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Abstract— In this paper we deal with robust synchronization
problems for directed Lur’e networks subject to incrementally
passive nonlinearities and incrementally sector bounded non-
linearities, respectively. By making use of general algebraic
connectivities of strongly connected graphs and subgraphs,
sufficient synchronization conditions are obtained for diffusively
interconnected identical Lur’e systems on both the strongly
connected interconnection topology and the topology containing
a directed spanning tree. The static feedback gain matrices
are determined by the matrices defining the individual agent
dynamics and the general algebraic connectivities. The synchro-
nization criteria obtained in the present paper extend those for
undirected Lur’e networks in our previous work.

I. INTRODUCTION

As a widespread collective phenomenon in nature, tech-
nology and human society, synchronization of complex
dynamical networks has attracted a lot of attention from
multidisciplinary research communities in the last decade,
see e.g. [1], [3], [7], [10], [12] to name just a few. This is
due to the fact that information synchronization has potential
applications in wide areas such as spatiotemporal planning,
cooperative multitasking and formation control [8], [11]. In
synchronization problems, certain variables of interest are
required to reach an agreement through local interactions.
Then a network of interconnected dynamical systems (e.g.
smart sensors, unmanned aerial vehicles, satellites) can col-
laborate with each other to fulfill certain complex tasks.
For example, often clock synchronization is a prerequisite
in telecommunication.

Synchronization problems for linear multi-agent networks
have been extensively studied, see [7], [9] and the references
therein. In [3], a passivity-based group coordination frame-
work was proposed, which is especially applicable to undi-
rected nonlinear multi-agent networks. However, without the
passivity assumption on each agent in a network, there is no
unified approach to handle nonlinear multi-agent networks.
In this paper, we consider nonlinear multi-agent networks in
which the dynamics of each individual agent is described
by a Lur’e system, i.e. a nonlinear system consisting of
the negative feedback interconnection of a nominal linear
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system with an uncertain static nonlinearity around it, see
e.g. [5]. Whereas in stabilization of one single Lur’e system
the conditions of passivity and sector boundedness for the
uncertain nonlinear function in the negative feedback loop
are commonly assumed, in our context of networked Lur’e
systems we adopt the stronger assumptions of incremental
passivity and incremental sector boundedness. A typical
example of many control systems in engineering that satisfy
the above conditions is Chua’s circuit [6].

In [14], [16], we developed sufficient synchronization
conditions for undirected Lur’e networks, in which the
Laplacian matrices associated with the network topologies
are real symmetric. However, for directed networks, the
Laplacian matrices are usually asymmetric and thus are not
positive semi-definite anymore. The notation of algebraic
connectivity, i.e. the second smallest Laplacian eigenvalue
of undirected graphs does not work for directed cases. By
employing the general algebraic connectivities of directed
graphs, we are enabled to handle directed Lur’e networks
and obtain sufficient synchronization conditions for unidirec-
tionally networked Lur’e systems with incrementally passive
nonlinearities and incrementally sector bounded nonlineari-
ties, respectively.

The remainder of this paper is organized as follows.
Section 2 introduces some preliminaries, describes the in-
dividual agent dynamics, and formulates the synchronization
problems we will study in this paper. Our main results
are presented in Sections 3 and 4. We establish sufficient
conditions of robustly synchronizing protocols for directed
Lur’e networks subject to incrementally passive nonlineari-
ties and incrementally sector bounded nonlinearities, respec-
tively. The paper closes with some concluding remarks and
discussions for future research in Section 5.

II. PRELIMINARIES

Let R denote the field of real numbers. We denote by
R+ := [0,∞). Rm×n denotes the space of m by n real
matrices. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. The superscript (·)T denotes
the transpose of a matrix. λmin(·) denotes the smallest
eigenvalue of a given real symmetric matrix. We denote the
block diagonal matrix with matrices Mb, b = 1, 2, · · · , d,
on its diagonal by diag(M1,M2, · · · ,Md). The Kronecker
product of matrices M1 and M2 is denoted by M1 ⊗M2.
An important property of the Kronecker product is (M1 ⊗
M2)(M3 ⊗ M4) = (M1M3) ⊗ (M2M4). We denote by
0 and I the zero and the identity matrices, respectively,
of compatible dimensions. By 1N and 0N we denote the

2014 IEEE International Symposium on Intelligent Control (ISIC)
Part of 2014 IEEE Multi-conference on Systems and Control
October 8-10, 2014. Antibes, France

978-1-4799-7405-4/14/$31.00 ©2014 European Union 276



column vectors of dimension N with all elements equal to
one and zero, respectively. ‖ · ‖ denotes the Euclidean norm
of a vector.

In this paper, the interconnection topology of a network of
unidirectionally interconnected dynamical systems is denoted
by a directed graph G that consists of a finite, nonempty
node set V = {1, 2, · · · , N} and an edge set E ⊂ V × V .
We assume that the graph G is simple, i.e., it does not
contain any self-loop (i, i), ∀ i = 1, 2, · · · , N , and there
is at almost one edge between any pair of ordered nodes. If
(i, j) ∈ E ⇔ (j, i) ∈ E , j 6= i, then the graph is undirected.
A directed path from node i0 to node il is a sequence of
directed edges of the form (ip−1, ip), p = 1, · · · , l. The
graph G is strongly connected if there is a directed path
from any node to all the distinct nodes. A graph contains
a directed spanning tree if there exists a node called the
root that has directed paths to all the other nodes in the
graph. The adjacency matrix A associated with the graph G
is defined as [A]ij = aij > 0 if (j, i) ∈ E and [A]ij = 0
otherwise, where aij is the edge weight of (j, i). Then the
in-degree of node i is given by di =

∑N
j=1 aij . Denote

D := diag(d1, d2, · · · , dN ) as the in-degree matrix of the
graph G. The Laplacian matrix of the graph G is defined by
L := D − A. According to the Gershgorin circle theorem,
the real parts of all the eigenvalues of L are nonnegative. It
is well known that L1N = 0N , i.e., 1N is an eigenvector
associated with the Laplacian eigenvalue 0. Furthermore,
zero is a simple Laplacian eigenvalue if and only if the graph
G contains a directed spanning tree. L is irreducible if and
only if the graph G is strongly connected.

In this paper, we consider a directed multi-agent network
of N (≥ 2) nonlinear dynamical systems described by the
following identical Lur’e systems (see Fig. 1)

ẋi = Axi +Bui + Ezi

yi = Cxi

zi = −φ(yi, t)

, i = 1, 2, · · · , N, (1)

where xi(t) ∈ Rn, ui(t) ∈ Rm and yi(t) ∈ Rs are
the state to be synchronized, the diffusive coupling input
and the output of the ith agent, respectively. The equation
zi(t) = −φ(yi(t), t) represents a time-varying, memoryless,
nonlinear negative feedback loop. The function φ(·, t) from
Rs × R+ to Rs is uncertain and can be any function from
a set to be specified later. A, B, C and E are given,
constant system matrices of compatible dimensions. The
interconnection topology among these agents is represented
by the directed graph G.

In this paper, the agents (1) in a network are assumed to be

ẋi = Axi +Bui + Ezi
yi = Cxi

φ(yi, t)

yi

⊗
−
zi

ui

Fig. 1. Lur’e System

interconnected by means of the following distributed static
protocol

ui = F

N∑
j=1

aij(xi − xj), i = 1, 2, · · · , N, (2)

where F ∈ Rm×n is a common feedback gain matrix to be
determined later, A = [aij ] is the adjacency matrix of the
graph G. By interconnecting (1) and (2) we get the Lur’e
dynamical network

ẋi = Axi +BF

N∑
j=1

aij(xi − xj)− Eφ(Cxi, t), (3)

i = 1, 2, · · · , N.

Definition 1: The network (3) of agents (1) with the
protocol (2) is robustly synchronized if xi(t)−xj(t)→ 0 as
t → ∞, ∀ i, j = 1, 2, · · · , N , for all initial conditions and
all φ(·, t) from a given function set.

In the next two sections, we present sufficient conditions
that guarantee robust synchronization for the network (3)
when φ(·, t) is incrementally passive and incrementally sec-
tor bounded, respectively.

III. INCREMENTAL PASSIVITY

In this section, we assume the function φ(·, t) to belong
to the set of all incrementally passive functions:

(y1 − y2)T (φ(y1, t)− φ(y2, t)) ≥ 0 (4)

for all y1, y2 ∈ Rs and t ∈ R+.
Before moving on, we will give the definition of gen-

eral algebraic connectivity for strongly connected directed
graphs. For an undirected graph with Laplacian matrix L, we
know that its algebraic connectivity, i.e. the second smallest
Laplacian eigenvalue is given by (see e.g. [4])

λ2(L) = min
xT 1N=0,x 6=0N

xTLx
xTx

.

However, for a directed graph, its Laplacian matrix is
probably not symmetric and thus the definition above is
not suitable. The general algebraic connectivity for strongly
connected directed graphs is given below.

Definition 2: For a strongly connected directed graph with
Laplacian matrix L, the general algebraic connectivity is
defined to be the real number

c = min
xT ξ=0,x 6=0N

xT
(
ΞL+ LTΞ

)
x

2xTΞx
,

where ξ = (ξ1, ξ2, · · · , ξN )T , Ξ = diag(ξ1, ξ2, · · · , ξN ),
ξTL = 0TN with ξi > 0, ∀ i = 1, 2, · · · , N , and

∑N
i=1 ξi =

1.
We have c > 0, see Corollary 2 in [13].
Theorem 1: Assume that the graph G is strongly connect-

ed and φ(·, t) satisfies (4) for all y1, y2 ∈ Rs and t ∈ R+.
If there exists a positive definite matrix P ∈ Rn×n and a
positive real number k such that

PAT +AP − 2kcBBT < 0, (5)
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and
E = PCT , (6)

where c is the general algebraic connectivity of G, then
the Lur’e network (3), where F := −kBTP−1, is robustly
synchronized for all incrementally passive φ(·, t).

Proof. Let x̄ =
∑N
j=1 ξjxj , where ξj is given in Definition

2. Denote ei = xi − x̄, i = 1, 2, · · · , N , and e =[
eT1 , e

T
2 , · · · , eTN

]T
. Then we get

ėi =Aei +BF

N∑
j=1

aij(ei − ej)− Eφ(Cxi, t)

−BF
N∑
j=1

ξj

N∑
k=1

ajk(ej − ek) + E

N∑
j=1

ξjφ(Cxj , t)

=Aei +BF

N∑
j=1

aij(ei − ej)− Eφ(Cxi, t)

+ E
N∑
j=1

ξjφ(Cxj , t), i = 1, 2, · · · , N, (7)

where the second equality holds due to the fact that

BF

N∑
j=1

ξj

N∑
k=1

ajk(ej − ek) =
(
ξTL ⊗BF

)
e = 0n.

It is obvious that xi − xj = 0, ∀ i, j = 1, 2, · · · , N if
and only if e = 0Nn. Therefore, robust synchronization of
x =

[
xT1 , x

T
2 , · · · , xTN

]T
is equivalent to global asymptotic

stability of e. Choose the Lyapunov function candidate
V1(e) =

∑N
i=1 ξie

T
i P
−1ei, where P > 0 satisfies (5) and

(6). The time derivative of V1(e) along the trajectories of (7)
is given by

V̇1(e)

=2

N∑
i=1

ξie
T
i P
−1ėi

=2

N∑
i=1

ξie
T
i P
−1

Aei +BF

N∑
j=1

aij(ei − ej)

−Eφ(Cxi, t) + E

N∑
j=1

ξiφ(Cxj , t)


=2eT

(
Ξ⊗ P−1A+ ΞL ⊗ P−1BF

)
e

− 2

N∑
i=1

ξie
T
i P
−1E

φ(Cxi, t)−
N∑
j=1

ξjφ(Cxj , t)


=2eT

(
Ξ⊗ P−1A+ ΞL ⊗ P−1BF

)
e

− 2

N∑
i=1

ξie
T
i C

T (φ(Cxi, t)− φ(Cx̄, t))

=eT
[
Ξ⊗

(
P−1A+ATP−1

)
−k
(
ΞL+ LTΞ

)
⊗ P−1BBTP−1

]
e

− 2

N∑
i=1

ξi(Cxi − Cx̄)T (φ(Cxi, t)− φ(Cx̄, t))

≤eT
[
Ξ⊗

(
P−1A+ATP−1

)
− 2kcΞ⊗ P−1BBTP−1

]
e

=eT
[
Ξ⊗

(
P−1A+ATP−1 − 2kcP−1BBTP−1

)]
e,

which is negative definite. The fourth equality holds since
we have

∑N
i=1 ξie

T
i = 0Tn . Thus the system (7) is globally

asymptotically stable, i.e., the Lur’e network (3) is robustly
synchronized. This completes the proof. �

Remark 1: Note that there exists a solution pair (P, k)
with P > 0 and k > 0 to the LMI (5) if and only if (A,B)
is stabilizable. The equality condition (6) is commonly used
to deal with passive nonlinearities, see e.g. [5]. Its feasibility
can be only checked numerically when the matrices C and
E are known.

The strong connectedness assumption is not suitable to
many practical circumstances. Inspired by [13], we are able
to analyze robust synchronization of the Lur’e network (3)
assuming that the graph G contains a directed spanning tree,
which is a much more flexible condition. Before moving on,
some preliminaries are presented below.

Assume that the graph G contains a directed spanning
tree and has p(≥ 2) strongly connected subgraphs. Then the
Laplacian matrix L of the graph G can be written in its
Frobenius normal form (see e.g. [2])

L =


L11 0 · · · 0
L21 L22 · · · 0

...
...

. . .
...

Lp1 Lp2 · · · Lpp

 , (8)

where Lqq ∈ Rnq×nq is irreducible, q = 1, 2, · · · , p. Let
Lqq = Lq+Dq , where Lq is the Laplacian matrix associated
with the qth strongly connected subgraph in the graph G.
Obviously, L11 is associated with the strongly connected
subgraph which is composed of all the roots in this graph and
D1 = 0. It is easy to see that the diagonal matrices Dq ≥ 0
and Dq 6= 0, q = 2, · · · , p. Intuitively, there is information
flow from the first subgraph to the others. In addition, p = 1
if and only if G is a strongly connected graph.

Remark 2: Note that L and L describe the same graph
G. To obtain L, we can relabel the nodes in the graph. Of
course, this does not change the topology structure and thus
our following analysis based on L holds for L.

Lemma 1: [13] Let

M =


M11 0 · · · 0
M21 M22 · · · 0

...
...

. . .
...

Mp1 Mp2 · · · Mpp

 ,
where Mqq ∈ Rnq×nq , nq is a positive integer, q = 1, · · · , p.
If there exist positive definite diagonal matrices Qq ∈
Rnq×nq such that QqMqq +MT

qqQq < 0, then there exists a
positive definite diagonal matrix δ = diag(δ1In1

, · · · , δpInp
)

with positive real numbers δq such that δQM+MTQδ < 0,
where Q = diag(Q1, · · · , Qp).

Below we give the definition of general algebraic connec-
tivity of the strongly connected subgraphs.
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Definition 3: [13] For a graph containing a directed span-
ning tree with its Laplacian matrix in the form of (8), the
general algebraic connectivity of the qth strongly connected
subgraph (2 ≤ q ≤ p) is defined to be the real number

cq = min
x6=0nq

xT
(
ΞqLqq + LTqqΞq

)
x

2xTΞqx

= λmin

(
1

2

√
Ξq
−1 (

ΞqLqq + LTqqΞq
)√

Ξq
−1
)
,

where Ξq = diag(ξq1, · · · , ξqnq ), ξq = (ξq1, · · · , ξqnq )T ,
ξTq Lq = 0Tnq

with ξqr > 0, ∀ r = 1, · · · , nq , and∑nq

r=1 ξqr = 1,
√

Ξq = diag
(√

ξq1, · · · ,
√
ξqnq

)
.

Denote the general algebraic connectivity of the first
strongly connected subgraph as c1, see Definition 2. We have
cq > 0, ∀ q = 1, · · · , p, see Lemma 14 in [13]. Now it is
ready to discuss the directed spanning tree case.

Theorem 2: Assume that the graph G contains a directed
spanning tree and φ(·, t) satisfies (4) for all y1, y2 ∈ Rs and
t ∈ R+. If there exists a positive definite matrix P ∈ Rn×n
and a positive real number k such that

PAT +AP − 2k min
1≤q≤p

{cq}BBT < 0, (9)

and
E = PCT , (10)

then the Lur’e network (3), where F := −kBTP−1, is
robustly synchronized for all incrementally passive φ(·, t).

Proof. By Theorem 1 and (9)-(10), the agents on the first
strongly connected subgraph are robustly synchronized. Then
we can collapse their closed-loop dynamics to that of one
single system which, in particular, can be written as

ṡ = As− Eφ(Cs, t) + f,

where s(t) ∈ Rn, f(t) → 0n as t → ∞. In this case, we
neglect the rows corresponding to the first n1 nodes and
collapse the Laplacian matrix L to get

L̂ =

l̂21 L22 · · · 0
...

...
. . .

...
l̂p1 Lp2 · · · Lpp

 ∈ R(N−n1)×(N−n1+1),

where
[
l̂T21, · · · , l̂Tp1

]T
=
[
LT21, · · · , LTp1

]T
1N−n1

. Below
we will show that under conditions (9) and (10), the rest
agents converge to s(t) as well.

We rewrite the dynamics of the rest agents in the Lur’e
network (3) as the following form

˙̂x = (IN−n1 ⊗A)x̂+
(
L̂⊗BF

)[s
x̂

]
− (IN−n1 ⊗ E)Φ̂,

where x̂ =
[
xTn1+1, · · · , xTN

]T
, Φ̂ =

[
φ(Cxn1+1, t)

T , · · · ,
φ(CxN , t)

T
]T

. Define the synchronization errors as êi =

xi − s, i = n1 + 1, · · · , N . Denote ê =
[
êTn1+1, · · · , êTN

]T
.

The dynamics of the synchronization errors is given by

˙̂e =
(
IN−n1

⊗A+ L̃⊗BF
)
ê− 1N−n1

⊗ f

− (IN−n1
⊗ E)

(
Φ̂− 1N−n1

⊗ φ(Cs, t)
)
, (11)

where

L̃ =

L22 · · · 0
...

. . .
...

Lp2 · · · Lpp

 .
Consider the Lyapunov function candidate

V2 (ê) =

p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1
êTi P

−1êi,

where P > 0 satisfies (9) and (10), ξq,i−Nq−1
is given

in Definition 3, Nq−1 =
∑q−1
r=1 nr, δq is a positive real

number to be determined later. The time derivative of V2 (ê)
along the trajectories of (11) is given by (12), where ẽTq =[
êTNq−1+1, · · · , êTNq−1+nq

]T
.

Let

Mqq = Inq
⊗ P−1A− kLqq ⊗ P−1BBTP−1,

Mqj = −kLqj ⊗ P−1BBTP−1, Qq = Ξq ⊗ In.

Since (9) holds, using the same argument in the proof of
Theorem 1, we have QqMqq+M

T
qqQq < 0, q = 2, · · · , p. By

Lemma 1, there exist positive real numbers δq , q = 2, · · · , p,
such that the first sum after the inequality in (12) is negative
definite. We note that there always exists a positive real
number α (sufficiently small) such that

V̇2 (ê) ≤− α
p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1
êTi P

−1êi

− 2

p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1 ê
T
i P
−1f.

For an arbitrary β > 0 and sufficiently large t, f(t) is small
enough such that if ‖êi(t)‖ ≥ β, then there exists a positive
real number γ such that

V̇2 (ê) ≤ −γ
p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1
êTi P

−1êi.

This implies that for sufficiently large t, ‖êi(t)‖ < β.
Therefore, limt→∞ ‖êi‖ = 0. The proof is completed. �

IV. INCREMENTAL SECTOR BOUNDEDNESS

In this section, we assume that φ(·, t) is given by in-
crementally sector bounded functions within sector [S1, S2],
where S1, S2 ∈ Rs×s satisfy 0 ≤ S1 < S2:

[z1 − z2 − S1(y1 − y2)]T [z1 − z2 − S2(y1 − y2)] ≤ 0 (13)

for all y1, y2 ∈ Rs and t ∈ R+, where z1 = φ(y1, t) and
z2 = φ(y2, t).

Theorem 3: Assume that the graph G is strongly connect-
ed and φ(·, t) satisfies (13) for all y1, y2 ∈ Rs and t ∈ R+.
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V̇2 (ê) =2

p∑
q=2

δq

ẽTq (Ξq ⊗ P−1A+ ΞqLqq ⊗ P−1BF
)
ẽq +

q−1∑
j=2

ẽTq
(
ΞqLqj ⊗ P−1BF

)
ẽj


− 2

p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1

[
(Cxi − Cs)T (φ(Cxi, t)− φ(Cs, t)) + êTi P

−1f
]

≤
p∑
q=2

δq

{
ẽTq

[
(Ξq × In)

(
Inq
⊗ P−1A− kLqq ⊗ P−1BBTP−1

)
+
(
Inq
⊗ P−1A− kLqq ⊗ P−1BBTP−1

)T
(Ξq × In)] ẽq −

q−1∑
j=2

ẽTq

[
(Ξq ⊗ In)

(
kLqj ⊗ P−1BBTP−1

)
+
(
kLqj ⊗ P−1BBTP−1

)T
(Ξq ⊗ In)

]
ẽj

}

− 2

p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1 ê
T
i P
−1f (12)

If there exists a positive definite matrix P ∈ Rn×n and two
positive real numbers k, ρ such that


P
(
A− 1

2E(S1+S2)C
)T

+
(
A− 1

2E(S1+S2)C
)
P

+ 1
2ρEE

T−2kcBBT
PCT

CP 2ρ(S2−S1)−2

<0, (14)

then the Lur’e network (3), where F := −kBTP−1, is
robustly synchronized for all incrementally sector bounded
φ(·, t).

Proof. Similar to the proof of Theorem 1, we
have the same synchronization error dynamics (7) here.
Choose the same Lyapunov function candidate V3(e) =∑N
i=1 ξie

T
i P
−1ei, where P > 0 satisfies (14). The time

derivative of V3(e) along the trajectories of (7) is given by
(15), where Φ = [φ(Cx1, t), · · · , φ(CxN , t)]

T . In addition,
we have (16), where ȳ = Cx̄. On the other hand, by (14)
and the Schur complement lemma, we get

[
P−1A+ATP−1 − 2kcP−1BBTP−1 −P−1E

−ETP−1 0

]
− τ

[
CT (S1S2 + S2S1)C −CT (S1 + S2)
−(S1 + S2)C 2Is

]
< 0,

where τ = 1/ρ > 0. Thus V̇3(e) is negative definite while
φ(·, t) is incrementally sector bounded and the proof is
completed. �

The following theorem will address the directed spanning
tree case for all incrementally sector bounded φ(·, t) within
sector [S1, S2].

Theorem 4: Assume that the graph G contains a directed
spanning tree and φ(·, t) satisfies (13) for all y1, y2 ∈ Rs and
t ∈ R+. If there exists a positive definite matrix P ∈ Rn×n

and two positive real numbers k, ρ such that

P
(
A− 1

2E(S1+S2)C
)T

+
(
A− 1

2E(S1+S2)C
)
P

+ 1
2ρEE

T

−2k min
1≤q≤p

{cq}BBT
PCT

CP 2ρ(S2−S1)−2


<0, (17)

then the Lur’e network (3), where F := −kBTP−1, is
robustly synchronized for all incrementally sector bounded
φ(·, t).

Proof. By Theorem 3 and (17), the agents on the first
strongly connected subgraph are robustly synchronized. The
rest analysis is similar to the proof of Theorem 2. Consider
the same Lyapunov function candidate

V4 (ê) =

p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1 ê
T
i P
−1êi,

where P > 0 satisfies (17). The time derivative of
V4 (ê) along the trajectories of (11) is given by (18),

where ηq =

[
êTq ,

(
Φ̂q − 1nq

⊗ φ(Cs, t)
)T]T

, Φ̂q =[
φ(CxNq−1+1, t)

T , · · · , φ(CxNq−1+nq
, t)T

]T
. Since (17)

holds, similar to the analysis in the proof of Theorem 3, we
have QqMqq +MT

qqQq < 0, q = 2, · · · , p. Then, by Lemma
1, there exist positive real numbers δq , q = 2, · · · , p, such
that the sum of the first two terms after the second equality
in (18) is negative definite. Following the same idea in the
proof of Theorem 2, we can complete the proof. �

V. CONCLUSIONS

In this paper we have discussed the roles of general
algebraic connectivities of strongly connected graphs and
subgraphs in robust synchronization problems for directed
Lur’e networks. The results we obtain here have extended
our previous work for undirected Lur’e networks [14], [16].
A possible topic for future research is to consider fully
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V̇3(e)≤
[

e
Φ−1N⊗φ(Cx̄,t)

]T[
Ξ⊗
(
P−1A+ATP−1−2kcP−1BBTP−1

)
−Ξ⊗P−1E

−Ξ⊗ETP−1 0

][
e

Φ−1N⊗φ(Cx̄,t)

]
(15)

[
e

Φ− 1N ⊗ φ(Cx̄, t)

]T [ 1
2Ξ⊗ CT (S1S2 + S2S1)C − 1

2Ξ⊗ CT (S1 + S2)
− 1

2Ξ⊗ (S1 + S2)C Ξ⊗ Is

] [
e

Φ− 1N ⊗ φ(Cx̄, t)

]
=

N∑
i=1

ξi (φ(yi, t)− φ(ȳ, t)− S1(yi − ȳ))
T

(φ(yi, t)− φ(ȳ, t)− S2(yi − ȳ)) ≤ 0 (16)

V̇4 (ê) =2

p∑
q=2

δq

(
ηTq

[
Ξq ⊗ P−1A− kΞqLqq ⊗ P−1BBTP−1 Ξq ⊗ P−1E

0 0

]
ηq

−
q−1∑
j=2

ηTq

[
kΞqLqj ⊗ P−1BBTP−1 0

0 0

]
ηj

− 2

p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1
êTi P

−1f

=

p∑
q=2

δqη
T
q


[
Ξq ⊗ In 0

0 Inqn

]
︸ ︷︷ ︸

Qq

[
Inq
⊗ P−1A− kLqq ⊗ P−1BBTP−1 Inq

⊗ P−1E
0 0

]
︸ ︷︷ ︸

Mqq

+

[
Inq
⊗ P−1A− kLqq ⊗ P−1BBTP−1 Inq

⊗ P−1E
0 0

]T [
Ξq ⊗ In 0

0 Inqn

])
ηq

−
p∑
q=2

δq

q−1∑
j=2

ηTq


[
Ξq ⊗ In 0

0 Inqn

] [
kLqj ⊗ P−1BBTP−1 0

0 0

]
︸ ︷︷ ︸

−Mqj

+

[
kLqj ⊗ P−1BBTP−1 0

0 0

]T [
Ξq ⊗ In 0

0 Inqn

])
ηj − 2

p∑
q=2

δq

Nq−1+nq∑
i=Nq−1+1

ξq,i−Nq−1 ê
T
i P
−1f (18)

distributed synchronization of directed Lur’e networks as we
achieved for undirected Lur’e networks in [16]. Another one
is to study dynamic feedback synchronization of directed
Lur’e networks as in [15], [17].
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