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a b s t r a c t

A graph optimization problem for a multi-agent leader–follower problem is considered. In a multi-agent
system with n followers and one leader, each agent’s goal is to track the leader using the information
obtained from its neighbors. The neighborhood relationship is defined by a directed communication
graph where k agents, designated as informed agents, can become neighbors of the leader. This paper
establishes that, for any given strongly connected communication graphwith k informed agents, all agents
will converge to the leader. In addition, an upper bound and a lower bound of the convergence rate are
obtained. These bounds are shown to explicitly depend on the maximal distance from the leader to the
followers. The dependence between this distance and the exact convergence rate is verified by empirical
studies. Then we show that minimizing the maximal distance problem is a metric k-center problem in
classical combinatorial optimization studies, which can be approximately solved. Numerical examples
are given to illustrate the properties of the approximate solutions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the past decadenumerous research efforts have beendevoted
to the study of the coordination of a group of autonomous agents,
in order to obtain a better understanding of the mechanism
of distributed decision-making of multi-agent systems from
various scientific areas including biology, engineering, and social
science [1–8].

In most cases individuals in a multi-agent system are consid-
ered as equal members [4,9,10]. On the other hand, motivated
from biological systems such as animal groups [1] or robotics net-
works [11,6], leader–follower models are introduced where the
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agents in the system are categorized according to the different
functioning abilities. A ‘‘leader’’, or informed agent, is usually a spe-
cial agent which carries more information in order to guide the
whole group, while a ‘‘follower’’ is usually equipped with simple
functions based on the information received from the leaders and
other connected agents. Leader–follower models have been exten-
sively studied in the literature in terms of controllability, forma-
tion, and target tracking [12–20].

However, few works have discussed how to choose the leaders
in an optimal way such that the overall multi-agent system can
reach a better performance. The selection of effective leadership
was discussed in [1] for biological systems where it was shown
that the larger the group the smaller the proportion of informed
individuals needed to guide the group. The optimal choice of node
dynamics for multi-agent networks to reach a fast consensus was
studied in [21–23], where the structure of the system was fixed
and optimization was carried out on the weights of the arcs, i.e.,
strength of the information flow. Distributed leader-selection was
studied for a formation of autonomous systems where agents do
not communicate with each other directly [24].

0167-2789/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physd.2013.07.014

http://dx.doi.org/10.1016/j.physd.2013.07.014
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:guodongs@kth.se
mailto:sou@kth.se
mailto:hsan@kth.se
mailto:kallej@kth.se
http://dx.doi.org/10.1016/j.physd.2013.07.014


2 G. Shi et al. / Physica D ( ) –

In this paper, we consider an informed-agents selection prob-
lem for tracking control of first-order multi-agent systems. There
are n follower nodes trying to track a static leader, where only k
of them can be connected to the leader. These followers that can
communicate to the leader are called informed agents. The weights
of the arcs are normalized, so the optimal choice of the selected
informed agents leads to a structure optimization problem. Both
upper and lower bounds are established for the convergence rates,
which is determined by the maximal distance in the communica-
tion graph from the leader to the followers. The optimal choice for
the k informed follower nodes that are connected to the leader can
be approximately solved byminimizing thismaximal distance.We
show that it is in fact a metric k-center problem in classical combi-
natorial optimization studies [25,26].

The rest of the paper is organized as follows. Section 2 intro-
duces the system model and the precise definition of the consid-
ered problem. In Section 3, we establish the convergence rate of
the network dynamics and present upper and lower bounds for the
convergence rate given by the maximal distance in the communi-
cation graph from the leader to the followers, which is a graphical
metric of the communication graph. A numerical example is pro-
vided to explore the relation between this graphicalmetric and the
actual convergence rate. Section 4 discusses an approximate solu-
tion for the optimal informed agents selection by solving a k-center
problem, and numerical simulations are presented to illustrate the
properties of the solutions. Finally some concluding remarks are
given in Section 5.

2. Problem definition

Consider a multi-agent system consisting of n follower agents
and one leader agent. The set of the follower agents is denoted as
VF , {v1, . . . , vn}, and the leader agent is denoted as v0. ThenV =

{v0, v1, . . . , vn} is the overall agent set (including the leader and
followers). The underlying communication of the follower agents
is described by a directed graph GF = (VF , EF ), where elements in
EF are arcs as ordered pair of nodes. We call j ∈ VF a neighbor of
node i ∈ VF if there is an arc (j, i) ∈ EF .

When there is no possible confusion, we will identify node
vi with its index i. For the communication graph of the follower
nodes, we use the following assumption.

Assumption (Connectivity). GF is strongly connected.

The leader node v0 keeps a static state, denoted by θ0 ∈ R. The
state of follower nodevi ∈ VF is denoted as xi(t) ∈ R, i = 1, . . . , n.
The goal of the followers is to track the leader, i.e., to reach a state
consensus at θ0. The evolution of the followers’ states is given by

ẋi(t) =


j∈Ni


xj(t) − xi(t)


+ bi (θ0 − xi(t)) , i = 1, . . . , n (1)

where Ni represents the neighbor set of i, defined by Ni = {j ∈

VF : (j, i) ∈ EF }, and

bi =


1, if vi is connected to v0,
0, otherwise

marks whether node i ∈ VF is connected to the leader or not. If
a node vi is connected to the leader, we assume there is an arc
from v0 to vi, and it is called an informed follower. The overall
communication graph for both the leader and the followers is then
denoted as G = (V, E).

Remark 1. The node dynamics (1) is obtained through distributed
controller with each node taking feedback of the state difference
from its neighbors. Such setups have been widely used in the liter-
ature on continuous-time multi-agent systems [4,27,9,28,19,20].

Fig. 1. What nodes should be connected to the leader for a faster convergence?

In this paper, we consider the following structural optimization
problem regarding the convergence rate of themulti-agent system
(see Fig. 1).

Problem. How should 0 ≤ k < n informed followers be selected
so that the fastest consensus is reached?

3. Leader-induced diameter: convergence rate estimations

Denote ξi(t) = xi(t) − θ0. Then System (1) is transformed into
the following form:

ξ̇i =


j∈Ni


ξj − ξi


− biξi. (2)

Let A = [aij] ∈ Rn×n be the adjacency matrix of graph GF , where
aij’s take values only from {0, 1} and aij = 1 only if (j, i) ∈ EF .
Denote D = diag(d1 . . . dn), where di =

n
j=1,j≠i aij. Then LF =

D − A is the Laplacian matrix of GF . Let B = diag(b1, . . . , bn)
mark the connections from the leader to the followers. Denoting
ξ = (ξ1 . . . ξn)

T , we can now rewrite (2) in a compact form:

ξ̇ = − (LF + B) ξ . (3)

Now we see that consensus convergence of (1) is equivalent to
the asymptotic stability of (3). Thus, the convergence rate of (1) to a
consensus is determined by theminimal real part of all eigenvalues
of LF + B, i.e., the stability margin of (3). Therefore, in order for
reaching a fastest consensus given only k informed follower nodes,
we need to solve the following problem:

maximize min
λi∈σ(LF+B)

Re(λi)

subject to bi ∈ {0, 1}
n

i=1

bi = k.
(4)

Here σ(LF + B) is the spectrum of LF + B.
However, (4) is a non-convex problem, and there are overall
n!

k!(n−k)! =
 n
k


≈ O(nk) possible options for choosing the followers

connected to the leader when k ≪ n. In other words, for a
network with a large number of nodes, even if the complexity of
computing the spectrum of LF + B is ignored, finding the exact
solution of (4) is practically impossible. Then it is natural to ask, can
we find some graph-theoretical measures that play an important
role in influencing the convergence rate? If we do, classical graph
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optimization methods can be adopted to provide approximate
solutions.

The rest of the section focuses on the estimations of the con-
vergence rate. Upper and lower bounds are established based on
a generalized diameter of the underlying communication graph.
Then an empirical example will be presented to verify the depen-
dence of the stabilitymargin of LF +B on this generalized diameter.

Remark 2. In [23,22,21], the optimization of arc weights was con-
sidered for reaching fastest consensus on leaderless multi-agent
systems,where the underlying communication graph is fixed. Here
we consider the fastest consensus problem for a continuous-time
leader–follower model from another perspective: the weights of
arcs are fixed to one, then how can we choose the best communi-
cation graph?

3.1. Convergence rate upper bound

Introduce

M(t) = max {θ0, xi(t), i = 1, . . . , n} ,

m(t) = min {θ0, xi(t), i = 1, . . . , n} .

Denote V (t) = M(t) − m(t) as the convergence measure. Let

d∗ = max
i∈VF

d(v0, vi)

be the maximum distance from the leader to the followers. Here
d(v0, vi) represents the length of the shortest path from v0 to vi in
graph G. We call d∗ the leader-induced diameter for the considered
multi-agent system.

The following result gives an upper bound for the convergence
rate of System (1).

Proposition 1. Denoteµ0 = 1−e−nT . For all node states x1(t), . . . ,
xn(t) and T > 0, we have

V (t + d∗T ) ≤


1 −

1
2

µ0

n

d∗


V (t).

Proof. It is straightforward to see that m(t) is nondecreasing, and
M(t) is non-increasing. Pick a t∗ and assume that

θ0 ≤
1
2
m(t∗) +

1
2
M(t∗). (5)

The case when (5) does not hold is considered at the end of the
proof.

Denote V1 = {j ∈ VF : d(v0, vj) = 1}. Then V1 contains the
nodes which are directly connected to the leader. Take i1 ∈ V1. We
have
d
dt

xi1(t) =


j∈Ni1


xj(t) − xi1(t)


+ bi


θ0 − xi1(t)


≤ (n − 1)


M(t) − xi1(t)


+

θ0 − xi1(t)


≤ (n − 1)


M(t∗) − xi1(t)


+


1
2
m(t∗) +

1
2
M(t∗) − xi1(t)


, (6)

for all t ≥ t∗, which implies

xi1(t) ≤ e−n(t−t∗)xi1(t∗) +

1 − e−n(t−t∗)


×

1
2m(t∗) +


n −

1
2


M(t∗)

n
≤ e−n(t−t∗)M(t∗) +


1 − e−n(t−t∗)



×

1
2m(t∗) +


n −

1
2


M(t∗)

n

=

1 − e−n(t−t∗)

 1
2n

m(t∗)

+


1 −


1 − e−n(t−t∗)

 1
2n


M(t∗) (7)

by Grönwall’s Inequality [29].
This leads to

xi1(t) ≤
µ0

2n
m(t∗) +


1 −

µ0

2n


M(t∗), t ∈ [t∗ + T , ∞) (8)

for all i1 ∈ V1, where µ0 = 1 − e−nT .
We continue to define V2 = {j ∈ VF : d(v0, vj) = 2}. Then

for any node i2 ∈ V2, there exists a node i1 ∈ V1 such that i1 is a
neighbor of i2. Thus, we obtain

d
dt

xi2(t) =


j∈Ni2


xj(t) − xi2(t)


+ bi


θ0 − xi2(t)


≤ (n − 2)


M(t∗) − xi2(t)


+

µ0

2n
m(t∗) +


1 −

µ0

2n


M(t∗) − xi2(t), (9)

for t ∈ [t∗ + T , ∞), which yields

xi2(t) ≤ e−(n−1)(t−t∗−T )xi2(t∗ + T )

+

1 − e−n(t−t∗−T )

 µ0
2n m(t∗) +


n − 1 −

µ0
2n


M(t∗)

n − 1
≤ e−(n−1)(t−t∗−T )M(t∗)

+

1 − e−n(t−t∗−T )

 µ0
2n m(t∗) +


n − 1 −

µ0
2n


M(t∗)

n − 1

≤
µ2

0

2n2
m(t∗) +


1 −

µ2
0

2n2


M(t∗) (10)

for all t ∈ [t∗ + 2T , ∞) and i2 ∈ V2.
Proceeding the analysis, V3, . . . , Vd∗

can be defined, and upper
bounds for xij(t) ∈ Vj can be established, respectively. Eventually
we have

xi(t∗ + d∗T ) ≤
µ

d∗

0

2n
m(t∗) +


1 −

µ
d∗

0

2n


M(t∗), i ∈ VF , (11)

which yields

M(t∗ + d∗T ) ≤
1
2

µ0

n

d∗

m(t∗) +


1 −

1
2

µ0

n

d∗


M(t∗). (12)

Based on the definition of V (t) and the nondecreasing property
ofm(t), (12) leads to

V (t∗ + d∗T ) = M(t∗ + d∗T ) − m(t∗ + d∗T )

≤
1
2

µ0

n

d∗

m(t∗)

+


1 −

1
2

µ0

n

d∗


M(t∗) − m(t∗)

=


1 −

1
2

µ0

n

d∗


V (t∗). (13)

For the other case with

θ0 >
1
2
m(t∗) +

1
2
M(t∗), (14)

(13) can be established by a symmetric argument estimating
the lower bound for m(t∗ + d∗T ). Moreover, since t∗ is chosen
arbitrarily, the desired conclusion holds. �
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3.2. Convergence rate lower bound

We present another conclusion on the lower bound of the
convergence rate.

Proposition 2. For any T > 0, there exists initial values x1(t0), . . . ,
xn(t0), such that

V (t0 + T ) ≥


1 −


1 − e−(n−1)T d∗


1 − e−T  V (t0). (15)

Proof. Without loss of generality we assume θ0 = 0. Take xi(t0) =

1 for i = 1, . . . , n. Let V1, . . . , Vd∗
be defined as the proof of

Proposition 1.
For any i1 ∈ V1, it is not hard to see that

d
dt

xi1(t) ≥ −xi1(t), t ≥ t0, (16)

which implies

xi1(t0 + T ) ≥ e−T , t ∈ [t0, t0 + T ]. (17)

With (17), for i2 ∈ V2, we have

d
dt

xi2(t) =


j∈Ni2


xj(t) − xi2(t)


≥ (n − 1)


e−T

− xi2(t)

,

t ∈ [t0, t0 + T ]. (18)

This leads to

xi2(t) ≥ e−(n−1)T
+

1 − e−(n−1)T  e−T

=

1 −


1 − e−(n−1)T 

+

1 − e−(n−1)T  e−T ,

t ∈ [t0, t0 + T ]. (19)

Similarly, for i3 ∈ V3, we conclude that

xi3(t) ≥ e−(n−1)T
+

1 − e−(n−1)T 

×

e−(n−1)T

+

1 − e−(n−1)T  e−T 

=


1 −


1 − e−(n−1)T 2

+

1 − e−(n−1)T 2 e−T ,

t ∈ [t0, t0 + T ]. (20)

Proceeding the estimation we obtain

xi(t0 + T ) ≥


1 −


1 − e−(n−1)T d∗


+

1 − e−(n−1)T d∗ e−T

= 1 −

1 − e−(n−1)T d∗


1 − e−T  (21)

for all i ∈ VF . Since V (t0) = 1, it follows from (21) that

V (t0 + T ) ≥


1 −


1 − e−(n−1)T d∗


1 − e−T  V (t0). (22)

The proof is completed. �

3.3. Empirical verification

In this subsection, we present a numerical example investigat-
ing the relation between the stability margin of (3) and the leader-
induced diameter, i.e., maximum distance from the leader to the
followers d∗ = maxi∈VF d(v0, vi).

We take 1000 strongly connected samples from directed
random Erdös–Rényi (ER) graphs. The graph has 100 nodes, and
independently with probability 0.04 there is a directed arc for
any ordered pair of nodes (i.e., about 400 arcs on average). For
each sample, a leader is randomly chosen, and the corresponding
leader-induced diameter and the stability margin of −(LF + B) are
computed.

Fig. 2. The vertical coordinate is obtained by taking the average of the stability
margin of −(LF + B) out of the 1000 samples, fixing the leader-induced diameter.
Numerical simulation shows the stability margin, i.e., the convergence rate,
decreases rapidly as the leader-induced diameter increases.

Fig. 2 shows the mean correlation between the leader-induced
diameter and the stability margin of −(LF + B). The simulation re-
sults show that the average stabilitymargin (the exact convergence
rate) decreases almost exponentially as the leader-induced diam-
eter increases. This is consistent with the convergence rate bounds
established in Propositions 1 and 2.

4. Diameter minimization: an approximate solution

As pointed out in previous discussions, (4) is a non-convex
problem, while enumerating all possible conditions takes O(nk)
times of computing the stability margin of −(LF + B). Therefore,
finding the exact best selections of the informed followers in order
for reaching the fastest consensus convergence is not scalable.

Now note that the established convergence rate upper bound in
Proposition 1, the lower bound in Proposition 2, and the presented
empirical example all point out that a faster convergence can be
expected if the leader-induced diameter, d∗ = maxi∈VF d(v0, vi),
can be reduced. Therefore, instead of finding the exact solution to
(4), a reasonably good approximate solution can be obtained by
solving the following optimization problem based purely on the
communication graph:

minimize max
vi∈VF

d(v0, vi)

subject to vi1 , . . . , vik ∈ VF
(v0, vim) ∈ E, m = 1, . . . , k.

(23)

Based on the definition of the node distance on graphs, it is
straightforward to see that problem (23) can be rewritten into the
following equivalent form:

minimizeS max
vi∈VF

min
vm∈S

d(vm, vi)

subject to S ⊆ VF
|S| = k,

(24)

where d(vm, vi) denotes the shortest path from vm to vi in graph
GF , S represents the set of selected followers that are connected to
the leader and |S| represents the number of elements in S.

Now we see that problem (24) is a standard k-center problem
in combinatorial optimization studies [25,26], which can be solved
within an approximation factor of two using O(nk) running time
by simple greedy algorithms [30]. This means the approximate
solution has twice the optimal diameter in theworst case. Thus, the
approximate minimization of the leader-induced diameter for the
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(a) Ensemble average of leader-induced diameter. (b) Ensemble average of stability margin.

Fig. 3. Ensemble averages of leader-induced diameter and stability margin due to random (labeled as random) and approximate k-center (labeled as greedy) strategies, as
functions of the number of informed nodes. The underlying network is the 62-node dolphin social network.
Source: From [31].

(a) Ensemble average of leader-induced diameter. (b) Ensemble average of stability margin.

Fig. 4. Ensemble averages of leader-induced diameter and stability margin due to random (labeled as random) and approximate k-center (labeled as greedy) strategies, as
functions of the number of informed nodes. The underlying network is the 115-node American college football network.
Source: From [32].

informed follower selection is a scalable problem. It can be solved
even for networks with large number of nodes.

4.1. Numerical examples

We present some numerical examples to demonstrate how
the leader-induced diameter and the stability margin are affected
by the number of informed nodes and the methods with which
these informed nodes are selected. Two selection processes are
considered. One process is to randomly choose the informed nodes
according to uniform distribution of the nodes, and this selection
method is referred to as ‘‘random’’. The other process is to choose
the informed nodes based on the greedy approximate k-center
solution, and this method is referred to as ‘‘greedy’’.

In the first example the 62-node dolphin social network
from [31] is considered. For different numbers of allowable
informed nodes up to half the total number of nodes, both the
random and greedy methods for informed nodes selection are
employed. The greedymethod is also randomized because the first

informed node is chosen randomly, uniform over possible nodes.
For each selection of the informed nodes, the resulted leader-
induced diameter and stability margin can be computed. For this
example, 1000 instances of informed nodes selections are obtained
for each number of allowable informed nodes. The ensemble
averages of the leader-induced diameter and stability margin are
shown in Fig. 3(a) and (b), respectively. Fig. 3(a) demonstrates
that the leader-induced diameters are smaller due to the greedy
method, as expected. Fig. 3(b) shows that in this example the
stability margin increase due to the greedy method is better than
that of the random method, when the number of informed nodes
is large.

While the trend in Fig. 3(a) is expected, the trend in Fig. 3(b)
needs not hold true in general. For instance, consider the
second example where the experiment from the Dolphin network
example is repeated with the only exception that the network
considered in this case is the 115-node American college football
network from [32]. The corresponding results are shown in Fig. 4(a)
and (b), respectively. In particular, Fig. 4(a) shows that the greedy
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(a) Ensemble average of leader-induced diameter. (b) Ensemble average of stability margin.

Fig. 5. Ensemble averages of leader-induced diameter and stability margin due to random (labeled as random) and approximate k-center (labeled as greedy) strategies, as
functions of the number of informed nodes. The underlying network is the 150-node modified ring.
Source: From [33] with k = 1.

(a) Ensemble average of leader-induced diameter. (b) Ensemble average of stability margin.

Fig. 6. Ensemble averages of leader-induced diameter and stability margin due to random (labeled as random) and approximate k-center (labeled as greedy) strategies, as
functions of the number of informed nodes. The underlying network is the 150-node modified ring.
Source: From [33] with k = 2.

method has much better leader-induced diameter reduction than
the randommethod. On the other hand, Fig. 4(b) indicates that the
influence of the stability margin is not as clear as in the previous
example with the dolphin social network.

The previous two examples consider networkswhose nodes are
relatively well-connected. The next example considers instead a
relatively sparse network, which is a 150-node ring with possible
additional edges so that the k = 1, 2, . . . neighbors of the original
ring are connected (see Fig. 2a in [33]). The same experiment as in
the previous two examples is repeated. Figs. 5–8 show the leader-
induced diameter and stability margin results for the cases with
k = 1, 2, 3, 10, respectively. In all these figures, for each pair of
blue cross and red square associated with a particular number of
informed nodes, the blue vertical dash-linemeans that the random
method related quantity (i.e., diameter or stability margin) is
greater than the corresponding one for the greedymethod. The red
vertical solid-linemeans vice-versa. These results indicate that the
greedymethod (the one that attempts tominimize leader-induced

diameter) is advantageous in terms of both diameter reduction
and stability margin increase when the networks are relatively
sparsely connected (i.e., k = 1, 2). However, for denser networks
(e.g., k = 10) the greedy method is inferior to the randommethod.

5. Conclusions

Optimizing the structure of amulti-agent systems for tracking a
static leaderwas considered. Thereweren follower nodes targeting
to track a static leader, where only k of them, i.e., informed follow-
ers, can be connected to this leader. Both upper and lower bounds
were established for the convergence rates,which are explicitly de-
termined by the maximal distance from the leader among the fol-
lowers. It was shown that the optimal selection of the k informed
followers can be approximately obtained by minimizing this max-
imal distance, which turns out to be a metric k-center problem in
combinatorial optimization, which can be approximately solved
within O(nk) running time. Numerical examples were presented
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(a) Ensemble average of leader-induced diameter. (b) Ensemble average of stability margin.

Fig. 7. Ensemble averages of leader-induced diameter and stability margin due to random (labeled as random) and approximate k-center (labeled as greedy) strategies, as
functions of the number of informed nodes. The underlying network is the 150-node modified ring.
Source: From [33] with k = 3.

(a) Ensemble average of leader-induced diameter. (b) Ensemble average of stability margin.

Fig. 8. Ensemble averages of leader-induced diameter and stability margin due to random (labeled as random) and approximate k-center (labeled as greedy) strategies, as
functions of the number of informed nodes. The underlying network is the 150-node modified ring.
Source: From [33] with k = 10.

to verify the proposed convergence bounds and to illustrate the
properties of the approximate solutions.
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