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a b s t r a c t

In this paper, we formulate and solve a randomized optimal consensus problem for multi-agent systems
with stochastically time-varying interconnection topology. The considered multi-agent system with a
simple randomized iterating rule achieves an almost sure consensus meanwhile solving the optimization
problem minz∈Rd

n
i=1 fi(z), in which the optimal solution set of objective function fi can only be

observed by agent i itself. At each time step, simply determined by a Bernoulli trial, each agent
independently and randomly chooses either taking an average among its neighbor set, or projecting
onto the optimal solution set of its own optimization component. Both directed and bidirectional
communication graphs are studied. Connectivity conditions are proposed to guarantee an optimal
consensus almost surely with proper convexity and intersection assumptions. The convergence analysis
is carried out using convex analysis. We compare the randomized algorithm with the deterministic one
via a numerical example. The results illustrate that a group of autonomous agents can reach an optimal
opinion by each node simply making a randomized trade-off between following its neighbors or sticking
to its own opinion at each time step.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there have been considerable research efforts
on multi-agent dynamics in application areas such as engineering,
natural science, and social science. Cooperative control of multi-
agent systems is an active research topic, where collective
tasks are enabled by the recent developments of distributed
control protocols via interconnected communication (Cao, Morse,
& Anderson, 2008a,b; Jadbabaie, Lin, & Morse, 2003; Martinez,
Cortés, & Bullo, 2007; Moreau, 2005; Olfati-Saber, 2006; Olfati-
Saber & Murray, 2004; Ren & Beard, 2008; Tanner, Jadbabaie,
& Pappas, 2007; Tsitsiklis, Bertsekas, & Athans, 1986; Xiao &
Wang, 2008). However, fundamental difficulties remain in the
search of suitable tools to describe and design the dynamical
behavior of these systems and thus to provide insights in their
basic principles. Unlike what is often the case in classical control
design, multi-agent control systems aim at fully exploiting, rather
than attenuating, the interconnection between subsystems. The
distributed nature of the information processing and control
requires completely new approaches to analysis and synthesis.
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Consensus is a central problem in the study of multi-agent
systems, which usually requires that all the agents achieve the
same state, e.g., a certain relative position or velocity. Efforts have
been devoted to characterize the fundamental link between agent
dynamics and group coordination, in which the connectivity of
the multi-agent network plays a key role. Switching topologies in
different cases, and the ‘‘joint connection’’ or similar concepts are
important in the analysis of stability and convergence. Uniform
joint-connection, i.e., the joint graph is connected during all
intervals which are longer than a constant, has been employed
for various consensus problems (Fax & Murray, 2004; Hong, Hu,
& Gao, 2006; Jadbabaie et al., 2003; Lin, Francis, & Maggiore,
2007; Nedić, Olshevsky, Ozdaglar, & Tsitsiklis, 2009; Ren & Beard,
2005; Tsitsiklis et al., 1986). On the other hand, [t, ∞)-joint
connectedness, i.e., the joint graph is connected in time intervals
[t, ∞), is the most general form to secure the global coordination,
which is also proved to be necessary in many situations (Moreau,
2005; Shi & Hong, 2009; Shi, Hong, & Johansson, 2012). Moreover,
consensus seeking over randomly varying networks has been
proposed in the literature (Acemoglu, Ozdaglar, & ParandehGheibi,
2010; Boyd, Ghosh, Prabhakar, & Shah, 2006; Fagnani & Zampieri,
2008; Hatano & Mesbahi, 2005; Tahbaz-Salehi & Jadbabaie, 2008),
in which the communication graph is usually modeled a sequence
of i.i.d. random variables over time.

Minimizing a sum of functions,
n

i=1 fi(z), using distributed
algorithms, where each component function fi is known only to
a particular agent i, has attracted much attention in recent years,
due to its wide application in multi-agent systems and resource
allocation in wireless networks (Johansson, Keviczky, Johansson, &
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Johansson, 2008; Johansson, Rabi, & Johansson, 2009; Lu, Regier,
& Tang, 2010; Lu, Tang, Regier, & Bow, 2010; Rabbat & Nowak,
2004; Ram, Nedić, & Veeravalli, 2007). A class of subgradient-
based incremental algorithms when some estimate of the optimal
solution can be passed over the network via deterministic or
randomized iteration, were studied in Johansson et al. (2009),
Rabbat and Nowak (2004) and Ram, Nedić, and Veeravalli (2009).
Then in Lu et al. (2010) a non-gradient-based algorithm was
proposed, where each node starts at its own optimal solution and
updates using a pairwise equalizing protocol. The local information
transmitted over the neighborhood is usually limited to a convex
combination of its neighbors (Jadbabaie et al., 2003;Moreau, 2005;
Tsitsiklis et al., 1986). Combing the ideas of consensus algorithms
and subgradient methods has resulted in a number of significant
results. A subgradient method in combination with consensus
steps was given for solving coupled optimization problems with
fixed undirected topology in Johansson et al. (2008). An important
contribution on multi-agent optimization is Nedić and Ozdaglar
(2009), in which the presented decentralized algorithm was
based on simply summing an averaging (consensus) part and a
subgradient part, and convergence bounds for a distributed multi-
agent computation model with time-varying communication
graphs with various connectivity assumptions were shown. A
constrained optimization problem was studied in Nedić, Ozdaglar,
and Parrilo (2010), where each agent is assumed to always lie in a
particular convex set, and consensus and optimizationwere shown
to be guaranteed together by each agent taking projection onto
its own set at each step. Augmented Lagrangian algorithms with
directed gossip communicationwere used to solve the constrained
optimization problem in Jakovetić, Xavier, andMoura (2011). Then
a convex-projection-based distributed control was presented for
multi-agent systems with continuous-time dynamics to solve this
optimization problem asymptotically (Shi, Johansson, & Hong,
2011).

In this paper, we present a randomized multi-agent optimiza-
tion algorithm. Different from the existing results, we focus on the
randomization of individual decision-making of each node. We as-
sume that each optimal solution set of fi, is a closed convex set,
and can be observed only by node i. Assuming that the intersec-
tion of all the solution sets is nonempty, the optimal solution set of
the group objective becomes this intersection set. Then the opti-
mization problem is equivalent to a distributed intersection com-
putation problem. Computing convex sets’ intersection is actually
a classical problem. The alternating projection algorithm was a
standard centralized solution, which was discussed in Aronszajn
(1950), Deutsch (1983), Gubin, Polyak, and Raik (1967) and Nedić
et al. (2010). Then the projected consensus algorithm was pre-
sented in Nedić et al. (2010).

We propose a randomized algorithm as follows. At each time
step, there are two options for each agent: a standard averaging
(consensus) part as a convex combination of its neighbors’ state,
and a projection part as the convex projection of its current
state onto its own optimal solution set. In the algorithm, each
agent independently makes a decision via a simple Bernoulli
trial, i.e., chooses the averaging part with probability p, and
the projection part with probability 1 − p. This algorithm is a
randomized version of the projected consensus algorithm in Nedić
et al. (2010). Viewing the state of each agent as its ‘‘opinion’’, one
can interpret the randomized algorithm considered in this paper
as a model of spread of information in social networks (Acemoglu
et al., 2010). In this case, the averaging part of the iteration
corresponds to an agent updating its opinion based on its
neighbors’ information, while the projection part corresponds to
an agent updating its opinion based only on its own belief of
what is the best move. The authors of Acemoglu et al. (2010)
draw interesting conclusions from a model similar to ours on how
misinformation can spread in a social network.
In ourmodel, the communication graph is assumed to be a gen-
eral random digraph process independent with the agents’ deci-
sion making process. Instead of assuming that the communication
graph ismodeled by a sequence of i.i.d. randomvariables over time,
we just require the connectivity-independence condition, which
is essentially different with existing works (Fagnani & Zampieri,
2008; Hatano & Mesbahi, 2005; Tahbaz-Salehi & Jadbabaie, 2008).
Borrowing the ideas on uniform joint-connection (Jadbabaie et al.,
2003; Lin et al., 2007; Tsitsiklis et al., 1986) and [t, ∞)-joint con-
nectedness (Moreau, 2005; Shi & Hong, 2009), we introduce con-
nectivity conditions of stochastically uniformly (jointly) strongly
connected (SUSC) and stochastically infinitely (jointly) connected
(SIC) graphs, respectively. The results show that the considered
multi-agent network can almost surely achieve a global optimal
consensus, i.e., a global consensus within the optimal solution set
of
n

i=1 fi(z), when the communication graph is SUSCwith general
directed graphs, or SIC with bidirectional information exchange.
Convergence is derived with the help of convex analysis and prob-
abilistic analysis.

The paper is organized as follows. In Section 2, some prelim-
inary concepts are introduced. In Section 3, we formulate the
considered multi-agent optimization model and present the opti-
mization algorithm.We also establish some basic assumptions and
lemmas in this section. Then themain result and convergence anal-
ysis are shown for directed and bidirectional graphs, respectively
in Sections 4 and 5. In Section 6 we study a numerical example.
Finally, concluding remarks are given in Section 7.

2. Preliminaries

Here we introduce some mathematical notations and tools on
graph theory (Godsil & Royle, 2001), convex analysis (Boyd & Van-
denberghe, 2004; Rockafellar, 1972) and Bernoulli trials (Bertsekas
& Tsitsiklis, 2002).

2.1. Directed graphs

A directed graph (digraph) G = (V, E) consists of a finite set
V = {1, . . . , n} of nodes and an arc set E . An element e = (i, j) ∈

E , which is an ordered pair of nodes i, j ∈ V , is called an arc leaving
from node i and entering node j. If the ej’s are pairwise distinct in
an alternating sequence v0e1v1e2v2 . . . envn of nodes vi and arcs
ei = (vi−1, vi) ∈ E for i = 1, 2, . . . , n, the sequence is called a
(directed) path. A path from i to j is denoted i → j. G is said to be
strongly connected if it contains paths i → j and j → i for every
pair of nodes i and j.

A weighted digraph G is a digraph with weights assigned for its
arcs. A weighted digraph G is called to be bidirectional if for any
two nodes i and j, (i, j) ∈ E if and only if (j, i) ∈ E , but the
weights of (i, j) and (j, i) may be different. A bidirectional digraph
is strongly connected if and only if it is connected as an undirected
graph (ignoring the directions of the arcs).

The adjacency matrix, A, of digraph G is the n × nmatrix whose
ij-entry, Aij, is 1 if there is an arc from i to j, and 0 otherwise.
Additionally, if G1 = (V, E1) and G2 = (V, E2) have the same
node set, the union of the two digraphs is defined as G1 ∪ G2 =

(V, E1 ∪ E2).

2.2. Convex analysis

A set K ⊂ Rd (d > 0) is said to be convex if (1 − λ)x + λy ∈ K
whenever x, y ∈ K and 0 ≤ λ ≤ 1. For any set S ⊂ Rd, the
intersection of all convex sets containing S is called the convex hull
of S, and is denoted by co(S).

LetK be a closed convex set inRd anddenote |x|K , infy∈K |x−y|
as the distance between x ∈ Rd and K , where | · | denotes the
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Euclidean norm. Then we can associate to any x ∈ Rd a unique
element PK (x) ∈ K satisfying |x − PK (x)| = |x|K , where the map
PK is called the projector onto K with

⟨PK (x) − x, PK (x) − y⟩ ≤ 0, ∀y ∈ K . (1)

Moreover, we have the following non-expansiveness property for
PK :

|PK (x) − PK (y)| ≤ |x − y|, x, y ∈ Rd. (2)

A function f : Rd
→ R is said to be convex if it satisfies

f (αv + (1 − α)w) ≤ αf (v) + (1 − α)f (w), (3)

for all v, w ∈ Rd and 0 ≤ α ≤ 1. The following lemma holds
(Example 3.16, pp. 88, Boyd & Vandenberghe, 2004).

Lemma 1. Let K be a convex set in Rd. Then |x|K is a convex function.

The next lemma can be found in Aubin and Cellina (1984).

Lemma 2. Let K be a subset of Rd. The convex hull co(K) of K is the
set of elements of the form

x =

d+1
i=1

λixi,

where λi ≥ 0, i = 1, . . . , d + 1 with
d+1

i=1 λi = 1 and xi ∈ K .

Additionally, for every two vectors 0 ≠ v1, v2 ∈ Rd, we define
their angle as φ(v1, v2) ∈ [0, π] with cosφ = ⟨v1, v2⟩/|v1| · |v2|.

2.3. Bernoulli trials

A Bernoulli trial is a binary random variable which only takes
two values, 0 and 1. Let Y1, Y2, Y3, . . . be a sequence of independent
Bernoulli trials such that for each k = 1, 2, . . . , the probability that
Yk = 1 is pk ∈ [0, 1]. Here pk is called the success probability for Yk.

Then the next lemma holds. The proof is obvious, and therefore
omitted.

Lemma 3. Let Yk, k = 1, 2, . . . , be a sequence of independent
Bernoulli trials, where the success probability of Yk is pk ∈ [0, 1].
Suppose there exists a constant p∗ > 0 such that pk > p∗ for all k.
Then we have P


Yk = 1 for infinitely many k ≥ 1


= 1.

3. Problem formulation

In this section, we formulate the considered optimal consensus
problem. We propose a multi-agent optimization model, and then
introduce a neighbor-based randomized optimization algorithm.
We also introduce key assumptions and establish two basic
lemmas on the algorithm used in the subsequent analysis.

3.1. Multi-agent model

Consider a multi-agent system with agent set V = {1, 2, . . . ,
n}. The objective of the network is to reach a consensus, and
meanwhile to cooperatively solve the following optimization
problem

min
z∈Rd

n
i=1

fi(z) (4)

where fi : Rd
→ R represents the cost function of agent i, observed

by agent i only, and z is a decision vector.
Time is slotted, and the dynamics of the network is in discrete

time. Each agent i starts with an arbitrary initial position, denoted
xi(0) ∈ Rd, and updates its state xi(k) for k = 0, 1, 2, . . . , based
on the information received from its neighbors and the information
observed from its optimization component fi.
3.1.1. Communication graph
We suppose the communication graph over the multi-agent

network is a stochastic digraph process Gk = (V, Ek), k = 0,
1, . . . . To be precise, the ij-entryAij(k) of the adjacencymatrix,A(k)
of Gk, is a general {0, 1}-state stochastic process. We assume there
is no self-looped arc in the communication graphs, i.e., Aii(k) =

0 for all i and k. We use the following assumption on the
independence of Gk.

A1 (Connectivity Independence) Events Ck = {Gk is connected
(in certain sense)}, k = 0, 1, . . . , are independent.

Remark 4. Connectivity independence means that a sequence of
random variables ϖ(k), which are defined by that ϖ(k) = 1
if Gk is connected (in certain sense) and ϖ(k) = 0 otherwise,
are independent. Note that, unlike in existing works (Fagnani
& Zampieri, 2008; Hatano & Mesbahi, 2005; Tahbaz-Salehi &
Jadbabaie, 2008), we do not impose the assumption thatϖ(k), k =

0, . . . , are identically distributed.

At time k, node j is said to be a neighbor of i if there is an arc
(j, i) ∈ Ek. Particularly, we assume that each node is always a
neighbor of itself. Let Ni(k) represent the set of agent i’s neighbors
at time k.

Denote the joint graph of Gk in time interval [k1, k2] as
G([k1, k2]) = (V, ∪t∈[k1,k2] E(t)), where 0 ≤ k1 ≤ k2 ≤ +∞.
Then we have the following definition.

Definition 5. (i) Gk is said to be stochastically uniformly (jointly)
strongly connected (SUSC) if there exist two constants B ≥ 1 and
0 < q < 1 such that for any k ≥ 0,

P

G

[k, k + B − 1]


is strongly connected


≥ q.

(ii) Assume that Gk is bidirectional for all k ≥ 0. Then Gk is said
to be stochastically infinitely (jointly) connected (SIC) if there exist a
(deterministic) sequence 0 = k∗

0 < · · · < k∗
τ < k∗

τ+1 < · · · and a
constant 0 < q < 1 such that for all τ = 0, 1, . . . ,

P

G

[k∗

τ , k
∗

τ+1)

is connected


≥ q.

3.1.2. Neighboring information
The local information that each agent uses to update its state

consists of two parts: the averaging and the projection parts. The
averaging part is defined as

ei(k) =


j∈Ni(k)

aij(k)xj(k),

where aij(k) > 0, i, j = 1, . . . , n are the arc weights. The weights
fulfill the following assumption:

A2 (Arc Weights) (i)


j∈Ni(k)
aij(k) = 1 for all i and k.

(ii) There exists a constant η > 0 such that η ≤ aij(k) for all i, j
and k.

The projection part is defined as

gi(k) = PXi(xi(k)),

where Xi
.
= {v|fi(v) = minz∈Rd fi(z)} is the optimal solution set

of each objective function fi, i = 1, . . . , n. We use the following
assumptions.

A3 (Convex Solution Set) Xi, i = 1, . . . , n, are closed convex sets.
A4 (Nonempty Intersection) X0

.
=
n

i=1 Xi is nonempty.
In the rest of the paper, A1–A4 are our standing assumptions.

Remark 6. The average ei(k) has been widely used in consensus
algorithms, e.g., Jadbabaie et al. (2003), Moreau (2005) and Tsit-
siklis et al. (1986). Assumption (A2)(i) indicates that ei(k) is al-
ways within the convex hull of node i’s neighbors, i.e., co{xj(k), j ∈
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Ni(k)}, and, moreover, A2(ii) ensures that ei(k) is in the relative in-
terior of co{xj(k), j ∈ Ni(k)} (Lin et al., 2007).

Remark 7. As Xi can be observed by node i, PXi(xi(k)) can be easily
obtained. Note that, for a convex set K ⊆ Rd, we have that
∇|z|2K = 2(PK (z) − z) (Aubin & Cellina, 1984). Therefore, for
instance, in order to compute PXi(xi(k)), node i may first establish
a local coordinate system, and then construct a function h(z) =

|z|2Xi/2 to compute ∇h(xi(k)) within this coordinate system. Then
we know PXi(xi(k)) = xi(k) + ∇h(xi(k)).

3.1.3. Randomized algorithm
We are now ready to introduce the randomized optimization

algorithm.
At each time step, independent of time, communication graph

process, and other nodes, each agent takes the following decision
process:

xi(k + 1) =




j∈Ni(k)

aij(k)xj(k), with probability p

PXi(xi(k)), with probability 1 − p
(5)

where 0 < p < 1 is a given constant.

Remark 8. The constrained consensus algorithm studied in Nedić
et al. (2010), can be viewed as a deterministic case of (5), in which
each node alternates between averaging and projection in the
iterations.

The proposed Algorithm (5) is simply obtained by each
node deciding at random between averaging with its neighbors
and projecting onto the optimal solution set. Averaging with
neighbors relies on node communication, while projection relies
on sensing its solution set. Therefore, from an engineering
viewpoint, unlike most existing works (Johansson et al., 2009;
Nedić et al., 2010; Shi et al., 2011), the randomized Algorithm (5)
gives freedom to the nodes of choosing to sense (project), or to
communicate (average) independently with others at each time
k. This provides an important tradeoff between individual sensing
and communication, as each node is not synchronously required to
both sense and communicate in each time step.

On the other hand, another motivation for the study of
Algorithm (5) follows from the literature on opinion dynamics
in social networks, where each agent makes a choice randomly
between sticking to its own observation or following its neighbors’
opinion (Acemoglu et al., 2010). Here in (5), the projection term
reflects each node’s selfish intention since projecting onto its
own set leads to a local optimum. The averaging term reflects
opinion exchange. By taking averaging with neighbors, each
node may sacrifice itself since it may leave its own optimal set.
Then Algorithm (5) naturally describes the randomized trade-off
between being selfish or sharing. An interesting question arises
whether the network could reach a common opinion or not, and
if the answer is yes, whether the network could reach an optimal
common opinion.

Moreover, by itself Algorithm (5) is an interesting model
because of the randomized transitions between linear (averaging)
and nonlinear (projection) dynamics.

A primary aim of this paper is to establish fundamental
convergence properties for a novel randomized node-decision
process, rather than to present fast algorithms. Theremay bemany
ways of generating a faster algorithm than the one considered here
by better scheduling and arrangement for the projection and the
averaging (Johansson et al., 2009; Nedić et al., 2010; Shi et al.,
2011). We will compare the convergence rate of the randomized
algorithm to the corresponding deterministic version by numerical
examples in Section 6.
Fig. 1. The goal of themulti-agent network is to achieve a consensus in the optimal
solution set X0 .

With Assumptions A3 and A4, X0 becomes the global opti-
mal solution set of

n
i=1 fi(z). Let {x(k; x0) = (xT1(k; x

0), . . . , xTn
(k; x0))T }∞k=0 be the stochastic sequence generated by (5) with ini-
tial condition x0 = (xT1(0), . . . , x

T
n(0))

T
∈ Rnd. We will identify

x(k; x0) with x(k) where there is no possible confusion. The con-
sidered optimal consensus problem is defined as follows. See Fig. 1
for an illustration.

Definition 9. (i) A global optimal set aggregation is achieved
almost surely (a.s.) for algorithm (5) if for all x0 ∈ Rnd,

P

lim
k→∞

|xi(k)|X0 = 0, i = 1, . . . , n


= 1. (6)

(ii) A global consensus is achieved almost surely (a.s.) for
algorithm (5) if for all x0 ∈ Rnd,

P

lim
k→∞

|xi(k) − xj(k)| = 0, i, j = 1, . . . , n


= 1. (7)

(iii) A global optimal consensus is achieved almost surely (a.s.)
for Algorithm (5) if both (6) and (7) hold.

Remark 10. A stronger convergence condition for optimal consen-
sus can be imposed by that there exists z∗ ∈ X0 satisfying

P

lim
k→∞

xi(k) = z∗, i = 1, . . . , n


= 1. (8)

In order to guarantee (8), the arc weights aij(k) usually need to be
doubly stochastic (Nedić et al., 2010). Doubly stochastic weights
are difficult to obtain in general, even in a decentralized way.
Moreover, even if we assume doubly stochasticity for the arcs, it
may still be lost due to the randomized node dynamics. Therefore,
here we use (6) and (7) to define optimal consensus. It is not clear
whether (8) can be achieved based on the analysis used in this
paper.

3.2. Basic properties

In this subsection, we establish two key lemmas on the
Algorithm (5).

Lemma 11. Let K be a closed convex set in Rd, and K0 ⊆ K be a
convex subset of K . Then for any y ∈ Rd, we have

|PK (y)|2K0 + |y|2K ≤ |y|2K0 .

Proof. According to (1), we know that

⟨PK (y) − y, PK (y) − PK0(y)⟩ ≤ 0.
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Therefore, we obtain

⟨PK (y) − y, y − PK0(y)⟩ = ⟨PK (y) − y,
y − PK (y) + PK (y) − PK0(y)⟩

≤ −|y|2K .

Then,

|PK (y)|2K0 = |PK (y) − PK0(PK (y))|2

≤ |PK (y) − PK0(y)|
2

= |PK (y) − y + y − PK0(y)|
2

= |y|2K + |y|2K0 + 2⟨PK (y) − y, y − PK0(y)⟩

≤ |y|2K0 − |y|2K .

The desired conclusion follows. �

Lemma 12. Let {x(k) = (xT1(k), . . . , x
T
n(k))

T
}
∞

k=0 be a stochastic
sequence defined by (5). Then for all k ≥ 0 and along every possible
sample path, we have

max
i=1,...,n

|xi(k + 1)|X0 ≤ max
i=1,...,n

|xi(k)|X0 .

Proof. Take l ∈ V . If node l takes averaging at time k, we have

|xl(k + 1)|X0 = |PXl(xl(k))|X0
= |PXl(xl(k)) − PX0(PXl(xl(k)))|
≤ |PXl(xl(k)) − PX0(xl(k))|
≤ |xl(k) − PX0(xl(k))|

≤ max
i=1,...,n

|xi(k)|X0 . (9)

On the other hand, if node l takes projection at time k, according to
Lemma 1, we have

|xl(k + 1)|X0 =

 
j∈Nl(k)

alj(k)xj(k)


X0

≤


j∈Nl(k)

alj(k)|xj(k)|X0

≤ max
i=1,...,n

|xi(k)|X0 . (10)

Hence, the conclusion holds. �

Based on Lemma 12, we know that the following limit exists:

ξ
.
= lim

k→∞

max
i=1,...,n

|xi(k)|X0 .

It is immediate that the global optimal set aggregation is achieved
almost surely if and only if P{ξ = 0} = 1.

Algorithm (5) is nonlinear and stochastic, and therefore quite
challenging to analyze. As will be shown in the following, the
communication graph plays an essential role on the convergence
of the algorithm. In particular, directed and bidirectional graphs
lead to different conditions for consensus. Hence, in the following
two sections, we consider these two cases separately.

4. Directed graphs

In this section, we give a connectivity condition guaranteeing
an almost surely global optimal consensus for directed communi-
cation graphs.

The main result is stated as follows.

Theorem 13. Algorithm (5) achieves a global optimal consensus a.s.
if Gk is SUSC.
In order to prove Theorem 13, on one hand, we have to prove
that all the agents converge to the global optimal solution set,
i.e., X0; and on the other hand that consensus is achieved. The
proof divided into these two parts is given in the following two
subsections.

4.1. Set convergence

In this subsection, we present the optimal set aggregation
analysis of (5). Define

δi
.
= lim sup

k→∞

|xi(k)|Xi , i = 1, . . . , n.

Let A = {ξ > 0} and M = {∃i0 s.t. δi0 > 0} be two
events, indicating that convergence to X0 for all the agents fails
and convergence to Xi0 fails for some node i0, respectively. The next
lemma shows the relation between the two events.

Lemma 14. P

A ∩ M


= 0 if Gk is SUSC.

Proof. Let {xω(k)}∞k=0 be a sample sequence. Take an arbitrary node
i0 ∈ V . Then there exists a time sequence k1(ω) < · · · < km(ω) <
· · · with limm→∞ km(ω) = ∞ such that

|xω
i0(km(ω))|Xi0

≥
1
2
δi0(ω) ≥ 0. (11)

Moreover, according to Lemma 12, ∀ℓ = 1, 2, . . . , ∃T (ℓ, ω) > 0
such that

k ≥ T ⇒ 0 ≤ |xω
i (k)|X0 ≤ ξ(ω) +

1
ℓ
, i = 1, . . . , n. (12)

In the following, km(ω) and T (ℓ, ω) will be denoted as km and T to
simplify the notations. Note that they are both random variables.
We divide the rest of the proof into three steps.
Step 1. Suppose m is sufficiently large so that km ≥ T . We give an
upper bound to node i0 in this step.

Since node i0 projects onto Xi with probability 1− p, Lemma 11
implies

P

|xi0(km + 1)|X0 ≤


ξ +

1
ℓ

2

−
1
4
δ2
i0

 ≥ 1 − p. (13)

At time km + 2, either one of two cases can happen in the update.

• If node i0 chooses the projection option at time km +1, we have

|xi0(km + 2)|X0 = |xi0(km + 1)|X0 ≤


ξ +

1
ℓ

2

−
1
4
δ2
i0
. (14)

• If node i0 chooses the averaging option at time km+1, with (12),
we can obtain from the weights rule and Lemma 1 that

|xi0(km + 2)|X0 =




j∈Ni0 (km+1)

ai0j(km + 1)xj(km + 1)


X0

≤ ai0i0(km + 1)|xi0(km + 1)|X0

+ (1 − ai0i0(km + 1))


ξ +
1
ℓ



≤ ai0i0(km + 1)


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − ai0 i0(km + 1))


ξ +
1
ℓ



≤ η


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η)


ξ +

1
ℓ


. (15)
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Both (14) and (15) lead to

P


|xi0(km + 2)|X0 ≤ η


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η)


ξ +

1
ℓ


≥ 1 − p. (16)

Continuing similar analysis, we further obtain

P


|xi0(km + τ)|X0 ≤ ητ−1


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − ητ−1)


ξ +

1
ℓ


, τ = 1, 2, . . .


≥ 1 − p. (17)

Step 2. In this step, we continue to bound another node. Since Gk is
SUSC, we have

P

G

[km + 1, km + B]


is strongly connected


≥ q

which implies

P

∃k̂1 ∈ [km + 1, km + B] and i1 ∈ V, i1 ≠ i0

s.t. (i0, i1) ∈ Ek̂1


≥ q. (18)

Let k̂1 = km + ϱ with 1 ≤ ϱ ≤ B. Noting the fact that


j∈Ni1 (km+ϱ)

xj(km + ϱ)


X0

≤ ai1 i0(km + ϱ)|xi0(km + ϱ)|X0

+

1 − ai1 i0(km + ϱ)

 
ξ +

1
ℓ


and based on (17), we have

P


|xi1(km + ϱ + 1)|X0 ≤ ηϱ


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − ηϱ)


ξ +

1
ℓ

F0


≥ P


i1 chooses averaging at time km + ϱ


= p, (19)

where F0 =

i0 chooses projection at time km


. Therefore, with

(17) and (19), we obtain

P

∃i1 ≠ i0 s.t. |xil(km + B + τ)|X0 ≤ ηB+τ−1

·


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − ηB+τ−1)


ξ +

1
ℓ


,

l = 0, 1; τ = 1, 2, . . .


≥ (1 − p)pq.

Step 3. Repeating the analysis on time interval [km+B+1, km+2B],
there exists a node i2 ∉ {i0, i1} such that there is an arc leaving from
{i0, i1} entering i2 in G([km + B + 1, km + 2B]) with probability at
least q. The estimate of |xi2(km + 2B + τ)|X0 is therefore can be
similarly obtained.

The upper analysis process can be carried out continuingly on
intervals [km + 2B + 1, km + 3B], . . . , [km + (n − 2)B + 1, km +
(n−1)B], and i3, . . . , in−1 can be found untilV = {i0, i1, . . . , in−1}.
Then one can obtain that for any i ∈ V ,

P


|xi(km + (n − 1)B + 1)|X0 ≤ η(n−1)B


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η(n−1)B)


ξ +

1
ℓ


, i ∈ V



= P


max

i=1,...,n
|xi(km + (n − 1)B + 1)|X0 ≤ η(n−1)B


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η(n−1)B)


ξ +

1
ℓ


≥ (1 − p)pn−1qn−1. (20)

We see from the previous analysis that the events

Zm
.
=


max

i=1,...,n
|xi(km + (n − 1)B + 1)|X0

≤ η(n−1)B


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η(n−1)B)


ξ +

1
ℓ


are fully determined by the connectivity of the communication
graph process and the node-decision process for allmwith km ≥ T .
Since the node decision process is independent of time and the
communication graph is connectivity independent by Assumption
A1, the following claim holds.

Claim. Events {Zt}
∞
t=m can be viewed as a sequence of indepen-

dent Bernoulli trialswith success probabilityµ0 = (1−p)pn−1qn−1

for sufficiently largem in the sense that

P


K

i=1

Zti


≥ µK

0 (21)

for all t1 < · · · < tK with K ≥ 1.

Therefore, based on Lemma 3, with probability one, there is an
infinite subsequence {k̃j, j = 1, 2, . . .} from {km+(n−1)B+1, km ≥

T } satisfying

max
i=1,...,n

|xi(k̃j)|X0 ≤ η(n−1)B


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η(n−1)B)


ξ +

1
ℓ


.

This implies

P

Rℓ


= 1 (22)

for all ℓ = 1, 2, . . . , where

Rℓ =


ξ ≤ η(n−1)B


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η(n−1)B)


ξ +

1
ℓ


.

As a result, we obtain P

R∗


= 1, where

R∗ = lim
ℓ→∞

Rℓ

=


ξ ≤ η(n−1)B


ξ 2 −

1
4
δ2
i0

+ (1 − η(n−1)B)ξ


.



3024 G. Shi, K.H. Johansson / Automatica 48 (2012) 3018–3030
Finally, it is not hard to see that A ∩ M ⊆ Rc
∗
because 0 <

η(n−1)B < 1. The desired conclusion follows straightforwardly. �

Take a node α0 ∈ V . Then define

zα0(k)
.
= max

i=1,...,n
|xi(k)|Xα0

.

We also need the following fact to prove the optimal set
convergence.

Lemma 15. Along every possible sample path of Algorithm (5) and
for all k, we have

zα0(k + 1) ≤ zα0(k) + max
i=1,...,n

|xi(k)|Xi .

Proof. For any node l = 1, . . . , n, if l chooses the averaging part at
time k, we know that

|xl(k + 1)|Xα0
=

 
j∈Nl(k)

alj(k)xj(k)

Xα0

≤ max
i=1,...,n

|xl(k)|Xα0

= zα0(k). (23)

Moreover, if l chooses the projection part at time k, we have

|xl(k + 1) − xl(k)| = |xl(k)|Xl ,

which yields

|xl(k + 1)|Xα0
≤ |xl(k)|Xα0

+ |xl(k)|Xl
≤ zα0(k) + max

i=1,...,n
|xi(k)|Xi (24)

according to the non-expansiveness property (2). Then the
conclusion holds with (23) and (24). �

We are now in a place to present the optimal set convergence
part of Theorem 13, as stated in the following conclusion.

Proposition 16. Algorithm (5) achieves a global optimal set aggre-
gation a.s. if Gk is SUSC.

Proof. Note that, we have

P

A


= P

A ∩ M


+ P


A ∩ Mc

≤ P

A ∩ M


+ P


A|Mc.

Since the conclusion is equivalent to P

A


= 0, with Lemma 14,
we only need to prove P


A|Mc


= 0.

Let {xω(k)}∞k=0 be a sample sequence in Mc . Then ∀ℓ =

1, 2, . . . , ∃T1(ℓ, ω) > 0 such that

k ≥ T1 ⇒ |xω
i (k)|Xi ≤

1
ℓ
, i = 1, . . . , n. (25)

Take an arbitrary node α0 ∈ V . Based on Lemma 15, we also
have that for any {xω(k)}∞k=0 ∈ Mc and s ≥ T1,

zω
α0

(s + τ) ≤ zω
α0

(s) +
τ

ℓ
, τ = 0, 1, . . . . (26)

We divide the rest part of the proof into three steps.
Step 1. Denote k1 = T1. Since Gk is SUSC, we have

P

there exist k̂1 ∈ [k1, k1 + B − 1] and α1 ∈ V

s.t. (α0, α1) ∈ Gk̂1


≥ q.

Let k̂1 = k1 +ϱ, 0 ≤ ϱ ≤ B−1. Thenwe obtain from the definition
of (5) that
P

|xα1(k1 + ϱ + 1)|Xα0

≤ aα1α0(k1 + ϱ)|xα0(k1 + ϱ)|Xα0

+ (1 − aα1α0)zα0(k1 + ϱ)


≥ pq. (27)

Thus, based on the weights rule A1 and (25), (27) leads to

P


|xα1(k1 + ϱ + 1)|Xα0
≤ η ·

1
ℓ

+ (1 − η)


zα0(k1)

+ ϱ ·
1
ℓ

 Mc


≥ pq.

Next, there will be two cases.

• If node α1 chooses the projection option at time k1 + ϱ + 1, we
have

|xα1(k1 + ϱ + 2)|Xα0
≤ |xα1(k1 + ϱ + 1)|Xα0

+
1
ℓ

≤ η ·
1
ℓ

+ (1 − η)


zα0(k1) + ϱ ·

1
ℓ


+

1
ℓ
. (28)

• If node α1 chooses the averaging option at time k1 + ϱ + 1, we
have

|xα1(k1 + ϱ + 2)|Xα0
≤ η|xα1(k1 + ϱ + 1)|Xα0

+ (1 − η)zα0(k1 + ϱ + 1)

≤ η


η ·

1
ℓ

+ (1 − η)


zα0(k1) + ϱ ·

1
ℓ


+ (1 − η)


zα0(k1) + (ϱ + 1) ·

1
ℓ


≤ η2

·
1
ℓ

+ (1 − η2)


zα0(k1) + (ϱ + 1) ·

1
ℓ


. (29)

With (28) and (29), we obtain

P


|xα1(k1 + ϱ + 2)|Xα0
≤ η2

·
1
ℓ

+ (1 − η2)


zα0(k1)

+ (ϱ + 1) ·
1
ℓ


+

1
ℓ

Mc


≥ pq. (30)

Then similar analysis yields that

P


|xα1(k1 + ϱ + τ)|Xα0

≤
ητ

ℓ
+ (1 − ητ )


zα0(k1) +

ϱ + τ − 1
ℓ



+

τ−1
l=1

ηl−1
·
1
ℓ
, τ = 1, 2, . . .

Mc


≥ pq.

Furthermore, since 0 ≤ ϱ ≤ B − 1 and based on (25), it turns out
that

P


|xαl(k1 + B + τ̂ )|Xα0

≤
ηB+τ̂

ℓ

+ (1 − ηB+τ̂ )


zα0(k1) +

B + τ̂ − 1
ℓ


+

1
1 − η

·
1
ℓ
,

τ̂ = 0, 1, . . . ; l = 0, 1
Mc


≥ pq.

Step 2. We continue the analysis on time interval [k1 + B, k1 +

2B− 1]. There exists a node α2 ∉ {α0, α1} such that there is an arc
leaving from {α0, α1} entering α2 in G([k1 + B, km + 2B− 1]) with
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probability q. Similarly we can obtain that for any τ̂ = 0, 1, . . . ,

P


|xαl(k1 + 2B + τ̂ )|Xα0

≤ η2B+τ̂
·
1
ℓ

+ (1 − η2B+τ̂ )


zα0(k1) + (2B + τ̂ − 1) ·

1
ℓ


+

2
1 − η

·
1
ℓ
, l = 0, 1, 2|Mc


≥ p2q2.

We repeat the upper process on time intervals [k1 + 2B, k1 +

3B− 1], . . . , [km + (n− 2)B, k1 + (n− 1)B− 1], and α3, . . . , αn−1
can be found until V = {α0, α1, . . . , αn−1}. Then one can obtain
that

P


|xi(k1 + (n − 1)B)|Xα0

≤ (1 − η(n−1)B)zα0(k1) + L ·
1
ℓ
,

i = 1, . . . , n
Mc


≥ pn−1qn−1,

where L = η(n−1)B
+ (n− 1)[B+

1
1−η

]. Denote k2 = k1 + (n− 1)B.
Then we have

P

zα0(k2) ≤ θ0zα0(k1) + L ·

1
ℓ

Mc


≥ p̂,

where 0 < θ0 = 1 − η(n−1)B < 1 and 0 < p̂ = pn−1qn−1 < 1.
Step 3. Let km = k1 + (m − 1)(n − 1)B,m = 3, 4, . . . . Based on
similar analysis, we see that

P


zα0(km+1) ≤ θ0zα0(km) + L ·

1
ℓ

Mc


≥ p̂, m = 3, 4, . . .

Then we can define a random variable χ independently with
zα0(km),m = 1, . . . , such that

χ =


1, with probability 1 − p̂
θ0, with probability p̂. (31)

As a result, with (26) and (31), we conclude that for any m =

1, 2, . . . ,

P


zα0(km+1) ≤ χ · zα0(km) + L ·

1
ℓ

Mc


= 1,

which implies

E

zα0(km+1)

Mc


≤

1 − (1 − θ0)p̂


E

zα0(km)

Mc


+ L ·
1
ℓ
.

Therefore, we can further obtain

lim sup
m→∞

E

zα0(km)

Mc


≤
L

(1 − θ0)p̂
·
1
ℓ
. (32)

Since ℓ can be any positive integer in (32) and zα0(km) is
nonnegative for anym, we have

lim
m→∞

E

zα0(km)

Mc


= 0. (33)

Based on Fatou’s lemma, we know

0 ≤ E


lim
m→∞

zα0(km)|Mc


≤ lim
m→∞

E

zα0(km)

Mc


= 0, (34)

which yields

P


lim
m→∞

zα0(km) = 0|Mc


= 1. (35)
Finally, because α0 is chosen arbitrarily over the network in
(35), we see that

P

A|Mc


= 0. (36)

The proof is completed. �

4.2. Consensus analysis

In this subsection, we present the consensus analysis of the
proof of Theorem 13. Let xi,[ȷ](k) represent the ȷ’th coordinate of
xi(k). Denote

h(k) = min
i=1,...,n

xi,[ȷ](k), H(k) = max
i=1,...,n

xi,[ȷ](k).

The consensus proof will be built on the estimates of S(k) =

H(k) − h(k), which is summarized in the following conclusion.

Proposition 17. Algorithm (5) achieves a global consensus if Gk is
SUSC.

Proof. Since P

Mc


≥ P

Ac


= 1 when Gk is SUSC, we only need
to prove

P

lim
k→∞

S(k) = 0
Mc


= 1.

Let {xω(k)}∞k=0 be a sample sequence in Mc . Then ∀ℓ =

1, 2, . . . , ∃T1(ℓ, ω) > 0 such that

k ≥ T1 ⇒ |xω
i (k)|Xi ≤

1
ℓ
, i = 1, . . . , n. (37)

Moreover, based on similar analysis as in the proof of Lemma15,
we see that

h(k + s) ≥ h(k) − s ·
1
ℓ
; H(k + s) ≤ H(k) + s ·

1
ℓ

(38)

for all k ≥ T1 and s ≥ 0.
Denote k1 = T1. Take ν0 ∈ V with xν0,[ȷ](k1) = h(k1). Then we

can obtain from the definition of (5) that

xν0,[ȷ](k1 + 1) ≤ xν0,[ȷ](k1) +
1
ℓ

if projection happens and

xν0,[ȷ](k1 + 1) ≤ aν0ν0(k1)xν0,[ȷ](k1) + (1 − aν1ν0(k1))H(k1)

if averaging happens, which leads to that almost surely we have

xν0,[ȷ](k1 + 1) ≤ ηh(k1) + (1 − η)H(k1) +
1
ℓ
.

Continuing the estimates we know that a.s. for any τ = 0, 1, . . . ,

xν0,[ȷ](k1 + τ) ≤ ητh(k1) + (1 − ητ )H(k1) +
τ(τ + 1)

2
·
1
ℓ
. (39)

Furthermore, since Gk is SUSC, we have

P

∃k̂1 ∈ [k1, k1 + B − 1] and ∃ν1 ∈ V s.t. (ν0, ν1) ∈ Gk̂1


≥ q. (40)

Let k̂1 = k1 + ϱ, 0 ≤ ϱ ≤ B − 1. Similarly with (27), we see from
(39) that

P

xν1,[ȷ](k1 + ϱ + 1) ≤ ηϱ+1h(k1) + (1 − ηϱ+1)H(k1)

+ η ·
ϱ(ϱ + 1)

2
·
1
ℓ

Mc


≥ pq. (41)
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Similar analysis will lead to

P

xν1,[ȷ](k1 + ϱ + τ̂ ) ≤ ηϱ+τ̂h(k1) + (1 − ηϱ+τ̂ )H(k1)

+
(ϱ + τ̂ )(ϱ + τ̂ + 1)

2
·
1
ℓ
, τ̂ = 1, 2, . . .

Mc


≥ pq, (42)

which yields

P

xν1,[ȷ](k1 + B + τ) ≤ ηB+τh(k1) + (1 − ηB+τ )H(k1)

+
(B + τ)(B + τ + 1)

2
·
1
ℓ
, τ = 0, 1, . . .

Mc


≥ pq.

We can continue the upper process on time intervals [k1 +

2B, k1 + 3B − 1], . . . , [k1 + (n − 2)B, k1 + (n − 1)B − 1], and
ν2, . . . , νn−1 can be found until

P

xνl,[ȷ](k1 + (n − 1)B) ≤ η(n−1)Bh(k1)

+ (1 − η(n−1)B)H(k1) +
(n − 1)B((n − 1)B + 1)

2
·
1
ℓ
,

l = 0, 1, . . . , n − 1
Mc


≥ pn−1qn−1.

Therefore, denoting k2 = k1 + (n − 1)B, we have

P

H(k2) ≤ η(n−1)Bh(k1) + (1 − η(n−1)B)H(k1)

+
(n − 1)B((n − 1)B + 1)

2
·
1
ℓ

Mc


≥ pn−1qn−1.

Furthermore, with (38), we can further obtain

P

S(k2) ≤ (1 − η(n−1)B)S(k1) + L0 ·

1
ℓ

Mc


≥ pn−1qn−1,

where L0 =
(n−1)B[(n−1)B+3]

2 .
Thenwe know P{limk→∞ S(k) = 0|Mc

} = 1 by similar analysis
as the proof of Proposition 16. The proof is completed. �

Theorem 13 immediately follows from Propositions 16 and 17.

5. Bidirectional graphs

In this section, we discuss the randomized optimal consensus
problem under more restrictive communication assumptions, that
is, bidirectional communications. To get the main result, we
also need the following assumption in addition to the standing
assumptions A1–A4.

A5 (Compactness) X0 is compact.
Then we propose the main result on optimal consensus

for the bidirectional case. It turns out that with bidirectional
communications, the connectivity condition to ensure an optimal
consensus is weaker.

Theorem 18. Suppose Gk is bidirectional for all k ≥ 0 and A5 holds.
Algorithm (5) achieves a global optimal consensus almost surely if Gk
is SIC.

Remark 19. The essential difference between SUSC and SIC graphs
is that SIC graphs do not impose an upper bound for the length of
intervals where the joint graphs are taken. Therefore, the analysis
on directed graphs cannot be used in this bidirectional case.

In the following two subsections, we will focus on the optimal
solution set convergence and the consensus analysis, respectively,
by which we will reach a complete proof for Theorem 18.

5.1. Set convergence

In this subsection, we discuss the convergence to the optimal
solution set. First we give the following lemma.
Lemma 20. Assume that Gk is bidirectional for all k ≥ 0. Then
P

A ∩ M


= 0 if Gk is SIC.

Proof. The proof follows the same line as the proof of Lemma 14.
Let km and T be defined in the same way as the proof of Lemma 14.
Suppose km ≥ T . Based on the definition of (5), we know from
Lemma 11 that

P


|xi0(km + 1)|X0 ≤


ξ +

1
ℓ

2

−
1
4
δ2
i0


≥ 1 − p. (43)

Next, we define

k̂1
.
= inf

k≥km+1


∃j ∈ V s.t. (i0, j) ∈ Ek


and

V1
.
=

j ∈ V : (i0, j) ∈ Ek̂1


.

Based on the definition of SIC graphs, we have for all τ = 0, 1, . . . ,

P

∃j ∈ V, k ∈ [k∗

τ , k
∗

τ+1) s.t. (i0, j) ∈ Ek


≥ P


G

[k∗

τ , k
∗

τ+1)

is connected


≥ q. (44)

Thus, Lemma 3 implies that the probability of k̂1 being finite is one.
Applying Lemma 11 on node i0, we have

|xi0(s)|X0 ≤ |xi0(km + 1)|X0 , km + 1 ≤ s ≤ k̂1. (45)

As a result, we have

P


|xi(k̂1 + 1)|X0 ≤ η


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − η)


ξ +

1
ℓ


,

i ∈ V1


≥ p|V1|(1 − p). (46)

We can repeat the upper process, V2, . . . , Vd0 can be defined
iteratively for some constant 1 ≤ d0 ≤ n − 1 until V \ {i0} =d0

j=1 Vj. Denoting ςm = k̂d0 + 1 associated with Vd0 , we have

P


|xi(ςm)|X0 ≤ ηd0


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − ηd0)


ξ +

1
ℓ


, i ∈ V



= P


max

i=1,...,n
|xi(ςm)|X0 ≤ ηd0


ξ +

1
ℓ

2

−
1
4
δ2
i0

+ (1 − ηd0)


ξ +

1
ℓ


≥ pn−1(1 − p). (47)

This will also lead to

P

R̄∗


= 1, (48)

where R̄∗ =

ξ ≤ ηn−1


ξ 2 −

1
4δ

2
i0

+ (1 − ηn−1)ξ

. Noting the

fact that A ∩ M ⊆ R̄c
∗
, the conclusion holds. �
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Next, we define

yi = lim inf
k→∞

|xi(k)|X0 , i = 1, . . . , n

and denote D =

∃i0 s.t. yi0 < ξ


. We give another lemma in the

following.

Lemma 21. Assume that Gk is bidirectional for all k ≥ 0. Then
P

A ∩ D


= 0 if Gk is SIC.

Proof. The proof will follow the same idea as the proof of
Lemma20. Let {xω(k)}∞k=0 be a sample sequence. There exists a time
sequence k1(ω) < · · · < km(ω) < · · · with limm→∞ km(ω) = ∞

such that

|xω
i0(km(ω))|X0 ≤

1
2
(yi0(ω) + ξ(ω)). (49)

Moreover, ∀ℓ = 1, 2, . . . , ∃T (ℓ, ω) > 0 such that

k ≥ T ⇒ 0 ≤ |xω
i (k)|X0 ≤ ξ(ω) +

1
ℓ
, i = 1, . . . , n. (50)

Let k̂1 and V1 follow the definition in the proof of Lemma 20, by
the same argument as we obtain (46), we have

P


|xi(k̂1 + 1)|X0 ≤
η

2
yi0 +


1 −

η

2


ξ +

1
ℓ


, i ∈ V1


≥ p|V1|. (51)

Continuing the upper process, we will also reach

P


max
i=1,...,n

|xi(ςm)|X0 ≤
ηd0

2
· yi0 + (1 −

ηd0

2
)


ξ +

1
ℓ


≥ pn−1, (52)

where 1 ≤ d0 ≤ n − 1 and ςm still denotes k̂d0 + 1. Introducing

W =


ξ ≤

ηd0

2
· yi0 +


1 −

ηd0

2


· ξ


,

we can similarly obtain P

W


= 1 according to (52). The fact that
A ∩ D ⊆ W c implies the desired conclusion immediately. �

Note that, if A5 holds, according to Lemma 12, for any initial
condition x0, we have

xi(k) ∈ X∗

0 , i = 1, . . . , n; k = 0, 1, . . . ,

where X∗

0
.
= {v : |v|X0 ≤ d∗} with d∗ = maxi=1,...,n |xi(0)|X0 . Then

X∗

0 is also a compact set, which is an invariant set for (5). Therefore,
for any initial condition, therewill also be two constants b1, b2 > 0
such that

|xi(k) − xj(k)| ≤ b1; |xi(k)|X0 ≤ b2 (53)

for all i, j and k.
Now we are ready to prove the optimal set convergence part of

Theorem 13, which is stated in the following conclusion.

Proposition 22. Assume Gk is bidirectional for all k ≥ 0 and A5
holds. Algorithm (5) achieves a global optimal set aggregation a.s. if
Gk is SIC.

Proof. With Lemmas 20 and 21, we only need to show

P

A ∩ Mc

∩ Dc
= 0.

Take i0 ∈ V . Then we define two parallel hyperplanes

Wi0(k)
.
= {v|⟨xi0(k) − PX0(xi0(k)), v − xi0(k)⟩ = 0}
Fig. 2. Finding the point xω
∗
in the proof of Proposition 22.

and

W ∗

i0(k)
.
= {v|⟨xi0(k) − PX0(xi0(k)), v − PX0(xi0(k))⟩ = 0}.

The space Rd is divided by the two hyperplanes into three
disjoint parts M+(k) = {v|⟨xi0(k) − PX0(xi0(k)), v − xi0(k)⟩ < 0},
M−(k) = {v|⟨xi0(k) − PX0(xi0(k)), v − PX0(xi0(k))⟩ < 0}, and
the rest M0(k) (see Fig. 2). Also define N ∞

i0
= {j|j is a neighbor of

i for infinitely many k}.

Claim. P{limk→∞ |xj(k)|Wi0 (k) = 0, j ∈ N ∞

i0
|A ∩ Mc

∩ Dc
} = 1.

Let {xω(k)}∞k=0 be a sample sequence in A ∩ Mc
∩ Dc . Then

∀ℓ = 1, 2, . . . , ∃T (ℓ, ω) > 0 such that

0 < ξ(ω) ≤ |xω
i (k)|X0 ≤ ξ(ω) +

1
ℓ

and |xω
i (k)|Xi ≤

1
ℓ

(54)

for i = 1, . . . , nwhen k ≥ T .
Suppose there exist a constant ϑω > 0 and a sequence k1 <

· · · < km < · · · such that |xω
j (km)|Wi0 (km) ≥ ϑω,m = 1, 2, . . . .

Take km ≥ T . With (1), we see that for all k = 1, 2, . . . ,

X0 ⊆ M−(k) ∪ W ∗

i0(k)

= {v|⟨xi0(k) − PX0(xi0(k)), v − PX0(xi0(k))⟩ ≤ 0}.

Let xω
i0
(km) and PX0(x

ω
i0
(km)) be fixed. Then we can associate

a unique point xω
∗

to xω
j (km) in the way that xω

∗
satisfies

⟨PX0(x
ω
i0
(km))−xω

∗
, xω

i0
(km)−xω

j (km)⟩ = 0 if the three points xω
i0
(km),

PX0(x
ω
i0
(km)) and xω

j (km) form a triangle; and xω
∗

= PX0(x
ω
i0
(km))

otherwise. Moreover, it is not hard to find that there exists a
unique scalar 0 < γ < 1 such that xω

∗
= γ xω

i0
(km) +

(1 − γ )xω
j (km). Note that, the upper process defines a continuous

function (xω
i0
(km), PX0(x

ω
i0
(km)), xω

j (km)) → γ . With (53), we have
(xω

i0
(km), PX0(x

ω
i0
(km)), xω

j (km)) always locates within a compact set
{0 ≤ |xω

i0
(km)|X0 ≤ d∗; ϑω

≤ |xω
j (km) − xω

i0
(km)| ≤ b1; ξ(ω) ≤

|xω
j (km) − PX0(x

ω
i0
(km))| ≤ b1 + b2}. Therefore, there exist two

constants 0 < γ ∗ ≤ γ ∗ < 1 (by a constant, we mean it does
not depend on km) such that γ∗ ≤ γ ≤ γ ∗ (see Fig. 2).

Thus, every linear combination of xω
i0
(km) and xω

j (km) can be
rewritten into a linear combination of xω

i0
(km) and xω

∗
, and the lower

bound of the weights is preserved. We also have

|xω
∗
|X0 ≤ |xω

∗
− PX0(x

ω
i0(km))|

≤ sinβ0


ξ(ω) +

1
ℓ


≤ b∗


ξ(ω) +

1
ℓ


, (55)

where β0 = φ(xω
j (km) − xω

i0
(km), PX0(x

ω
i0
(km)) − xω

i0
(km)) and

0 < b∗ =


1 − ( ϑ

b1
)2 < 1. Therefore, with (55), repeating the

deduction used in the proofs of Lemmas 20 and 21, the claim can
then be proved.
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Fig. 3. Locating v∗ in the proof of Proposition 22.

Next, since Gk is SIC, i.e., the joint graph is connected with
probability q > 0 independently for infinite times, letting G∞

be the graph generated by neighbor sets N ∞

i0
, it is obvious that

G∞ is connected with probability 1. Therefore, the upper analysis
can then be further carried out on G∞ following i0’s neighbors, i0’s
neighbors’ neighbors, and so on, until we finally reach

lim
k→∞

|xj(k)|Wi0 (k) = 0; (56)

with probability 1 for all j ∈ V conditioned A ∩ Mc
∩ Dc . Thus, by

the definition ofWi0 and (1), we have

P

lim
k→∞

|PW∗
i0
(xj(k)) − PX0(xj(k))| = 0,

j = 1, . . . , n|A ∩ Mc
∩ Dc


= 1. (57)

Denote

Ti0(k) = co{PXi0 (xi0(k)), PX0(x1(k)), . . . , PX0(xn(k))}.

Then Ti0(k) ⊆ Xi0 , ∀k ≥ 0. Tim(k) can then be defined for m =

1, . . . , n−1 in the sameway. Therefore,with (56), and according to
the structure of Wi0(k) and W ∗

i0
(k), with probability 1 conditioned

A ∩ Mc
∩ Dc , there will be a point v∗ ∈

n−1
m=0 Tim(k) ⊆ X0 for

sufficiently large k such that v∗ ∈ M0(k) (see Fig. 3), i.e.,

P

∃k s.t. ⟨xi0(k) − PX0(xi0(k)), v∗ − PX0(xi0(k))⟩ > 0A ∩ Mc

∩ Dc


= 1. (58)

This implies P

A ∩ Mc

∩ Dc


= 0 because P

⟨y− PX0(y), v∗ −

PX0(y)⟩ > 0


= 0 for any y ∈ Rd and v∗ ∈ X0 according to (1). The
proof is completed. �

5.2. Consensus analysis

This subsection focuses on the consensus analysis of Theo-
rem 18.

We define a multi-projection function: Pikik−1...i1 : Rm
→n

i=1 Xi with i1, . . . , ik ∈ {1, . . . , n}, k ≥ 1 by Pikik−1...i1(y) =

PXik PXik−1
. . . PXi1 (y). Define P∅(y) = y as the case for k = 0. Let

Γ
.
=

Pikik−1...i1 : i1, . . . , ik ∈ {1, . . . ,N}, k = 0, 1, 2, . . .


be the set which contains all the multi-projection functions.
Denote Yk = co{x1(k), . . . , xn(k)} be the convex hull of all the
nodes’s state at step k, and define ∆Yk by ∆Yk

.
= co{P(y)|y ∈

Yk, P ∈ Γ }. Then it is not hard to see that ∆Yk is actually an
invariant set along Algorithm (5) for any k ≥ 0, i.e., xi(s) ∈ ∆Yk
for all i, k and s ≥ k.

We present another lemma establishing an important property
of ∆Yk .
Lemma 23. For any y ∈ ∆Yk , we have |y|Yk ≤ 2maxy∈Yk |y|X0 .

Proof. With Lemma 2, any y ∈ ∆YK has the following form

y =

d+1
i=1

λiP ⟨i⟩(zi),

where
d+1

i=1 λi = 1 with λi ≥ 0, P ⟨i⟩
∈ Γ and zi ∈ YK , i =

1, . . . , d+1. Then, by the non-expansiveness property (2), we have
that for any z ∈ Rd and P̂ ∈ Γ ,

|PX0(z) − P̂(z)| = |P̂(PX0(z)) − P̂(z)| ≤ |PX0(z) − z| = |z|X0 .

This leads to d+1
i=1

λiP ⟨i⟩(zi) −

d+1
i=1

λizi


≤

d+1
i=1

λi

zi − PX0(zi)
+ d+1

i=1

λi

PX0(zi) − P ⟨i⟩(zi)


≤ 2max
z∈K

|z|X0 ,

which implies the conclusion because
d+1

i=1 λizi ∈ Yk. �

We can now present the consensus analysis.

Proposition 24. Assume that Gk is bidirectional for all k ≥ 0 and A5
holds. Algorithm (5) achieves a global consensus a.s. if Gk is SIC.

Proof. We only need to show P

limk→∞ S(k) = 0|Ac


=

1. Let {xω(k)}∞k=0 be a sample sequence in Ac . Then ∀ℓ =

1, 2, . . . , ∃T1(ℓ, ω) > 0 such that

k ≥ T1 ⇒ |xω
i (k)|X0 ≤

1
ℓ
, i = 1, . . . , n. (59)

As a consequence, Lemma 23 implies

h(k + s) ≥ h(k) −
2
ℓ
; H(k + s) ≤ H(k) +

2
ℓ

(60)

for all k ≥ T1 and s ≥ 0.
Denote k1 = T1. Take ν0 ∈ V with xν0,[ȷ](k1) = h(k1). Define

k̂1
.
= inf

k≥k1


∃j ∈ V s.t. (ν0, j) ∈ Ek


and

V1
.
=

j ∈ V : (ν0, j) ∈ Ek̂1


.

With (59), we have

xν0,[ȷ](k̂1) ≤ xν0,[ȷ](k1) +
1
ℓ

= h(k1) +
1
ℓ
. (61)

Thus,

P

xν1,[ȷ](k̂1 + 1) ≤ ηh(k1) + (1 − η)H(k1) +

2
ℓ

Ac


≥ p (62)

for any ν1 ∈ V1, which leads to

P

xi,[ȷ](k̂1 + 1) ≤ ηh(k1) + (1 − η)H(k1) +

2
ℓ
,

i ∈ V1

Ac


≥ p|V1|. (63)

Similar to the proof of Lemma 20, we can repeat the upper
process, and V2, . . . , Vd0 can be defined for some constant 1 ≤
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Fig. 4. The average performance of the randomized algorithm. Here D0(k) =

maxi=1,2,3 |xi(k)|X0 .

d0 ≤ n− 1 until V \ {ν0} =
d0

j=1 Vj. Moreover, we can also obtain
that

P

xi,[ȷ](k̂d0 + 1) ≤ ηd0h(k1) + (1 − ηd0)H(k1) +

2d0
ℓ

,

i ∈ V
Ac


≥ pn−1. (64)

Therefore, denoting k2 = k̂d0 + 1, we have

P

H(k2) ≤ ηd0h(k1) + (1 − ηd0)H(k1) +

2d0
ℓ

Ac


≥ pn−1. (65)

We see from (60), (65) that

P

S(k2) ≤ (1 − ηd0)S(k1) + L0 ·

2(d0 + 1)
ℓ

Ac


≥ pn−1.

Then we know P

limk→∞ S(k) = 0|Ac


= 1 by similar deduc-

tion as the proof of Proposition 16. The proof is completed. �

Then we see that Theorem 18 follows from Propositions 22 and
24.

6. Numerical example

In this section, we study a numerical example to compare the
convergence rates of deterministic and randomized algorithms,
and to illustrate the optimal choice of the decision probability p
in the randomized algorithm.

Consider a network with three nodes V = {1, 2, 3}.
The communication graph is fixed and directed. Here E =

{(1, 2), (2, 3), (3, 1)} is the arc set. We take aij(k) = 0.5 for all
(i, j) ∈ E . The optimal solution sets corresponding to the nodes
are three disks in R2 with radius 1 and centers (−1, 0), (1, 0)
and (0, −1), respectively. Their intersection X0 = {(0, 0)} is a
singleton. Initial values for each node are (−2, 2), (−2, −2) and
(2, −2), respectively.

We compare the randomized algorithm presented in this paper
and the projected consensus algorithm in (Nedić et al., 2010),
which is a deterministic algorithmwith eachnode taking averaging
and projection alternatively. Numerical experiments show that the
deterministic algorithm leads to a faster convergence than the
mean performance of the randomized algorithm. The reason for
this is natural since consecutive projections may take place for
some nodes. However, surprisingly enough there is still about 5
percent of the experiments for which the randomized algorithm
performs better than the deterministic one. Moreover, we also find
that the randomized algorithm usually converges faster near X0.
See Figs. 4 and 5.
Fig. 5. A typical sample when the randomized algorithm converges faster.

Fig. 6. Convergence rates for different decision probabilities (D0(k) =

maxi=1,2,3 |xi(k)|X0 ).

We further compare the average performance of the random-
ized algorithm when p takes values from 0.2, 0.5 and 0.8. Exper-
iments show that the case when p = 0.5 reaches the fastest
convergence. This is to say, it is better for the nodes to balance com-
putation (projection) and communication (averaging). See Fig. 6.

7. Conclusions

The paper investigated a randomized optimal consensus
problem for multi-agent systems with stochastically time-varying
interconnection topology. In this formulation, the decision process
for each agent was a simple Bernoulli trial between following
its neighbors or sticking to its own opinion at each time step.
In terms of the optimization problem, each agent independently
chose either taking an average among its time-varying neighbor
set, or projecting onto the optimal solution set of its own objective
function randomly with a fixed probability. Both directed and
bidirectional communications were studied, and stochastically
jointly connectivity conditions were proposed to guarantee an
optimal consensus almost surely. The results showed that under
this randomized decisionmaking protocol, a group of autonomous
agents can reach an optimal opinionwith probability 1with proper
convex and nonempty intersection assumptions for the considered
optimization problem. Fundamental challenges still lie in the
convergence rate of the randomized algorithm and the choice of
optimal decision probability to reach a faster convergence.
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