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How Agreement and Disagreement Evolve over
Random Dynamic Networks
Guodong Shi, Mikael Johansson, and Karl Henrik Johansson

Abstract—The dynamics of an agreement protocol interacting
with a disagreement process over a common random network is
considered. The model can represent the spreading of true and
false information over a communication network, the propaga-
tion of faults in a large-scale control system, or the development
of trust and mistrust in a society. At each time instance and with
a given probability, a pair of network nodes interact. At random
each of the nodes then updates its state towards the state of the
other node (attraction), away from the other node (repulsion),
or sticks to its current state (neglect). Agreement convergence
and disagreement divergence results are obtained for various
strengths of the updates for both symmetric and asymmetric
update rules. Impossibility theorems show that a speci c level of
attraction is required for almost sure asymptotic agreement and
a speci c level of repulsion is required for almost sure asymptotic
disagreement. A series of suf cient and/or necessary conditions
are then established for agreement convergence or disagreement
divergence. In particular, under symmetric updates, a critical
convergence measure in the attraction and repulsion update
strength is found, in the sense that the asymptotic property of the
network state evolution transits from agreement convergence to
disagreement divergence when this measure goes from negative
to positive. The result can be interpreted as a tight bound on
how much bad action needs to be injected in a dynamic network
in order to consistently steer its overall behavior away from
consensus.

Index Terms—Dynamic networks, Opinion dynamics, Gossip-
ing, Social networks, Consensus algorithms, Network science

I. INTRODUCTION

A. Motivation

A GROWING number of applications are composed of
a networked information structure executed over an

underlying communication network. Examples include social
networks over the Internet, control networks for the power
grid, and information networks serving transportation systems.
These networks are seldom centrally regulated, but have a
strong component of distributed information processing and
decision-making. While they are able to provide appropriate
service to their users most of the time, open software and
communication technologies together with large geographical
distribution, make them more exposed to faulty components,
software bugs, communication failures, and even purposeful
injection of false data.
An interesting problem is to try to understand the amount

of de ciencies that can be tolerated in the network before the
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global system performance is compromised. In this paper we
tackle this challenging problem for a model inspired by agree-
ment protocols, whose execution have been studied intensively
over the last decade in a variety of other settings, including
load balancing in parallel computing [6], [7], coordination
of autonomous agents [8], [9], distributed estimation and
signal processing [10], [11], and opinion dynamics in social
networks [12]–[14].

B. Related Work

The network structure and the dynamics of the nodes in
these networks are two fundamental components in network
science [15], [16]. Probabilistic models for networks such as
random graphs, provide an important and convenient means
for modeling large-scale systems, and have found numerous
applications in various elds of science. The classical Erdös–
Rényi model, in which each edge exists randomly and in-
dependently of others with a given probability, was studied
in [17]. The degree distribution of the Erdös–Rényi graph is
asymptotically Poisson. Generalized models were proposed
in [18] and [19], for which the degree distribution satis es
certain power law that better matches the properties of real-
life networks such as the Internet. A detailed introduction to
the structure of random networks can be found in [15], [20].
When information processing is executed on top of an

underlying network, nodes are endowed with internal states
that evolve as nodes interact. The dynamics of the node states
depend on the particular problem under investigation. For
instance, the boids model was introduced in [4] to model
swarm behavior and animal groups, followed by Vicsek’s
model in [5]. Models of opinion dynamics in social networks
were considered in [12], [13], [49] and the dynamics of
communication protocols in [50]. Convergence to agreement
for averaging algorithms have been extensively studied in
the literature. Early results were developed in a general set-
ting for studying the ergodicity of nonhomogeneous Markov
chains [21], [22]. Deterministic models have been investigated
in nding proper connectivity conditions that ensure consensus
convergence [23]–[32]. Averaging algorithms over random
graphs have also been considered [33]–[42].
In this paper, we use the asynchronous time model intro-

duced in [45] to describe the randomized node interactions.
Each node meets other nodes at independent time instances
de ned by a rate-one Poisson process, and then a pair of nodes
is selected to meet at random determined by the underlying
communication graph. Gossiping, in which each node is
restricted to exchange data and decisions with at most one
neighboring node at each time instance, has proven to be a
robust and ef cient way to implement distributed computations
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and signal processing [11], [47], [50]. We refer to [43]–[48],
[50] for the convergence analysis for gossiping algorithms.
The model we introduce and analyze in this paper can be
viewed as an extension to the model discussed by Acemoglu et
al. [49], who used a gossip algorithm to describe the spread of
misinformation induced by forceful update in social networks.
In this work we consider faulty and misbehaving nodes in
gossip algorithms. While the distributed systems community
has since long recognized the need to provide fault tolerant
systems, e.g., [59], [60], efforts to provide similar results for
randomized gossiping algorithms have so far been limited.
This paper aims at providing such results.

C. Main Contribution

The main contribution of this paper is to provide conditions
for agreement convergence and disagreement divergence over
random networks. To study this problem, we use a model of
asynchronous randomized gossiping. At each instance, two
nodes meet with a given probability. When nodes meet, nor-
mally they should update as a weighted average (attraction).
Besides that, we assume that nodes can misbehave in the sense
that they can take a weighted combination with one negative
coef cient (repulsion), or they can stick to their current state
(neglect). The potential node misbehavior essentially results
in model uncertainties in the considered algorithm. Each node
follows one of the three update rules at random by given
probabilities whenever it is selected to meet another node.
A fundamental question we answer is whether the network

will converge to agreement (all nodes asymptotically reach the
same value a.s.) or diverge to disagreement (all nodes disperse
a.s.). We study both symmetric and asymmetric node updates
[46]. Two general impossibility theorems are rst proposed.
Then, a series of suf cient and/or necessary conditions are es-
tablished for the network to reach a.s. agreement convergence
or disagreement divergence. In particular, under symmetric
updates, a critical convergence measure is found in the sense
that the asymptotic evolution of the network states transits
from agreement to disagreement when this measure switches
from negative to positive. This critical measure is in fact
independent of the structure of the underlying communication
graph. In other words, under the node dynamics considered
in this paper, there is no difference if the underlying network
is an Erdös–Rényi graph [17], a small-world graph [18], or
a scale-free graph [19], for the network to reliably target an
agreement.

D. Outline

The rest of the paper is organized as follows. In Section II,
we introduce the network model, the considered algorithm, the
problem formulation, together with some physical motivation
for the model. Section III presents two general impossibility
theorems on a.s. agreement and disagreement, respectively.
In Section IV, we discuss the model in the absence of node
repulsion and give conditions for a.s. agreement convergence
for both symmetric and asymmetric update steps. Section V
presents agreement and disagreement conditions for the gen-
eral model. Finally, some concluding remarks are given in
Section VI.

II. PROBLEM DEFINITION

In this section, we present the considered network model
and de ne the problem of interest.
We rst recall some basic de nitions from graph theory

[3] and stochastic matrices [1]. A directed graph (digraph)
G = (V , E) consists of a nite set V of nodes and an arc set
E ⊆ V×V . A digraph G is weakly connected if it is connected
as a bidirectional graph when all the arc directions are ignored.
A nite square matrixM = [mij ] ∈ �n×n is called stochastic
if mij ≥ 0 for all i, j and

∑
j mij = 1 for all i. A stochastic

matrix M is doubly stochastic if also MT is stochastic. Let
P = [pij ] ∈ �n×n be a matrix with nonnegative entries. We
can associate a unique digraph GP = (V , EP ) with P on node
set V = {1, . . . , n} such that (j, i) ∈ EP if and only if pij > 0.
We call GP the induced graph of P .

A. Node Pair Selection

Consider a network with node set V = {1, . . . , n}, n ≥ 3.
We use the asynchronous time model introduced in [45] to
describe node interactions. Time is slotted. Let xi(k) ∈ �
denote the state (value) of node i at the k’th slot. Then the
network state is x(k) = (x1(k), . . . , xn(k))

T ∈ �n. Node
interactions are characterized by an n × n stochastic matrix
A = [aij ]. The meeting process is de ned as follows.
De nition 1 (Node Pair Selection): Independent of time

and node state, at time k ≥ 0,

(i) A node i ∈ V is drawn with probability 1/n;
(ii) Node i picks the pair (i, j) with probability aij .

For the the induced graph, GA, of the node pair selection
matrix A, we use the following assumption.
A1. (Underlying Connectivity) GA is weakly connected.
We denote G∗

A as the bidirectional graph obtained by
ignoring all the directions for arcs in GA.

B. State Evolution

Suppose node i meets another node j at time k. Independent
of time, node states, and pair selection process, their will be
three events for the iterative update for node i.

(i) (Attraction) With probability α, node i updates as a
weighted average with j, marked by event Aij(k):

xi(k + 1) = xi(k) + Tk

(
xj(k)− xi(k)

)
(1)

where 0 < Tk ≤ 1 is the average weight.
(ii) (Neglect) With probability β, node i sticks to its current

state, marked by event Nij(k):

xi(k + 1) = xi(k). (2)

(iii) (Repulsion) With probability γ, node i updates as a
weighted average with j, but with a negative coef cient,
marked by Rij(k):

xi(k + 1) = xi(k)− Sk

(
xj(k)− xi(k)

)
(3)

where Sk > 0.

Naturally we assume α + β + γ = 1. Node j’s update is
determined by the corresponding events Aji(k), Nji(k) and
Rji(k), which may depend on node i’s update.
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C. Problem

Introduce

H(k)
.
= max

i∈V
xi(k), h(k)

.
= min

i∈V
xi(k)

as the maximum and minimum states among all nodes, re-
spectively, and de ne H(k)

.
= H(k)− h(k) as the agreement

measure. We make the following de nition.
De nition 2: (i). Agreement convergence is achieved a.s.

for initial time k0 and initial value x(k0) ∈ �n if

P
(
lim sup
k→∞

H(k) = 0
)
= 1. (4)

Global agreement convergence is achieved a.s. if (4) holds for
all initial time and initial values.
(ii). Disagreement divergence is achieved a.s. for initial

value x(k0) ∈ �n if

P
(
lim sup
k→∞

H(k) > M
)
= 1 for all M ≥ 0. (5)

D. Model Rationale

We illustrate and motivate the model introduced above
through three application examples.
False Data Injection Attacks: Large distributed computing

and control systems are vulnerable to cyber attacks [53]–
[56]. An attacker may inject false data or malicious code
in the network, to mislead the nodes or even change the
overall behavior of the system. The model in this paper
can represent a very simple system under a cyber attack.
The attraction event Aij corresponds to normal operation of
the system, under which the nodes are supposed to reach
consensus. The neglect event Nij can represent a denial-of-
service attack, which block node i from updating its state
based on information from its neighbor j. The injection of
malicious code in node i changing its update law is modeled
by the repulsion update. State agreement or disagreement
indicates the failure or success of the attack. Our results in
this paper allow us to explicitly characterize how large attacks
a network can withstand.
Fault-Tolerant Systems: “An important goal in distributed

system design is to construct the system in such a way
that it can automatically recover from partial failures without
seriously affecting the overall performance,” as pointed out
in [57]. In our model the events Nij and Rij can represent
node faults during a randomized computation process or in
the coordination of a multi-robot system. For example, the
magnitude of the repulsion parameter Sk can indicate how
severe a fault is. Our results show that a networked systems
can sometimes be robust to quite severe faults. It is also shown
that in certain cases the topology of the network does not play
an essential role but the persistence and the size are more
important.
Social Networks: Distributed averaging has been widely

used to characterize opinion dynamics in social networks,
e.g., [12]–[14], [49], [51]. The state xi of node i is in these
models the opinion of an individual. The individuals meet and
exchange opinions. The attraction event Aij models the trust
of node i to node j. WheneverAij(k) happens, node i believes
in node j and therefore takes an attraction update step. The

parameter Tk measures the level of trust. The neglect event
Nij models the mistrust of node i to node j, which results
in that i simply ignores j and sticks to its current opinion.
The repulsion event Rij models the antagonism of node i to
node j. In this case, node i takes the opposite direction to
the attraction to keep a large distance to the opinion of node
j. In this way, our model characterizes the in uence of node
relations to the convergence of the opinion in social networks.
The idea follows the discussions on the possibilities of spread
of misinformation and persistent disagreement in [49], [51].
In addition, our model also allows for opinion divergence, as
indicated in the de nition of disagreement divergence.

III. IMPOSSIBILITY THEOREMS

In this section, we discuss the impossibilities of agreement
convergence or disagreement divergence. First a general im-
possibility theorem for agreement convergence is established
as follows on the sequence {Tk}∞0 .
Theorem 1: Global agreement convergence can be achieved

a.s. only if either
∑∞

k=0 Tk = ∞ or
∑∞

k=0(1 − Tk) =
∞. In fact, if either

∑∞
k=0 Tk < ∞ or

∑∞
k=0(1 −

Tk) < ∞ holds, then for almost all initial values, we have
P
(
lim supk→∞ H(k) = 0

)
= 0 when k0 is suf ciently large.

Proof. The proof relies on the following well-known lemma.
Lemma 1: Let {bk}∞0 be a sequence of real numbers with

bk ∈ [0, 1) for all k. Then
∑∞

k=0 bk = ∞ if and only if∏∞
k=0(1− bk) = 0.
Now suppose

∑∞
k=0 Tk < ∞. Then ∃K0 ≥ 0 s.t. Tk <

1/2, k ≥ K0. Let node pair (i, j) be selected at time k ≥ K0.
There are two cases.

(i) Neither xi(k) nor xj(k) reaches the minimum value.
Then straightforwardly we have h(k + 1) ≤ h(k).

(ii) One of the two nodes, say i, reaches the minimum value.
In this case, we have xi(k + 1) ≤ h(k) + TkH(k) if
Aij(k) happens, and h(k + 1) ≤ h(k) otherwise.

Thus, we obtain

P
(
h(k + 1) ≤ h(k) + TkH(k), k ≥ K0

)
= 1. (6)

A similar analysis leads to that

P
(
H(k + 1) ≥ H(k)− TkH(k), k ≥ K0

)
= 1. (7)

We see from (6) and (7) that

P
(
H(k + 1) ≥ (1− 2Tk

)H(k), k ≥ K0

)
= 1. (8)

Thus, according to (8), we conclude

P
(
H(m) ≥ ρ∗H(K0)

)
= 1

for all m ≥ K0, where ρ∗
.
=
∏∞

k=K0

(
1− 2Tk

)
is a constant

satisfying 0 < ρ∗ < 1 based on Lemma 1. This implies

P
(
lim sup
k→∞

H(k) > 0
)
≥ P

(
H(m) > 0, m ≥ K0

)
= 1

for all initial conditions with k0 ≥ K0 and H(k0) > 0. It is
obvious to see that

{
x = (x1 . . . xn)

T ∈ �n : x1 = · · · =
xn

}
is a set with measure zero in �n. The desired conclusion

follows.
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Moreover, the conclusion for the other case
∑∞

k=0(1 −
Tk) < ∞ follows from a symmetric argument. This completes
the proof. �
The corresponding impossibility theorem for disagreement

divergence is presented as follows.
Theorem 2: Disagreement divergence can be achieved a.s.

only if
∏∞

k=0(1 + 2Sk) = ∞.
Proof. It is straightforward to see that

P
(
H(k + 1) ≤ (1 + 2Sk

)H(k)
)
= 1 (9)

for all k. The desired conclusion follows immediately. �

IV. ATTRACTION VS. NEGLECT

In this section, we focus on the role of node attraction for
the network to reach agreement convergence. We consider the
case when repulsion events never take place, as indicated in
the following assumption.
A2. (Repulsion-Free) P(Rij(k)) = 0 for all (i, j) and k.
We study symmetric and asymmetric node dynamics, re-

spectively.

A. Symmetric Update

This subsection focuses on the condition when the nodes’
updates are symmetric when two nodes meet, as indicated in
the following assumption.
A3. (Symmetric Attraction) The events Aij(k) = Aji(k) a.s.
for all (i, j) and k.
The main result for the symmetric update model is as

follows.
Proposition 1: Suppose A1, A2 and A3 hold. Global agree-

ment convergence is achieved a.s. if
∑∞

k=0 Tk(1− Tk) = ∞.
Proof. With A2 and A3, the considered gossip algorithm can
be expressed as x(k + 1) = Φ(k)x(k), where Φ(k) is the
random matrix satisfying

P
(
Φ(k) = Φ〈ij〉

.
= I − Tk(ei − ej)(ei − ej)

T
)

=
α

n
(aij + aji), i 	= j (10)

with em = (0 . . . 0 1 0 . . . 0)T denoting the n× 1 unit vector
whose m’th component is 1. De ne L(k) =

∑n
i=1 |xi(k) −

xave|2, where xave =
∑n

i=1 xi(k0)/n is the average of the
initial values and |·| represents the Euclidean norm of a vector
or the absolute value of a scalar.
It is easy to verify that for every possible sample and
xed instant k, Φ〈ij〉 de ned in (10), is a symmetric, and
doubly stochastic matrix, i.e., Φ〈ij〉1 = 1 and 1TΦ〈ij〉 = 1T .
Therefore, we have

E
(
L(k + 1)

∣∣x(k))
= E

((
x(k) − xave1

)T
Φ(k)TΦ(k)

(
x(k)− xave1

)∣∣x(k))
=
(
x(k)− xave1

)T
E
(
Φ2(k)

)(
x(k)− xave1

)
≤ λ2

(
E
(
Φ2(k)

))
L(k), (11)

where λ2(M) for a stochastic matrix M denotes the largest
eigenvalue in magnitude excluding the eigenvalue at one.

Noticing that(
I − Tk(ei − ej)(ei − ej)

T
)2

= I − 2Tk(1− Tk)(ei − ej)(ei − ej)
T , (12)

we see from (10) that

P
(
Φ2(k) = I − 2Tk(1− Tk)(ei − ej)(ei − ej)

T
)

=
α

n
(aij + aji), i 	= j.

This leads to

E
(
Φ2(k)

)
= I − 2Tk(1− Tk)

α

n

(
D − (A+AT )

)
, (13)

where D = diag(d1 . . . dn) with di =
∑n

j=1(aij + aji).
Note that D−(A+AT ) is actually the (weighted) Laplacian

of the graph GA+AT . With assumption A1, GA+AT is a
connected graph, and therefore, based on the well-known
property of Laplacian matrix of connected graphs [3], we
have λ∗

2 > 0, where λ∗
2 is the second smallest eigenvalue

of D− (A+AT ). On the other hand, since A is a stochastic
matrix, it is straightforward to see that

∑
j=1,j �=i aij+aji ≤ n

for all i = 1, . . . , n. According to Gershgorin’s circle theorem,
every eigenvalue λ∗

i of D − (A + AT ) is bounded by 2n.
Therefore,

2Tk(1− Tk)
α

n
λ∗
i ≤ 4Tk(1− Tk) ≤ 4

(Tk + (1− Tk)

2

)2
= 1

for all λ∗
i ∈ σ

(
D − (A + AT )

)
, where σ(·) denotes the

spectrum of a matrix. Now we conclude that for all k,

λ2

(
E
(
Φ2(k)

))
= 1− 2Tk(1− Tk)α

n
λ∗
2. (14)

With (11) and (14), we obtain

E
(
L(k + 1)

)
≤

k∏
i=k0

(
1− 2Tk(1 − Tk)α

n
λ∗
2

)
L(k0), (15)

Therefore, based on Lemma 1 and Fatou’s lemma, we have

E
(

lim
k→∞

L(k)
)
≤ lim

k→∞
E
(
L(k)

)
= 0,

if
∑∞

k=0 Tk(1 − Tk) = ∞, where limk→∞ L(k) exists sim-
ply from the fact that the sequence is non-increasing. This
immediately implies

P
(

lim
k→∞

xi(k) = xave

)
= 1.

The proof is nished. �
There is an interesting connection between the impossibility

statement Theorem 1 and Proposition 1. Let us consider a
special case when Tk is monotone. Combining Theorem 1
and Proposition 1, the following conclusion becomes clear.
Theorem 3: Suppose A1, A2 and A3 hold. Assume that

either Tk+1 ≤ Tk or Tk+1 ≥ Tk for all k. Then
∑∞

k=0 Tk(1−
Tk) = ∞ is a threshold condition regarding global a.s.
agreement convergence:
(i) P

(
lim supk→∞ H(k) = 0

)
= 0 for almost all initial

conditions with k0 suf ciently large if
∑∞

k=0 Tk(1−Tk) < ∞;
(ii) P

(
lim supk→∞ H(k) = 0

)
= 1 for all initial conditions

if
∑∞

k=0 Tk(1− Tk) = ∞.
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B. Asymmetric Update

In this subsection, we investigate the case when the node
updates are asymmetric, as indicated by the following assump-
tion.
A4. (Asymmetric Attraction) P(Aij(k)

⋂
Aji(k)) = 0 for all

(i, j) and k.
We present the main result for the asymmetric update model

as follows.
Proposition 2: Suppose A1, A2 and A4 hold. Then global

agreement convergence is achieved a.s. if

∞∑
k=0

[ (k+1)(n−1)−1∏
s=k(n−1)

Ts

(
1− Ts

)]
= ∞.

Proof. Take k∗ ≥ 0. Denote a∗ = min{aij : aij > 0} as the
lower bound of the nonzero entries of A. Suppose i0 is some
node satisfying xi0 (k∗) = h(k∗).
Let i1 be a node which is connected to i0 in graph G∗

A.
We see that such i1 exists based on the weak connectivity
assumption A1. With assumptions A2 and A4, we have

P
(
pair (i0, i1) or (i1, i0) selected, and Ai1i0 happens

)
≥ a∗

n
α.

Moreover, if Ai1i0 happens, we have

xi1(k∗ + 1)

= Tk∗xi0(k∗) + (1− Tk∗)xi1 (k∗)
≤ Tk∗h(k∗) + (1− Tk∗)H(k∗)
≤ Tk∗(1− Tk∗)h(k∗) +

(
1− Tk∗(1− Tk∗)

)
H(k∗)

and xi0 (k∗ + 1) = xi0(k∗) according to assumption A4. This
implies

P
(
xi1 (k∗ + 1) ≤ Tk∗(1− Tk∗)h(k∗)

+
(
1− Tk∗(1 − Tk∗)

)
H(k∗) and xi0 (k∗ + 1) = xi0 (k∗)

)
≥ a∗

n
α.

Next, according to the weak connectivity assumption A1,
another node i2 can be found such that i2 is connected to
{i0, i1} in G∗

A. There will be two cases.
(i) i2 is connected to i0 in G∗

A. Then by a similar analysis
we used for bounding xi1(k∗ + 1), we obtain

P
(
xi0(k∗ + 2) = xi0(k∗), xi1 (k∗ + 2) = xi1 (k∗ + 1),

and xi2(k∗ + 2) ≤ Tk∗+1h(k∗) + (1− Tk∗+1)H(k∗)
)

≥ a∗
n
α.

(ii) i2 is connected to i1 in G∗
A. Suppose pair (i1, i2) or

(i2, i1) selected, and Ai2i1 happens at time k∗ +1. Then
we have xi1(k∗ + 2) = xi1(k∗ + 1) and

xi2(k∗ + 2) = (1− Tk∗+1)xi2 (k∗ + 1) + Tk∗+1xi1(k∗)

≤ (1− Tk∗+1)H(k∗ + 1) + Tk∗+1

(
Tk∗(1− Tk∗)h(k∗)

+
(
1− Tk∗(1− Tk∗)

)
H(k∗)

)

≤ h(k∗)
k∗+1∏
k=k∗

Tk(1− Tk) +H(k∗)
(
1−

k∗+1∏
k=k∗

Tk(1− Tk)
)

conditioned that pair (i0, i1) or (i1, i0) selected, and
Ai1i0 happens at time k∗.

We conclude from either of the two cases that

P
(
xτ (k∗ + 2) ≤ h(k∗)

k∗+1∏
k=k∗

Tk(1− Tk)

+H(k∗)
(
1−

k∗+1∏
k=k∗

Tk(1− Tk)
)
, τ = i0, i1, i2

)
≥
(αa∗

n

)2
.

Continuing we obtain similar bounds for nodes i3, . . . , in−1,
which lead to

P
(
H(k∗ + n− 1) ≤ h(k∗)

k∗+n−2∏
k=k∗

Tk(1− Tk)

+H(k∗)
(
1−

k∗+n−2∏
k=k∗

Tk(1− Tk)
))

≥
(αa∗

n

)n−1

. (16)

We thus obtain

P
(
H(k∗ + n− 1) ≤

(
1−

k∗+n−2∏
k=k∗

Tk(1 − Tk)
)
H(k∗)

)

≥
(αa∗

n

)n−1

. (17)

Since assumption A2 guarantees H(k + 1) ≤ H(k) for all k
with probability one, (17) leads to

E
(H(k∗ + n− 1)

)
≤
(
1−
(αa∗

n

)n−1 k∗+n−2∏
k=k∗

Tk(1− Tk)
)
E
(H(k∗)

)
.

Note that k∗ is chosen arbitrarily in the upper analysis.
Particularly, we choose k∗ = K0(n−1) ≥ k0 for some integer
K0 ≥ 0, where k0 is the initial time, we obtain

E
(
H((s+ 1)(n− 1)

)) ≤ E
(
H(K0(n− 1)

))

×
s∏

t=K0

(
1−
(αa∗

n

)n−1
(t+1)(n−1)−1∏

k=t(n−1)

Tk(1 − Tk)
)
,

which implies

E
(

lim
s→∞H(s(n− 1)

)) ≤ lim
s→∞E

(
H(s(n− 1)

))
= 0 (18)

by Fatou’s Lemma and Lemma 1 as long as∑∞
k=0

∏(k+1)(n−1)−1
s=k(n−1) Ts

(
1− Ts

)
= ∞. Therefore, observing

that H(k) is non-increasing, (18) leads to

P
(
lim sup
k→∞

H(k) = 0
)
= 1. (19)

The desired conclusion follows. �
We see from Propositions 1 and 2 that it is easier to achieve

agreement convergence with symmetric updates, which is
consistent with the literature [46].
Again let us consider the case when Tk is monotone. The

following lemma holds. We omit the proof since it is based
on some simple algebra.
Lemma 2: Let {bk}∞0 be a sequence of real numbers with

bk ∈ [0, 1] for all k. Suppose bk+1 ≤ bk or bk+1 ≥ bk for all
k. Then the following statements are equivalent.
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a)
∑∞

k=0

∏(k+1)(n−1)−1
s=k(n−1) bs(1 − bs) = ∞;

b)
∑∞

s=0

(
bs(1− bs)

)n−1

= ∞.
Combining Proposition 2 and Lemma 2, we obtain the

following conclusion.
Theorem 4: Suppose A1, A2 and A3 hold. Assume that ei-

ther Tk+1 ≤ Tk or Tk+1 ≥ Tk for all k. Then global agreement
convergence is achieved a.s. if

∑∞
k=0

(
(1−Tk

)
Tk

)n−1
= ∞.

We see from Theorems 3 and 4 that the requirement for
the sequence {Tk}∞0 to guarantee a.s. agreement convergence
increases from

∑∞
k=0 Tk(1 − Tk) = ∞ to

∑∞
k=0

(
(1 −

Tk)Tk

)n−1
= ∞ when the update transits from symmetric

to asymmetric. Hence, these results quantify the cost of
asymptotic updates versus the strength of attraction.
Remark 1: The convergence conditions established in this

section are closely related to the in nite ow graph of random
chains discussed in [40], [41]. Note that in our model the
(strong or weak) “feedback properties” (cf. [40], [41]) may
not necessarily hold since Tk can be arbitrarily close to one.

V. ATTRACTION VS. REPULSION

In this section, we discuss the interplay between the attrac-
tion and repulsion updates. Again, we study symmetric and
asymmetric updates, respectively.

A. Symmetric Update

Consider the following assumption.
A5. (Symmetric Update) The events Aij(k) = Aji(k) and
Rij(k) = Rji(k) a.s. for all (i, j) and k.
Let λ∗

2 and λ∗
n be the second smallest and largest eigen-

values of D − (A + AT ) with D = diag(d1 . . . dn), di =∑n
j=1(aij + aji), respectively. We have the follow result.
Proposition 3: Suppose A1 and A5 hold. Let Dk

.
= Tk(1−

Tk)α − Sk(1 + Sk)γ. Then

(i) Global agreement convergence is achieved in the sense
that limk→∞ E

(
L(k)

)
= 0 if

∏∞
k=0

(
1 − 2

nIk
)

= 0,
where Ik = Dkλ

∗
2, Dk ≥ 0 and Ik = Dkλ

∗
n, Dk < 0.

(ii) Disagreement convergence is achieved in the sense that
limk→∞ E

(
L(k)

)
= ∞, for almost all initial values if∏∞

k=0

(
1− 2

n Îk
)
= ∞, where Îk = Dkλ

∗
n, Dk ≥ 0 and

Îk = Dkλ
∗
2, Dk < 0.

Proof. With assumption A5, the considered algorithm can be
expressed as x(k + 1) = Ψ(k)x(k), where Ψ(k) is a random
matrix satisfying

P
(
Ψ(k) = Ψ+

〈ij〉
.
= I − Tk(ei − ej)(ei − ej)

T
)

=
α

n
(aij + aji)

corresponding to event Aij(k), and

P
(
Ψ(k) = Ψ−

〈ij〉
.
= I + Sk(ei − ej)(ei − ej)

T
)

=
γ

n
(aij + aji).

corresponding to event Rij(k), for all i 	= j.
Recall that L(k) =

∑n
i=1 |xi(k) − xave|2, where xave =∑n

i=1 xi(k0)/n is the initial average. It is crucial to notice
that every possible sample of of the random matrix Ψ(k)

is symmetric and (generalized) stochastic since its row sum
equals one, even though there are negative entries for the
matrices Ψ−

〈ij〉. Therefore, similar to (11), we have

E
(
L(k + 1)

∣∣x(k))
= (x(k) − xave1

)T
E
(
Ψ2(k)

)(
x(k)− xave1

)
. (20)

Noticing (12) and(
I + Sk(ei − ej)(ei − ej)

T
)2

= I + 2Sk(1 + Sk)(ei − ej)(ei − ej)
T

we obtain

E
(
Ψ2(k)

)
= I − 2

(
Tk(1 − Tk)α− Sk(1 + Sk)γ

)
1

n

(
D − (A+AT )

)
. (21)

There are two cases.
(i). Suppose Dk ≥ 0. Recalling that every eigenvalue λ∗

i of
D − (A + AT ) is bounded by 2n, all the eigenvalues
of E

(
Ψ2(k)

)
are contained within the unit circle. This

implies

E
(
L(k + 1)

∣∣x(k)) ≤
(
1− 2

n
Dkλ

∗
2

)
L(k). (22)

(ii). Suppose Dk < 0. Then we have

1 ≤ λi

(
E
(
Ψ2(k)

)) ≤ 1− 2

n
Dkλ

∗
n

for each eigenvalue λi of E
(
Ψ2(k)

)
, which yields

E
(
L(k + 1)

∣∣x(k)) ≤
(
1− 2

n
Dkλ

∗
n

)
L(k). (23)

Then we see that the rst part of the conclusion follows
immediately, while the second part follows by verifying the
lower bound in (22) and (23). This completes the proof. �
For a.s. disagreement divergence, we present the following

result.
Proposition 4: Suppose A1 and A5 hold. Disagreement

divergence is achieved a.s. for almost all initial conditions if
(i) there exists a constant S∗ > 0 such that Sk ≤ S∗ for all

k;
(ii) there exists a constant 0 < ε < 1/2 such that either

Tk ∈ [0, 1/2− ε] or Tk ∈ [1/2 + ε, 1] for all k;
(iii) there exists 0 < τ < 1 such that

lim supm→∞
∑m

k=0 Jτ (k) = O(m), where

Jτ (k) = log
[(
1 + 4τ(S2

k + Sk)
)pk
(
2Tk − 1

)2α]

with pk = −
2
n Îk+γ

(
1+4τ(S2

k+Sk)
)

4(1−τ)(S2
k+Sk)

, and by de nition bk =

O(ck) means that lim supk→∞ b(k)/c(k) < ∞ is a nonzero
constant.
Proof. We divide the proof into three steps.
Step 1. In this step, we show that with probability one and for
almost all initial conditions, nite-time agreement convergence
cannot be achieved. According to (8), we obtain P

(
H(k +

1) ≥ (1− 2Tk

)H(k)
)
= 1 for all k ≥ 0 if Tk ∈ [0, 1/2− ε].

Observing that 1 − 2Tk ≥ 2ε > 0 we see that H(k) > 0
for all k with probability one for all initial values satisfying
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H(k0) > 0. This holds also for the other case Tk ∈ [1/2+ε, 1]
based on a symmetric argument.
Suppose nodes u and v reach the maximum and minimum

values at time k, respectively, i.e.,

xu(k) = max
i∈V

xi(k); xv(k) = min
i∈V

xi(k).

Then we have

L(k) ≥ |xu(k)− xave|2 + |xv(k)− xave|2

≥ 1

2
|xu(k)− xv(k)|2 =

1

2
H2(k),

which implies L(k) > 0 with probability one for almost
all initial conditions. Therefore, with probability one, we can
introduce a sequence of random variables {
k}∞0 satisfying

L(k + 1) = 
kL(k), k ≥ 0,

and

E
(

k

)
= E

(
L(k + 1)

)
/E
(
L(k)

) ≥ 1− 2

n
Îk .

= Zk. (24)

Step 2. We establish a lower bound for E
(
log
k

)
in this step.

It is not hard to nd that for every possible sample, Ψ+
〈ij〉 or

Ψ−
〈ij〉 of Ψ(k), it holds that

min
{
|λi| : λi ∈ σ(Ψ+

〈ij〉) ∪ σ(Ψ−
〈ij〉)
}

≥ min
{
|λi| : λi ∈ σ(Vk)

}
= 2Tk − 1, (25)

where

Vk =

(
1− Tk Tk

Tk 1− Tk

)
. (26)

Noticing that

L(k + 1) ≥ min
λi∈σ(Ψ(k))

|λi|2L(k),

the de nition of 
k and (25) yield

P
(

k ≥ (2Tk − 1)2

)
= P

(
log
k ≥ log(2Tk − 1)2

)
= 1.

(27)

Similarly, observing that

max
{
|λi| : λi ∈ σ(Ψ+

〈ij〉) ∪ σ(Ψ−
〈ij〉)
}

≤ max
{
|λi| : λi ∈ σ(V̂k)

}
= 2Sk + 1, (28)

where

V̂k =

(
1 + Sk −Sk

−Sk 1 + Sk

)
,

we obtain

P
(

k ≤ (2Sk + 1)2

)
= P

(
log
k ≤ log(2Sk + 1)2

)
= 1.

(29)

Noticing (24) and that

E
(

k

)
=

∫
�k≤1


k +

∫
�k>1


k ≤ 1 +

∫
�k>1


k,

we obtain ∫
�k>1


k ≥ E
(

k

)− 1 ≥ Zk − 1.

Take 0 < τ < 1 a constant. The structure of the considered
algorithm immediately gives us

P
(

k > 1

)
≤ P

(
Rij(k) happens for some node pair (i, j)

)
= γ.

Now we conclude that

Zk − 1 ≤
∫
�k>1


k ≤ p̂k(2Sk + 1)2

+
(
1− τ + τ(2Sk + 1)2

)
(γ − p̂k), (30)

where by de nition

p̂k
.
= P

(
1− τ + τ(2Sk + 1)2 ≤ 
k ≤ (2Sk + 1)2

)
.

After some simple algebra we see from (30) that

p̂k ≥ Zk − 1− γ
(
1− τ + τ(2Sk + 1)2

)
4(1− τ)(S2

k + Sk)

= −
2
n Îk + γ

(
1 + 4τ(S2

k + Sk)
)

4(1− τ)(S2
k + Sk)

.
= pk. (31)

Combining (27), (29) and (31), we eventually arrive at the
following lower bound of E log
k:

E log
k ≥ p̂k log
(
1− τ + τ(2Sk + 1)2

)
+ α log(2Tk − 1)2

≥ Jτ (k). (32)

Step 3. In this step, we complete the nal piece of the proof by
a contradiction argument. Suppose there exist two constants
M0 ≥ 0 and 0 < p < 1 such that

P
(
lim sup
k→∞

H(k) ≤ M0

)
= p. (33)

Noticing that L(k) =
∑n

i=1 |xi(k) − xave|2 ≤ nH2(k), we
further conclude

P
(
lim sup
k→∞

L(k) ≤ nM2
0

)
≥ p,

which yields

P
(
lim sup
m→∞

logL(m+ 1) ≤ log
(
nM2

0

)) ≥ p.

This leads to

P
(

lim
m→∞

∑m
k=0 log
k

m
≤ 0
)
≥ p. (34)

On the other hand, noting that the node pair selection
process is independent of time and node state, and that
V(log
k) is bounded according to (27) and (29), we can
apply the strong law of large numbers and conclude from (32)
that

P
(

lim
m→∞

1

m

m∑
k=0

(
log
k − Jτ (k)

) ≥ 0
)

≥ P
(

lim
m→∞

1

m

m∑
k=0

(
log
k −E log
k

)
= 0
)
= 1,

which contradicts (34) if lim supm→∞
∑m

k=0 Jτ (k) = O(m).
The desired conclusion thus follows and this completes the

proof. �
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We conclude this subsection by the following conclusion
under the condition when Tk and Sk are time-invariant.
Theorem 5: Suppose A1 and A5 hold. Let T� ∈ [0, 1] and

S� > 0 be two given constants. Assume that Tk ≡ T� and
Sk ≡ S�. Then

D∗ = S�(1 + S�)γ − T�(1− T�)α

is a critical convergence measure regarding the state conver-
gence of the considered network. To be precise, we have

(i) Global agreement convergence is achieved both in the
sense that limk→∞ E

(
L(k)

)
= 0 and almost surely if

D∗ < 0;
(ii) State oscillation is achieved in expectation, i.e.,

E
(
L(k)

)
= L(k0) for all k ≥ k0 if D∗ = 0;

(iii) Disagreement divergence is achieved in the sense that
limk→∞ E

(
L(k)

)
= ∞ for almost all initial values if

D∗ > 0;
(iv) Disagreement divergence is achieved a.s. for almost all

initial conditions if T� 	= 1/2 andD∗ is suf ciently large,
i.e., there exists 0 < τ < 1 such that(

1 + 4τ(S2
� + S�)

)p∗(
2T� − 1

)2α
> 1,

where

p∗ =
2D∗λ∗

2 − nγ
(
1 + 4τ(S2

� + S�)
)

4n(1− τ)(S2
� + S�)

.

Proof. We just need to verify the a.s. convergence claim in (i)
since all the other conclusions follow straightforwardly from
Propositions 3 and 4.
We invoke the following supermartingale convergence the-

orem to illustrate the almost sure convergence for the case
D∗ < 0.
Lemma 3: [2] Let ξk, k ≥ 0 be a sequence of nonnegative

random variables with EV0 < ∞. If
E
(
ξk+1

∣∣ξ0, . . . , ξk) ≤ (1− ck)ξk

with ck ∈ [0, 1] and
∑∞

k=0 ck = ∞, then limk→∞ ξk = 0
almost surely.
When D∗ < 0, from (22) we have

E
(
L(k + 1)

∣∣x(k)) ≤
(
1− 2

n
D∗λ∗

2

)
L(k). (35)

Then based on Lemma 3, L(k) tends to zero a.s., which is
equivalent to a.s. agreement convergence. �
Remark 2: It is surprising that the convergence measureD∗

in Theorem 5 does not rely on the network topology. This is
to say, if all the nodes may misbehave with equal probability
as the proposed algorithm, then there is no particular topology
which can be viewed as “better” than others in terms of
agreement convergence.

B. Asymmetric Update

In this subsection, we discuss asymmetric node updates. We
introduce the following assumption.
A6. (Asymmetric Update) Both P(Aij(k)

⋂
Aji(k)) = 0 and

P(Rij(k)
⋂

Rji(k)) = 0 for all (i, j) and k.
The main result on a.s. agreement convergence under asym-

metric update is as follows.

Proposition 5: Suppose A1 and A6 hold. Global agreement
convergence is achieved a.s. if

(i) 0 ≤ (αa∗
n

)n−1
T̂k − (1 − (1 − γ

)n−1)(
Ŝk − 1

) ≤ 1 for
all k ≥ 0, where T̂k =

∏(k+1)(n−1)−1
m=k(n−1) Tm(1 − Tm) and

Ŝk =
∏(k+1)(n−1)−1

m=k(n−1)

(
Sm + 1

)
;

(ii)
∑∞

k=0

(
αa∗
n

)n−1
T̂k −

(
1− (1− γ

)n−1)(
Ŝk − 1

)
= ∞.

Proof. Following the considered algorithm we have

P
(
H(k∗ + n− 1) ≤

( k∗+n−2∏
k=k∗

(
Sk + 1

))H(k∗)
)
= 1 (36)

and

P
(
H(k∗ + n− 1) > H(k∗)

)
≤ 1− (1− γ

)n−1
(37)

since H(k∗ + n− 1) > H(k∗) implies that repulsion happens
at least one time during [k∗, k∗ + n− 1).
We conclude from (17), (36), and (37) that

E
(
H(k∗ + n− 1)

∣∣∣x(k∗))

≤
[
1−
(αa∗

n

)n−1
k∗+n−2∏
k=k∗

Tk(1 − Tk)

+
(
1− (1− γ

)n−1
)( k∗+n−2∏

k=k∗

(
Sk + 1

)− 1
)]

H(k∗)

for all k∗ > 0. This implies

P
(

lim
m→∞H(m(n− 1)

)
= 0
)
= 1 (38)

with conditions (i) and (ii), again from Lemma 3. Moreover,
condition (i) leads to that Sk is upper bounded. The desired
conclusion thus follows. �
Next, we study a.s. disagreement divergence. The following

conclusion holds.
Proposition 6: Suppose A1 and A6 hold. Disagreement

divergence is achieved a.s. for almost all initial values if
(i) there exist two constants S∗ > 0 and 0 < T ∗ < 1 such

that Sk ≤ S∗ and Tk ≤ T ∗ for all k.
(ii) there exists an integer Z ≥ 0 such that

∑m
k=0 JZ(k) =

O(m), where

JZ(k) =
(γa∗

n

)Z+1

log
( 1

n− 1

(k+1)(Z+1)−1∏
ς=k(Z+1)

(
1 + Sς

))

+
(
1− (1 − α)Z+1

)
log

(k+1)(Z+1)−1∏
ς=k(Z+1)

(
1− Tς

)
. (39)

Proof. Suppose node pair (i, j) is selected at time k. According
to the de nition of the considered randomized algorithm, we
obtain∣∣xi(k + 1)− xj(k + 1)

∣∣ =⎧⎪⎨
⎪⎩
∣∣xi(k)− xj(k)

∣∣, if Nij(k) happens;

(1− Tk)
∣∣xi(k)− xj(k)

∣∣, if Aij(k) happens;

(1 + Sk)
∣∣xi(k)− xj(k)

∣∣, if Rij(k) happens.

(40)

Therefore, with assumption A6, we obtain

P
(
H(k + 1) ≥ (1− T ∗)H(k)

)
= 1
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for all k ≥ 0. This implies for all initial values satisfying
H(k0) > 0, agreement convergence is achieved only in in nite
time with probability one. As a result, we can well de ne a
sequence of random variable, {
̂k}∞0 , such that H(k + 1) =

̂kH(k), k ≥ 0.
Now with (40), it is straightforward to conclude that

P
(

̂k ≥ 1− Tk

)
= 1 (41)

and

P
(

̂k < 1

)
≤ α. (42)

Moreover, based on the weak connectivity assumption A1,
for any k ≥ 0, there always exist two nodes i0 and j0 such
that either ai0j0 > 0 or aj0i0 > 0, and

∣∣xi0 (k) − xj0 (k)
∣∣ ≥

1
n−1H(k). Note that if ai0j0 > 0 or aj0i0 > 0, and

∣∣xi0 (k)−
xj0(k)

∣∣ ≥ μH(k) for some μ > 0, we have
∣∣xi0(k + 1) −

xj0(k + 1)
∣∣ ≥ (1 + Sk)μH(k) with probability γa∗/n.

Thus, the case with Rij(k) happening in (40) leads to

P
(

̂k ≥ 1 + Sk

n− 1

)
≥ γa∗

n
, (43)

and

P
(

̂k+s · · · 
̂k ≥ 1

n− 1

k+s∏
ς=k

(
1 + Sς

)) ≥
(γa∗

n

)s+1

(44)

for all s ≥ 0, recalling that a∗ = min{aij : aij > 0} is the
lower bound of the nonzero entries of A.
Therefore, letting Z ≥ 0 be an integer, we can eventually

conclude from (41), (42) and (44) that
k∗+Z∑
k=k∗

E log 
̂k ≥
(γa∗

n

)Z+1

log
( 1

n− 1

k∗+Z∏
k=k∗

(
1 + Sk

))

+
(
1− (1 − α)Z+1

)
log

k∗+Z∏
k=k∗

(
1− Tk

)
.

The desired conclusion follows from the same argument as
the proof of Proposition 4 based on the strong law of large
numbers, again due to the fact that the pair selection process
is independent of the node states. This completes the proof.
�
We also end the discussion by a theorem for the case when

Tk and Sk are time-invariant. Applying the same analysis
methods of proving Propositions 5 and 6, we obtain the
following result.
Theorem 6: Suppose A1 and A6 hold. Let T� ∈ [0, 1] and

S� > 0 be two given constants. Assume that Tk ≡ T� and
Sk ≡ S�. Then we have
(i) Global agreement convergence is achieved a.s. if(

1− (1− γ
)n−1

)((
S� + 1

)n−1 − 1
)

<
(αa∗

n

)n−1(
max

{
T�, 1− T�

})n−1

;

(ii) Disagreement divergence is achieved a.s. for almost all
initial conditions if there exists an integer Z ≥ 0 such
that(γa∗

n

)Z+1

log
(1 + S�)

Z+1

n− 1

+
(
1− (1 − α)Z+1

)(
Z + 1

)
log
(
1− T�

)
> 0. (45)

Fig. 1. The underlying communication graph.

C. Numerical Example

We present a numerical example in order to illustrate the
critical measure established in Theorem 5. Consider four nodes
1, . . . , 4. The node meeting probability matrix is given by

A = [aij ] =

⎛
⎜⎜⎝

0 1/2 0 1/2
1/2 0 1/4 1/4
1/3 0 0 2/3
0 1/3 2/3 0

⎞
⎟⎟⎠ .

The induced graph GA from A is shown in the Fig. 1. The
initial values are taken as xi(0) = i, i = 1, . . . , 4. For the
algorithm considered in Section 2, we take α = β = γ = 1/3
and let Tk ≡ T� = 1/4 and Sk ≡ S�.

We study three cases, corresponding to S� = (
√
7 −

2)/4, (
√
7−2)/4−0.05, (

√
7−2)/4+0.05, respectively. The

corresponding values of D∗ = S�(1+S�)γ−T�(1−T�)α are
then given by 0, −0.0212, and 0.0229. We run the considered
randomized algorithm for 105 times, and then take the average
value of the consensus measure L(k) =

∑4
i=1

(
xi(k)−xave

)2
at every time step as the empirical estimate of the expected
value of L(k). The transition of E(L(k)) for these three cases
ofD∗ is shown in Fig. 2. From the numerical result we see that
E(L(k)) diverges when D∗ = 0.0229 > 0, converges when
D∗ = −0.0212 < 0, and keeps constant when D∗ = 0. The
numerical result is consistent with the conclusion in Theorem
5.1.

VI. CONCLUSIONS

This paper proposed a model for investigating node mis-
behavior in distributed information processing over random
networks. At each instance, two nodes were selected for a
meeting with a given probability. When nodes meet, there
were three events for the node update: attraction, neglect,
or repulsion. Attraction event follows the standard averaging
algorithm targeting a consensus; neglect event means the
selected node will stick to its current state; repulsion event
represents the case when nodes are against the consensus
convergence. Each node was assumed to follow one of these
three update rules at random. Both symmetric and asymmetric
node updates were studied. After obtaining two general im-
possibility theorems, a series of necessary and/or suf cient
conditions were established for the network to reach a.s.
agreement convergence, or a.s. disagreement divergence. To
the best of our knowledge, the obtained results for the rst



1070 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 6, JUNE 2013

0 5 10 15 20 25 30
2

3

4

5

6

7

8

9

10

11

k

E
[L

(k
)]

D∗ = 0

D∗ > 0

D∗ < 0

Fig. 2. The expected value of L(k) for different D∗.

time in the literature gave a clear description on the possible
disagreement divergence for agreement protocols due to node
misbehavior. More challenges lie in the optimal policy for the
nodes to take bad action from a tradeoff between the risk of
being discovered and the result it generates, and the case when
bad action only takes place for some particular neighboring
relations.
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