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Abstract— In this paper, we study finite-time convergence of
gossip algorithms. We show that there exists a symmetric gossip
algorithm that converges in finite time if and only if the number
of network nodes is a power of two, while there always exists
a globally finite-time convergent gossip algorithm despite the
number of nodes if asymmetric gossiping is allowed. For n = 2m

nodes, we prove that a fastest convergence can be reached in
mn node updates via symmetric gossiping. On the other hand,
for n = 2m + r nodes with 0 ≤ r < 2m, it requires at least
mn+ 2r node updates for achieving a finite-time convergence
in cooperation with asymmetric interactions.

Index Terms— gossip algorithms, finite-time convergence,
computational complexity
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I. INTRODUCTION

Various gossip algorithms, in which information exchange
is always carried out pairwise among the nodes, have been
widely used to structure distributed computation, optimiza-
tion, and signal processing over peer-to-peer, sensor, and
social networks [3], [2], [8], [5], [11], [12], [13], [14],
[6], [7]. Gossip averaging plays a fundamental role in the
study of gossip algorithms due to its simple nature and wide
application.

Consider a network with node set V = {1, . . . , n}. Let
the value of node i at time k be xi(k) ∈ R1 for k ≥ 0.
Introduce

M .
=
{
Mij

.
= I − (ei − ej)(ei − ej)T

2
: i, j = 1, . . . , n

}
,

where em = (0 . . . 0 1 0 . . . 0)T is the n×1 unit vector whose
m’th component is 1. Denote x(k) = (x1(k) . . . xn(k))T .
Then a symmetric deterministic gossip algorithm is defined
by

x(k + 1) = Pkx(k), (1)

where {Pk}∞0 satisfies Pk ∈M for all k. Enlarge the set of
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state-transition matix by [8], [9]

M∗
.
=
{
I − (ei − ej)(ei − ej)T

2
: i, j = 1, . . . , n

}
⋃{

I − ei(ei − ej)T

2
: i, j = 1, . . . , n

}
.

We call Algorithm (1) an asymmetric gossip algorithm given
by {Pk}∞0 if instead we have Pk ∈M∗ for all k.

Algorithm (1) and its variations have been extensively
studied in the literature for both randomized and determinis-
tic models. Karp et al. [2] derived a general lower bound
for synchronous gossiping; Kempe et al. [3] proposed a
randomized gossiping algorithm on complete graphs and
determined the order of its convergence rate. Then Boyd
et al. [5] established both lower and upper bounds for
the convergence time of synchronous and asynchronous
randomized gossiping algorithms, and developed algorithms
for optimizing parameters to obtain fast consensus. Fagnani
and Zampieri discussed asymmetric gossiping in [8] and
asymmetric update in random setting was further studied in
[9]. Liu et al. [10] presented a comprehensive analysis for the
asymptotic convergence rates of deterministic averaging, and
recently distributed gossip averaging subject to quantization
constraints was studied in [13]. Distributed signal processing
and estimation algorithms via gossiping were discussed in
[11], [12]. A detailed introduction to gossip algorithms can
be found in [6].

In this paper, we study the finite-time convergence of
gossip algorithms with its presise definition given as follows.

Definition 1.1: A gossip algorithm in the form of (1) given
by {Pk}∞0 achieves finite-time convergence with respect to
initial value x(0) = x0 ∈ Rn if there exists an integer
T (x0) ≥ 0 such that x(T ) = PT−1 · · ·P0x(0) ∈ span{1}.
Global finite-time convergence is achieved if such T (x0)
exists for every initial value x0 ∈ Rn.

We also introduce the definition on the computatonal
complexity of finite-time convergent gossiping algorithm.

Definition 1.2: Let Algorithm (1) given by {Pk}∞0 define
a symmetric or asymmetric gossip algorithm. The number of
node updates up to T is given by

CT :=

t−1∑
k=0

‖In − Pk‖1,

where ‖ · ‖1 is the matrix norm defined by ‖A‖1 =∑m
i=1

∑n
j=1

∣∣[A]ij
∣∣ for any A ∈ Rm×n with

∣∣ · ∣∣ denoting
the absolute value. The computational complexity of {Pk}∞0
is indexed by

max
x0∈Rn

min
T≥0

{
CT : PT−1 · · ·P0x

0 ∈ span{1}
}
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whenever the above equation defines a finite number.
Reaching a consensus in finite-time pushes the conver-

gence rate optimization of gossip algorithms to the limit
[5], and by itself it is a basic and fundamental question
for distributed gossip computation. We are interested in
the following aspects: (i) Is it possible to reach finite-time
convergence for gossip algorithms? (ii) What is the essential
difference between symmetric and asymmetric gossiping?
(iii) Whenever finite-time convergence is possible, what is
its computational complexity?

We present clear answers to these questions in the rest
of discussions. Section II and Section III will focus on
symmetric and asymmetric gossip algorithms, respectively.
Some concluding remarks are given in Section IV.

II. SYMMETRIC GOSSIPING

In this section, we investigate the possiblity and com-
plexity of finite-time convergence for symmetric gossiping
algorithms.

We present the following main result on the finite-time
convergence of gossip algorithms.

Theorem 2.1: There exists a symmetric gossip algorithm
{Pk}∞0 , Pk ∈ M, k ≥ 0, that converges globally in finite
time if and only if there exists an integer m ≥ 0 such that
n = 2m. If n = 2m, a fastest symmetric gossip algorithm is
reached by mn node updates.

Theorem 2.1 indicates that if the number of nodes n is
not some power of two, finding a gossip algorithm which
converges globally in finite time is impossible. However, in
this case, there still might exist a gossip algorithm which
converges in finite time for some initial values, say, half of
Rn. The following result further excludes the possibility of
the existence of such algorithms by an indeed stronger claim,
which shows that the initial values from which there exists
a gossip algorithm converging in finite time form a measure
zero set.

Theorem 2.2: Suppose there exists no integer m ≥ 0
such that n = 2m. Then for almost all initial values, it is
impossible to find a symmetric gossip algorithm {Pk}∞0 with
Pk ∈M, k ≥ 0, to reach finite-time convergence.

We give some remarks on randomized algorithms. Most
existing works on gossiping algorithms use randomized
models [3], [2], [8], [5], [11], [12], [13], [14]. Deterministic
gossiping was discussed in [13], [10]. Although we consider
deterministic algorithms in this paper, the results can still be
easily extended to randomized gossip algorithms.

A. Proof of Theorem 2.1

We prove the necessity, sufficiency, and the fastest con-
vergence statements, respectively.

1) Necessity: Suppose n = 2n1n2 with n1 ≥ 0 and
n2 ≥ 3 an odd integer. Suppose P0, . . . , Pk∗ ∈ M with
k∗ ≥ 0 gives an algorithm of (1) that converges in finite
time globally.

Take x1, . . . , x2n1 = 0 and x2n1+1, . . . , xn = 2k∗+1. Then
there exists c ∈ R such that xi(k∗ + 1) = c, i = 1, . . . , n.
On the one hand, because each element in M is symmetric

and therefore doubly stochastic, average is always preserved.
Thus, we have

c =
2k∗+12n1(n2 − 1)

2n1n2
=

2k∗+1(n2 − 1)

n2
.

On the other hand, it is not hard to see that c is an integer
for the given initial value since pairwise averaging takes
place k∗ + 1 times. Consequently, we have c = r22r1 with
0 ≤ r1 ≤ k∗ + 1 an integer and r2 ≥ 1 an odd integer.

Therefore, we conclude that

2k∗+1(n2 − 1)

n2
= r22r1 ,

which implies

2k∗+1−r1(n2 − 1) = r2n2. (2)

This is impossible because the left-hand side of Eq. (2) is an
even number while the right-hand side odd. Therefore, (1)
cannot achieve global finite-time convergence no matter how
P0, . . . , Pk, . . . are chosen.

2) Sufficiency: We need to construct a gossip algorithm
which converges in finite time globally for n = 2m.

We relabel the nodes in a binary system. We use the binary
number

B1 . . . Bm, Bs ∈ {0, 1}, s = 1, . . . ,m

to mark node i if B1 . . . Bm = i − 1 as a binary number.
The gossip algorithm is derived from the following matrix
selection process:

S1. Let k = 1.
S2. Take 2m−1 matrices from M, as the elements in the

following set
Pk

.
=
{
I − (ei−ej)(ei−ej)T

2 : in the binary system, the
k’th digit of i− 1 equals 0, and the k’th digit of j − 1
equals 1

}
.

In other words, we take all the node pairs (i, j), where
i−1 and j−1 have identical expressions in the binary
system except for the k’th digit. Label the matrices in Pk
as P ∗(k−1)2m−1 , . . . , P ∗k2m−1−1 with an arbitrary order.

S3. Let k = k + 1 and go to S2 until k = m.

Following this matrix selection process,
P ∗0 , . . . , P

∗
m2m−1−1 gives a gossip algorithm in the

form of (1). It is easy to see that the vector

P ∗s2m−1−1 · · ·P
∗
0 x

0, x0 ∈ Rn, s = 1, . . . ,m

has at most 2m−s different elements. Thus, convergence is
reached after m2m−1 = (n log2 n)/2 updates. This com-
pletes the proof.

3) Complexity: Assume xi(0) = ai, for i = 1, 2, ..., 2m.
Given any gossip algorithm {Pk}∞0 . After multiplication of
h matrices the value of every point can be written in the
form

xi(h) =

2m∑
j=1

Ai,h,j
2Bi,h,j

aj
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where Ah,j and Bh,j are nonnegative integers which depends
on {Pk}∞0 and Ai,h,j

2Bi,h,j
is uniquely determined for all initial

values in R2m .
For any node i, denote si,h as the times node i has been

updated for the initial h matrices.
Claim. Ai,h,i

2Bi,h,i
≥ 1

2si,h
.

This can be proved by induction on si,h. For si,h = 0,
that is to say node i has not been updated for the first h
matrices. Then xi(h) = ai. Thus Ai,h,i

2Bi,h,i
= 1 = 2si,h .

Assume si,h = l, the claim is true. Consider the case
si,h = l + 1, assume at the multiplication of the h′th
matrix, node i is updated for the (l + 1)-th time. Then,
by the induction hypothesis, Ai,h′−1,i

2
B
i,h′−1,i

≥ 1
2
s
i,h′−1

= 1
2l

.
Assume at matrix Ph′−1, node i and j are updated, i. e.
Ph′−1 = I − (ei−ej)(ei−ej)T

2 .

xi(h
′) =

xi(h
′ − 1) + xj(h

′ − 1)

2
.

The coefficient of ai is

(
Ai,h′−1,i

2Bi,h′−1,i
+
Aj,h′−1,i

2Bj,h′−1,i
)/2

which is not less than Ai,h′−1,i

2
B
i,h′−1,i

/2. That is to say

Ai,h′,i

2Bi,h′,i
≥ Ai,h′−1,i

2Bi,h′−1,i
/2 ≥ 1

2si,h′−1+1 =
1

2l+1

For si,h = l + 1, node i will not be updated in the rest
matrices of the initial h matrices. Thus, xi(h) = xi(h

′).
Ai,h,i

2Bi,h,i
=

Ai,h′,i

2
B
i,h′,i

≥ 1
2l+1 = 1

2si,h
. All the above proved the

claim.
For each multiplication, the sum of all nodes is not

changed, i. e. for any h

2m∑
l=1

xl(h) =

2m∑
l=1

xl(h+ 1).

Thus, if gossip algorithm {Pk}∞0 converges at finite matrix
PT−1,

x1(T ) = x2(T ) = ... = x2m(T ) =

∑2m

l=1 al
2m

=

2m∑
l=1

1

2m
al.

According to the claim, 1
2m =

Ai,T,i

2Bi,T,i
≥ 1

2si,T
, for any i.

Thus, si,T ≥ m. That is to say, when all point converges
to the same value, each node must have been updated for
at least m times. We know that for each multiplication of
matrix only two points are updated. Therefore, T is at least
mn/2 and thus the least number of node updates equals to
mn.

B. Proof of Theorem 2.2

The proof is built upon an understanding to the finite-time
convergence of the general class of averaging algorithms. In
fact, (1) is a special case of distributed averaging algorithms
defined by products of stochastic matrices [16], [17], [18]:

x(k + 1) = Wkx(k), (3)

where Wk ∈ S .
=

{
W ∈ Rn×n :

W is a stochastic matrix
}

. Let S0 ⊆ S be a subset
of stochastic matrices. We define XS0

.
=
{
x ∈ Rn :

∃W0, . . . ,Ws ∈ S0, s ≥ 0 s.t. Ws · · ·W0x ∈ span{1}
}
.

Let M(·) represent the standard Lebesgue measure on Rn.
We have the following result for the finite-time convergence
of general averaging algorithms.

Proposition 2.1: Suppose S0 is a set with at most count-
able elements. Then either XS0 = Rn or M(XS0) = 0.
In fact, if XS0 6= Rn, then XS0 is a union of at most
countably many linear spaces whose dimensions are no larger
than n− 1.

Remark 2.1: Note that in the definition of XS0 , different
initial values can correspond to different averaging algo-
rithms. Even if S0 is finite, there will still be uncountably
many different averaging algorithms in the form of (3) as
long as S0 contains at least two elements. Therefore, the
proof of Proposotion 2.1 requres a careful strcture character-
ization to XS0 .
Proof of Proposition 2.1. Define a function δ(M) of a matrix
M = [mij ] ∈ Rn×n by (cf. [15])

δ(M)
.
= max

j
max
α,β
|mαj −mβj |. (4)

Given an averaging algorithm (3) defined by {Wk}∞0
with Wk ∈ S0, k ≥ 0. Suppose there exists an initial
value x0 ∈ Rn for which {Wk}∞0 fails to achieve finite-
time convergence. Then obviously δ(Ws · · ·W0) > 0 for all
s ≥ 0.

Claim. rank(Ws · · ·W0) ≥ 2, s ≥ 0.
Let Ws · · ·W0 = (ω1 . . . ωn)T with ωi ∈ Rn. Since

δ(Ws · · ·W0) > 0, there must be two rows in Ws · · ·W0

that are not equal. Say, ω1 6= ω2. Note that Ws · · ·W0

is a stochastic matrix because any product of stochastic
matrices is still a stochastic matrix. Thus, ωi 6= 0 for all
i = 1, . . . , n. On the other hand, if ω1 = cω2 for some
scalar c, we have 1 = ωT1 1 = cωT2 1 = c, which is
impossible because ω1 6= ω2. Therefore, we conclude that
rank(Ws · · ·W0) ≥ rank(span{ω1, ω2}) ≥ 2. The claim
holds.

Suppose there exists some y ∈ Rn such that y /∈XS0 . We
see from the claim that the dimension of ker(Ws · · ·W0) is
at most n− 2 for all s ≥ 0 and W0, . . . ,Ws ∈ S0.

Now for s = 0, 1, . . . , introduce Θs
.
=
{
x ∈ Rn :

∃W0, . . . ,Ws ∈ S0, s.t. Ws · · ·W0x ∈ span{1}
}
. Then

Θs indicates the initial values from which convergence is
reached in s+ 1 steps. For any fixed W0, . . . ,Ws ∈ S0, we
define

ΥWs...W0

.
=
{
z ∈ Rn : Ws · · ·W0z ∈ span{1}

}
.

Clearly ΥWs...W0 is a linear space. It is straightforward to
see that Θs =

⋃
Ws...W0∈S0 ΥWs...W0

, and therefore

XS0 =

∞⋃
s=0

Θs =

∞⋃
s=0

⋃
Ws,...,W0∈S0

ΥWs...W0
.
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Noticing that z ∈ ΥWs...W0
implies

(
z −Ws · · ·W0z

)
∈

ker(Ws · · ·W0), we define a linear mapping

f : ΥWs...W0 7−→ ker(Ws · · ·W0)× span{1}
s.t. f(z) =

(
z −Ws · · ·W0z,Ws · · ·W0z

)
(5)

Suppose z1, z2 ∈ ΥWs...W0
with z1 6= z2. It is straight-

forward to see that either Ws · · ·W0z1 = Ws · · ·W0z2
or Ws · · ·W0z1 6= Ws · · ·W0z2 implies f(z1) 6= f(z2).
Hence, f is injective. Therefore, noting that ker(Ws · · ·W0)
is a linear space with dimension at most n − 2, we have
dim(ΥWs...W0

) ≤ n − 1, and thus M(ΥWs...W0
) = 0.

Consequently, we conclude that

M(Θs) = M
( ⋃
W0,...,Ws∈S0

ΥWs...W0

)
≤

∑
W0,...,Ws∈S0

M
(
ΥWs...W0

)
= 0

because any finite power set S0×· · ·×S0 is still a countable
set as long as S0 is countable. This immediately leads to

M(XS0) = M
( ∞⋃
s=0

Θs

)
≤
∞∑
s=0

M(Θs) = 0.

Additionally, since every Θs is a union of at most count-
ably many linear spaces, each of dimension no more than
n− 1, XS0 is also a union of countably many linear spaces
with dimension no more than n− 1. The desired conclusion
thus follows. �

Noticing that M is a finite set and utilizing Proposition
2.1, Theorem 2.2 follows immediately.

C. Discussion: How Many Algorithms can be Found?

In this subsection, we make some further discussions on
essentially how many different finite-time convergent algo-
rithms via symmetric gossiping exist. We present the follow-
ing result indicating that when n = 4, the desired algorithm
is indeed unique. Recall that Mij

.
= I − (ei−ej)(ei−ej)T

2 .
Since the proof of this proposition is rather technical, we
refer [19] for a complete proof.

Proposition 2.2: Let n = 4. Suppose PT−1 · · ·P0 =
11T /4 with PT−2 · · ·P0 6= 11T /4. Then there are under
certain permutation of index we always have PT−1 = M12,
PT−2 = M34, PT−3 = M13 and PTα = M24 for some
0 ≤ Tα < T − 3.

III. ASYMMETRIC GOSSIPING

In this section, we investigate asymmetric gossiping. It
turns out that finite-time convergence is always possible
despite the number of nodes as long as asymmetric gossiping
is allowed. The following conclusion holds.

Theorem 3.1: There always exists a deterministic gossip
algorithm {Pk}∞0 , Pk ∈ M∗, k ≥ 0, which converges
globally in finite time. In fact, for n = 2m + r with
0 ≤ r < 2m, a fastest asymmetric gossiping algorithms
that converges globally in finite time requires mn+ 2r node
updates.

A. Complexity

In this subsection, we first establish the least number
of node updates for finite-time convergence via asymmetric
gossiping. For any n, n can be written as n = 2m+r, where
m and r are integers and 0 ≤ r < 2m. The complexity proof
relies on the following lemma, whose proof can be found in
[19].

Lemma 3.1: Let n = 2m + r with 0 ≤ r < 2m. F is a
subset of Rn such that f = (f1, ..., fn) ∈ F if and only if

1 =

n∑
i=1

fi

and fis have the form bi
2ci where bis are positive odd integers

and cis are nonnegative integers, for i = 1, ..., n. As bi and
ci are uniquely determined by f , we denote them by bi(f)
and ci(f) respectively. For each fi, there exist a smallest
positive integer ni(f) such that fi ≥ 1

2ni(f)
. Define n̂(f) =∑n

i=1 ni(f). Then,

min
f∈F

n̂(f) = mn+ 2r.

B. Existence

We now construct an algorithm that when node states
converge to the same value, only nm + 2r node updates
have been taken.

Again, we relabel the nodes in a binary system. We use
the binary number

B1 . . . Bm+1, Bs ∈ {0, 1}, s = 1, . . . ,m+ 1

to mark node i if B1 . . . Bm+1 = i − 1 as a binary
number. The asymmetric gossip algorithm is derived from
the following matrix selection process:

S1. Take r matrices from M∗, as the elements in the
following set
P1

.
=
{
I − (ei−ej)(ei−ej)T

2 : i − 1 and j − 1 have
identical expressions in the binary system except for the
1’st digit.

}
. Label the matrices in P1 as P ∗0 , . . . , P

∗
r−1

with an arbitrary order.
S2. Let k = 2.
S3. Take r matrices from M∗, as the elements in the

following set P(1,k)
.
=
{
I − ei(ei−ej)T

2 : in the binary
system, the 1’th digit of i − 1 equals 1, and the 1’th
digit of j − 1 equals 0, i− 1 and j − 1 have identical
expressions in the binary system except for the 1’st
and k’th digits.

}
. Label the matrices in P(1,k) as

P ∗(k−1)r+(k−2)2m−1 , . . . , P ∗(k−1)r+(k−2)2m−1+r−1 with
an arbitrary order.

S4. Take 2m−1 matrices from M∗, as the elements in the
following set P(2,k)

.
=
{
I − (ei−ej)(ei−ej)T

2 : i− 1 and
j − 1 have identical expressions in the binary system
except for the k’th digit, and the 1’st digits of i − 1
and j − 1 are both 0

}
. Label the matrices in P(2,k)

as P ∗kr+(k−2)2m−1 , . . . , P ∗kr+(k−2)2m−1+2m−1−1 with an
arbitrary order.

S5. Let k = k + 1 and go to S2 until k = m+ 1.
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Following this matrix selection process,
P ∗0 , . . . , P

∗
m2m−1+(m+1)r−1 gives a asymmetrical gossip

algorithm in the form of (1). It is easy to see that the vector

P ∗sr+(s−1)2m−1−1 · · ·P
∗
1 P
∗
0 x

0, x0 ∈ Rn, s = 1, . . . ,m+ 1

has at most 2m+1−s different elements. Note that the matrix
selected in S1 and S4 contribute two updated values, and the
matrix selected in S3 contribute one updated value. Thus,
convergence is reached after r ∗ 2 + (2m−1 ∗ 2 + r) ∗m =
mn+ 2r value updates. This completes the proof. �

C. Discussion: Fastest Algorithm in Term of Matrices
Here, we choose the number of node value updates as

the efficiency of the asymmetrical gossip algorithm instead
of the number of matrices selected. It is still unknown the
least number of matrices needed to converge. In fact, the
algorithm in the above proof does not have the least number
of matrices. For example, for n = 6, the algorithm selects
10 matrices. However, the following algorithm selects only
9 matrices.

We give the new algorithm by recursion. Denote An as
the algorithm defined on n nodes. For n = 2, the algorithm
is just update each value to their average, which contains 2
updates of values. For n = 3, first updates the value of node
1 and 2 by their average value. Then, updates node 1 by
average value of node 1 and 3. Finally, updates node 2 and
3 by their average value. This algorithm contains 5 updates
of values.

For n = 2m + r, and if r = 2r1, define An as follows.
First, take algorithm An/2 on nodes 1, 2, ..., n/2. Then all
these n/2 nodes converges to the same value. The number
of updates in this process is n

2 (m − 1) + 2r1. Second,
take algorithm An/2 on nodes n/2 + 1, n/2 + 2, ..., n.
Thus, all these remaining nodes converges. The number of
updates in this process is also n

2 (m − 1) + 2r1. Third, for
i = 1, 2, ..., n/2, update the values of nodes i and i+n/2 by
taking their average. The number of updates of this process is
n. Therefore, the whole number of updates for this algorithm
is n

2 (m− 1) + 2r1 + n
2 (m− 1) + 2r1 + n = nm+ 2r.

For n = 2m+r, and if r = 2r2 +1, define An as follows.
First, take algorithm A(n−1)/2 on nodes 1, 2, ..., (n−1)/2.
Then all these (n − 1)/2 nodes converges. The number of
updates in this process is n−1

2 (m − 1) + 2r2. Second, take
algorithm A(n+1)/2 on nodes (n−1)/2+1, n/2+2, ..., n.
Thus, all these remaining nodes converges. The number of
updates in this process is n+1

2 (m − 1) + 2(r2 + 1). Third,
update the value of node n by taking the average of node 1
and node n. Fourth, for i = 1, 2, ..., (n− 1)/2, update the
values of nodes i and i+ (n− 1)/2 by taking their average.
The number of updates of this step is (n − 1). Therefore,
the whole number of updates for this algorithm is n−1

2 (m−
1)+2r2 + n+1

2 (m−1)+2(r2 +1)+1+(n−1) = nm+2r.
We provide a conjecture that the algorithm given here has

the least number of matrices needed to converge.

IV. CONCLUSIONS

We have answered the question on when gossip algorithms
admit a convergence in finite time. We showed that there

exists a symmetric gossip algorithm that converges in finite
time if and only if the number of network nodes is a
power of two, while there always exists a globally finite-time
convergent gossip algorithm despite the number of nodes
if asymmetric gossiping is allowed. In both cases we have
constructed desired algorithms explicitly, and we proved that
the given algorithms indeed reach fastest convergence. More
challenges lie in how to present a precise description on how
the graph structure influences the existence and complexity
of finite-time convergence via gossiping.
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