detectable for k = 1, ...,N.

In this setup, the internal model principle of Wieland [2009],
Wieland et al. [2011b] can be stated as follows.
Theorem 12. A necessary condition for non-trivial output syn-
chronization of a heterogeneous linear network of N agents
(2) with static diffusive couplings (3) is that there exist an
integer m > 0 and matrices Πk ∈ Rnk×m with full column rank,
S ∈ Rm×m and R ∈ Rp×m, where σ(S) ⊂ C̄+ and (S,R) is
observable, such that

AkΠk = ΠkS, (4)
CkΠk = R, (5)

for k = 1, ...,N. Furthermore, in this case there exists a w0 ∈Rm

such that limt→∞ ‖yk(t)−ReStw0‖= 0.
Remark 13. Equation (4) is equivalent to Ak-invariance of
im(Πk). Furthermore, since Πk has full column rank, every
eigenvalue of S is an eigenvalue of Ak, i.e.,

σ(S)⊆ σ(Ak), k = 1, ...,N. (6)
Consequently, the eigenvalues of S are a subset of the largest
common subset

⋂N
k=1 σ(Ak) of all agent’s spectra.

Remark 14. It is possible to check in a systematic way whether
the necessary condition in Theorem 12 is fulfilled. The possible
spectra of S can be listed according to the condition (6).
The candidates for matrix S can be chosen in Jordan normal
form of dimension 1 ≤ m ≤ m̂, where m̂ is the cardinality
of
⋂N

k=1 σ(Ak), with σ(S) ⊆
⋂N

k=1 σ(Ak). Assume S̃ is not in
Jordan normal form and we want to find a solution Π̃k, R̃ to

AkΠ̃k = Π̃kS̃,
CkΠ̃k = R̃.

Then, we can find a matrix T such that S = T−1S̃T has Jordan
normal form, and we obtain

AkΠ̃kT = Π̃kT S,
CkΠ̃kT = R̃T,

which is equivalent to (4), (5), with new variables Πk = Π̃kT
and R = R̃T . Therefore, it suffices to check the candidates of S
in Jordan normal form.

In words, the internal model principle for synchronization in
heterogeneous networks of linear systems states that the agents
can only synchronize to a trajectory generated by a dynam-
ical system ẇ = Sw, which is contained in the dynamics of
each agent. Furthermore, if the agents in the network have no
eigenvalues in common, then (non-trivial) synchronization is
impossible.

4. HETEROGENEOUS HARMONIC OSCILLATORS

In this section, networks of harmonic oscillators with non-
identical frequencies are analyzed. The agents (2) are given
with matrices

Ak =

[
0 (ω +δk)

−(ω +δk) 0

]
,

and Bk = Ck = I, and the coupling gains in (3) are Kk = I
for k = 1, ...,N. The individual oscillators deviate by δk ∈ R
from the nominal frequency ω ∈ R. Suppose there exist two
agents k, j ∈ {1, ...,N} such that δk 6= δ j. Then the intersection
of the agents’ spectra σ(Ak) is empty and exact non-trivial
synchronization is impossible as discussed before.

However, we are interested in the behavior of the dynamic
network in this case. In particular, we would like to see whether
small perturbations in the frequencies lead to small synchro-
nization errors. The following result characterizes the dynamic
behavior of the network.
Lemma 15. Consider a network of N harmonic oscillators in-
terconnected by static diffusive couplings, i.e.,

ẋk = (ω +δk)

[
0 1
−1 0

]
xk +

N

∑
j=1

ak j(x j− xk) (7)

for k = 1, ...,N. Suppose that the directed graph G is strongly
connected. Furthermore, suppose that there exists a pair k, j
of oscillators such that δk 6= δ j, i.e., not all oscillators have
identical frequencies. Then, the network of oscillators is asymp-
totically stable.

Proof. With xk = [rk, vk]
T, rk,vk ∈ R, (7) can be written as

ṙk = (ω +δk)vk +
N

∑
j=1

ak j(r j− rk),

v̇k =−(ω +δk)rk +
N

∑
j=1

ak j(v j− vk).

With stack vectors r = [r1, ...,rN ]
T and v = [v1, ...,vN ]

T, the
dynamics of the network can compactly be written as[

ṙ
v̇

]
=

[
−L ωI +∆

−ωI−∆ −L

][
r
v

]
where ∆ = diag(δ ) and δ = [δ1, ...,δN ]

T.

Suppose the directed graph G is strongly connected. Then, there
exists a unique vector p ∈ RN such that pT L = 0, pT 1 = 1
and pk > 0 for k = 1, ...,N, i.e., the left eigenvector of L
corresponding to the eigenvalue zero has positive elements, cf.,
Corollary 9. In order to assess stability of the system above, we
use the Lyapunov function

V = rTPr+ vTPv,

where P = diag(p). V is positive definite by Lemma 10. The
Lie-derivative of V is

V̇ =

[
r
v

]T [P 0
0 P

][
ṙ
v̇

]
+

[
ṙ
v̇

]T [P 0
0 P

][
r
v

]
=−

[
r
v

]T [PL+LTP ∆P−P∆

P∆−∆P PL+LTP

][
r
v

]
=−

[
r
v

]T [PL+LTP 0
0 PL+LTP

][
r
v

]
=−rT(PL+LTP)r− vT(PL+LTP)v.

The cross terms between r and v cancel since the diagonal
matrices P and ∆ commute. The resulting Lie-derivative V̇ is
negative semi-definite, i.e.,

V̇ ≤ 0
by Lemma 10. The set on which V̇ = 0 is given by

I = {x ∈ R2N : r,v ∈ im(1)},



where x = [xT1 , ...,x
T
N ]

T. Since L1 = 0, the dynamics on I are
given by

ṙ = (ωI +∆)v,
v̇ =−(ωI +∆)r.

Hence, I is invariant, if and only if δ ∈ im(1). From there
we can see that the oscillators synchronize in case they have
all identical frequencies. However, by assumption there exist
two agents k, j in the network, for which δk 6= δ j. Therefore
ṙ, v̇ /∈ im(1) and I is not invariant. Thus the only trajectory
contained in I is r ≡ 0, v≡ 0. By LaSalle’s invariance princi-
ple, it follows that the equilibrium r = 0, v = 0, i.e., x = 0, is
asymptotically stable. �

In case of strongly connected graphs, the static diffusive cou-
plings between the oscillators have a stabilizing effect in case of
non-identical frequencies. The following theorem characterizes
general connected directed graphs and is the main result of this
section.
Theorem 16. Consider a network of N harmonic oscillators
interconnected by static diffusive couplings, i.e.,

ẋk = (ω +δk)

[
0 1
−1 0

]
xk +

N

∑
j=1

ak j(x j− xk)

for k = 1, ...,N. Suppose that the directed graph G is connected.
Then, the network of oscillators is asymptotically stable if and
only if there exists a pair k, j of oscillators in the iSCC of G
such that δk 6= δ j.

Proof. Only if: Within the iSCC, the network is strongly con-
nected. The oscillators contained in the iSCC are not affected
by the oscillators which are not contained in the iSCC. As-
sume that all oscillators in the iSCC have identical frequencies.
Then, they synchronize to a (generally) non-trivial trajectory,
cf., proof of Lemma 15, and the network is not asymptotically
stable.

If: Since G is connected, there exists a vertex permutation such
that the Laplacian L reduces to the Frobenius normal form (1),
cf., Lemma 4, where the first block L11 corresponds to the
iSCC, i.e., vertexes ViSCC. By assumption there exists a pair
k, j of oscillators in the iSCC of G such that δk 6= δ j. It follows
from Lemma 15 that xk→ 0 as t→ ∞ for all k ∈ ViSCC.

It remains to show that this implies x j → 0 as t → ∞ for
j ∈ V \ViSCC. We partition the vectors r, v according to the
size of the blocks on the diagonal of L, i.e., r = [rT1 , ...,r

T
m]

T,
v = [vT1 , ...,v

T
m]

T, and ∆ = diag(∆11, ...,∆mm). This yields

ṙi =−Liiri−
i−1

∑
l=1

Lilrl +(ωIii +∆ii)vi,

v̇i =−Liivi−
i−1

∑
l=1

Lilvl− (ωIii +∆ii)ri,

for i = 2, ...,m. By Lemma 4, each Lii has at least one row with
positive row sum. Therefore it is possible to decompose Lii =
L̃ii +Dii, such that L̃ii is the Laplacian matrix corresponding
to a strongly connected graph G̃ii and Dii is a non-negative
diagonal matrix with at least one positive element, cf., Brualdi
and Ryser [1991]. Now we prove asymptotic stability block-
wise by induction. For block i= 1, exponential stability follows
from Lemma 15. For any block i > 1, it can be shown that
ri,vi→ 0 as t→∞ if rl ,vl→ 0 as t→∞ for l = 1, ..., i−1 by the
following argumentation. If rl ,vl → 0 as t→∞ for l = 1, ..., i−
1, then the dynamics of ri,vi are asymptotically described by

ṙi =−(L̃ii +Dii)ri +(ωIii +∆ii)vi,

v̇i =−(L̃ii +Dii)vi− (ωIii +∆ii)ri.

Consider the Lyapunov function Vi = rTi Piiri + vTi Piivi, where
Pii = diag(p̃i) is the diagonal matrix consisting of the elements
of the left eigenvector p̃i of L̃ii corresponding to zero. Since G̃ii
is strongly connected, Pii > 0 and hence Vi is positive definite.
Furthermore, we obtain

V̇i =−rTi (Pii(L̃ii +Dii)+(L̃ii +Dii)
TPii)ri

− vTi (Pii(L̃ii +Dii)+(L̃ii +Dii)
TPii)vi

=−rTi (PiiL̃ii + L̃T
ii Pii)ri− vTi (PiiL̃ii + L̃T

ii Pii)vi

− rTi (2PiiDii)ri− vTi (2PiiDii)vi.

It holds that (PiiL̃ii+ L̃T
ii Pii)≥ 0 and ker(PiiL̃ii+ L̃T

ii Pii) = im(1).
Since (2PiiDii) is a non-negative diagonal matrix with at least
one positive element, 1T(2PiiDii)1> 0 and therefore V̇i < 0, i.e.,
the Lie-derivative of the Lyapunov function is negative definite.
This proves that ri,vi→ 0 as t→∞. By induction, we conclude
that r,v→ 0 as t→ ∞ and hence x→ 0 as t→ ∞. �

Theorem 16 shows that the iSCC of a connected graph plays
an important role. In particular, the network of oscillators is
asymptotically stable if and only if there is a pair of oscilla-
tors inside the iSCC which do not have identical frequencies.
Furthermore, this shows that (non-trivial) synchronization of
harmonic oscillators via static diffusive couplings is not at all
robust with respect to variations of the frequencies. It suffices
to change the frequency of one single oscillator in the iSCC by
an arbitrarily small ε > 0 in order to render the entire network
asymptotically stable.
Example 17. Consider a network of 9 oscillators according to
Figure 1 with nominal frequency ω = 10 and random offset
δk ∈ [0,3], k = 1, ...,N. Consequently the oscillators in ViSCC
have non-identical frequencies. The simulation in Figure 2
shows that the network is asymptotically stable. Next, the fre-
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Fig. 2. Simulation of a network of harmonic oscillators with
heterogeneous iSCC. The oscillators in the iSCC (——)
and outside the iSCC (——) are stabilized.

quencies of all oscillators within the iSCC are set to the nominal
value ω = 10. The oscillators outside the iSCC have random
frequency offsets. The corresponding simulation result is shown
in Figure 3. The oscillators within the iSCC synchronize and
excite the oscillators outside the iSCC, as expected from Theo-
rem 16.
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Fig. 3. Simulation of a network of harmonic oscillators with
homogeneous iSCC. The identical oscillators in the iSCC
(——) synchronize asymptotically and excite the oscilla-
tors outside the iSCC (——).

5. HETEROGENEOUS DOUBLE-INTEGRATORS

In this section, heterogeneous networks of double-integrators
are analyzed. The agents (2) are given with matrices

Ak =

[
0 1+δk
0 0

]
,

where δk ∈R and Bk =Ck = I, and the coupling gains in (3) are
Kk = I for k = 1, ...,N.

A candidate matrix S for the matrix Ak has to fulfill σ(S) ⊆
σ(Ak) = {0,0} for k = 1, ...,N. Thus, there are three candidates

S1 =

[
0 0
0 0

]
, S2 =

[
0 1
0 0

]
, S3 = 0.

Since Ck = I, condition (5) yields Πk = Π j for all k, j ∈
{1, ...,N}. Therefore, a necessary condition for non-trivial syn-
chronization in the double-integrator network is that there exists
a matrix Π with full column rank such that AkΠ=ΠSl for some
l ∈ {1,2,3} and all k = 1, ...,N. In general, δk 6= −1 and thus
there is no solution for l = 1. There is also no solution for l = 2.
For l = 3, the condition is fulfilled for Π = [1, 0]T. This is
not surprising since the internal model S3 is contained in Ak
as the lower right element, exact synchronization to a trajectory
generated by a single-integrator may be possible.

In contrast, exact synchronization to a trajectory generated by a
double-integrator model is not possible. The following theorem
characterizes the dynamic behavior of the network.
Theorem 18. Consider a network of N double-integrator agents
interconnected by static diffusive couplings, i.e.,

ẋk = (1+δk)

[
0 1
0 0

]
xk +

N

∑
j=1

ak j(x j− xk), (8)

for k = 1, ...,N. Suppose that the directed graph G is connected.
Furthermore, suppose that there exists a pair k, j of agents such
that δk 6= δ j. Let xk = [rk,vk]

T, pTL = 0T, and pT1 = 1. Then,
v(t)→ 1pTv0 as t → ∞ and the states r(t) do not synchronize
but grow asymptotically with constant and identical speed.
In particular, (r(t)− r⊥)→ im(1) and ṙ(t)→ 1(pTv0 + c) as
t→ ∞, where c ∈ R and the asymptotic disagreement r⊥ ∈ RN

with 1Tr⊥ = 0 are given by[
r⊥
c

]
=

[
L 1
1T 0

]−1 [
δ pTv0

0

]
. (9)

Proof. The dynamics of the network (8) can be written as

ṙk = (1+δk)vk +
N

∑
j=1

ak j(r j− rk),

v̇k =
N

∑
j=1

ak j(v j− vk),

for k = 1, ...,N. The states vk of the agents form a classical
single-integrator network. With stack vectors r, v, and diagonal
matrix ∆ = diag(δ ), we obtain

ṙ =−Lr+(I +∆)v, (10)
v̇ =−Lv. (11)

The network (11) converges to consensus exponentially, in
particular

v(t)→ 1pTv0 as t→ ∞, (12)
where v(0) = v0, cf., Wieland [2010]. Suppose that r,v∈ im(1).
Then, ṙ = (I + ∆)v /∈ im(1) since δ /∈ im(1) by assumption.
Thus, im(1) is not invariant for (10) and the states r(t) do not
synchronize, i.e., r(t)9 im(1) as t→ ∞.

Let ξ = ṙ. Then, with (10) and (11),
ξ̇ =−Lξ − (I +∆)Lv.

Due to (12), Lv(t)→ 0 as t→ ∞, and ξ (t) converges exponen-
tially to a solution of the unforced system ξ̇ =−Lξ . Hence,

ṙ(t) = ξ (t)→ im(1) as t→ ∞. (13)
Asymptotically, the states r(t) grow with constant and identical
velocity. From (10), (12), and (13), it follows that for t→ ∞,

−Lr(t)+δ pTv0 ∈ im(1). (14)
The state r can be decomposed into a sum of two components,
one component in the subspace im(1) and the other, denoted
by r⊥, in the orthogonal complement im(1)⊥ of im(1), i.e.,
1Tr⊥ = 0. We are interested in the component r⊥ since it
determines the distance of r from im(1). The quantity ‖r⊥‖ can
be seen as asymptotic synchronization error.

Since L1 = 0, it holds that Lr = Lr⊥ and therefore with (14),
−Lr⊥+ δ pTv0 ∈ im(1). This can be rewritten as Lr⊥+ c1 =
δ pTv0 for some c ∈ R, or equivalently,[

L 1
1T 0

][
r⊥
c

]
=

[
δ pTv0

0

]
(15)

It holds that im(L)⊥ = ker(LT) = im(p), where pTL = 0T,
pT1 = 1. Since pT1 6= 0, it follows that im([L 1]) = RN , i.e.,
the rank of the (N × (N + 1))-matrix [L 1] is N. It holds that
[L 1][1T 0]T = 0 and [1T 0][1T 0]T 6= 0. Therefore the matrix[

L 1
1T 0

]
has full rank (N + 1), i.e., is invertible, and the linear system
of equations (15) has the unique solution (9). With (10), we
can finally conclude that ṙ(t) → 1(pTv0 + c) as t → ∞, i.e.,
the constant c is the deviation of the agents’ velocity from the
nominal case, where ṙ(t)→ 1pTv0 as t→ ∞. �

Theorem 18 shows that networks of double-integrators with
static diffusive couplings have a certain robustness with re-
spect to heterogeneity in the dynamics, in the sense that they
synchronize practically for small parameters δk, k = 1, ...,N.
Moreover, the velocities of the agents synchronize for arbitrary
parameters δk. Both the final velocity and the asymptotic offsets
between the agents can be computed explicitly according to (9),
depending on the graph topology, parameters δ , and the initial
state.



Example 19. Consider a network of 9 double-integrators ac-
cording to Figure 1, with random non-identical parameters
δk ∈ [−0.5, 0.5] with 1Tδ = 0. Simulation results for random
initial conditions are shown in Figure 4. As expected from
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Fig. 4. Simulation of a network of non-identical double-
integrators. The dashed lines (– – –) indicate the asymp-
totic solution in the nominal case (δ = 0). The second
states v(t) of all agents reach consensus (bottom). The
first states r(t) grow with constant and identical speed but
with constant offsets r⊥ (top), i.e., (r(t)− r⊥) → im(1)
(middle).

.

Theorem 18, the states v(t) synchronize whereas the states r(t)
grow asymptotically with constant and identical speed, while
maintaining constant offsets r⊥ according to (9), i.e.,

r⊥ ≈ [−0.29,−0.03,0,−0.1,−0.13,−0.12,0.26,0.13,0.28]T.
In Figure 4, it can also be seen that the final velocity of the
states r(t) is pTv0 + c≈ 0.46. It differs by c≈−0.08 from the
velocity in the nominal case.

6. CONCLUSIONS

We have investigated heterogeneous linear networks with static
diffusive couplings among neighboring agents. We have dis-
cussed the internal model principle as a necessary condition for
synchronization in this setup. This condition is not fulfilled in
networks of harmonic oscillators with non-identical frequen-
cies. The analysis of the dynamic behavior of such networks
revealed that heterogeneous networks of harmonic oscillators
are rendered asymptotically stable, if and only if there are non-
identical oscillators within the iSCC of the connected directed
graph. Heterogeneous networks of double-integrator agents
with static diffusive couplings show a different behavior. The
second states of all agents reach consensus as in the nominal
case, whereas the first states of all agents maintain constant
offsets depending on the graph topology and the heterogeneity
in the network. Nevertheless, the first states grow with constant
and identical velocity, i.e., the network “practically” synchro-
nizes for small heterogeneity.

Future work will further investigate the robustness of synchro-
nization methods in networks of linear systems with respect to
uncertainties and heterogeneities in the dynamics of individual
agents.
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