
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 17, SEPTEMBER 1, 2016 4479
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Abstract—This paper considers the consensus problem for a net-
work of nodes with random interactions and sampled-data con-
trol actions. We first show that consensus in expectation, in mean
square, and almost surely are equivalent for a general random
network model when the inter-sampling interval and maximum
node degree satisfy a simple relation. The three types of consensus
are shown to be simultaneously achieved over an independent or a
Markovian random network defined on an underlying graph with
a directed spanning tree. For both independent and Markovian
random network models, necessary and sufficient conditions for
mean-square consensus are derived in terms of the spectral ra-
dius of the corresponding state transition matrix. These conditions
are then interpreted as the existence of critical value on the inter-
sampling interval, below which a global mean-square consensus is
achieved and above which the system diverges in a mean-square
sense for some initial states. Finally, we establish an upper bound
on the intersampling interval below which almost sure consen-
sus is reached, and a lower bound on the intersampling interval
above which almost sure divergence is reached. Some numerical
simulations are given to validate the theoretical results and some
discussions on the critical value of the inter-sampling intervals for
the mean-square consensus are provided.

Index Terms—Consensus, Markov chain, sampled-data, random
networks.

I. INTRODUCTION

IN traditional consensus algorithm, each node exchanges infor-
mation with a few neighbors, typically given by their relative

states, and then updates its own state according to a weighted av-
erage. It turns out that with suitable (and rather general) connec-
tivity conditions imposed on the communication graph, all nodes
asymptotically reach an agreement in which the nodes’ initial val-
ues are encoded [1], [2]. Various consensus algorithms have been
proposed in the literature. The most common continuous-time
consensus algorithm is given by an ordinary differential equation
in terms of the relative states of each agent with respect to its
neighboring agents [2], [3]. The agent state is driven towards the
states of its neighbors, so eventually the algorithm ensures that the
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whole network reaches an agreement provided that the network is
jointly connected. In [4], [5], the authors developed discrete-time
consensus algorithms. In such algorithms, each agent updates
its states as a convex combination of the state of itself and that
of its neighboring agents. Due to the fact that most algorithms
are implemented by a digital device and that the communication
channels are unreliable and often subject to limited communica-
tion capacity, sampled-data consensus algorithms have also been
proposed [6]–[10]. In a sampled-data setting, agent dynamics
are continuous and control input is piecewise continuous. The
closed-loop system is transformed into discrete-time dynamics
and conditions on uniform or nonuniform sample periods are
critical to ensure consensus.

Consensus over random networks has drawn much attention
since communication networks are naturally random. In [11],
[12], the authors studied distributed average consensus in sensor
networks with quantized data and independent, identically dis-
tributed (i.i.d.) symmetric random topologies. The authors of [13]
evaluated the mean-square convergence of consensus algorithms
with random asymmetric topologies. Mean-square performance
for consensus algorithms over i.i.d. random graphs was studied
in [14], and the impact of random packet drops was investigated
in [15]. Recently, the i.i.d. assumption was relaxed in [16], [17]
to the case where the communication graph is modeled by a
finite-state Markov chain. Probabilistic consensus has also been
investigated in the literature. It was shown in [18] that for a
random network generated by i.i.d. stochastic matrices, almost
sure, in probability, and Lp (p ≥ 1) consensus are equivalent. In
[19], the authors showed that almost sure convergence is reached
for i.i.d. random graphs and Erdős-Rényi random graphs. The
analysis was later extended to directed graphs and more general
random graph processes [20], [21]. In [22], the authors showed
that for a stochastic linear dynamical system asymptotic almost
sure consensus over i.i.d. random networks is reached if and only
if the graph contains a directed spanning tree in expectation. The
[23] provided a necessary and sufficient condition for consen-
sus over ergodic and stationary graph processes. Divergence in
random consensus networks has also been considered, as repre-
senting asymptotic disagreement in social networks. Almost sure
divergence of consensus algorithms was considered in [24], [25].

In this paper, we consider sampled-data consensus problems
over random networks. In the presence of sampled-data con-
trol actions, the sampled-data consensus problem is converted
into a discrete-time consensus algorithm over directed random
networks. Due to the effect of the inter-sampling interval, at sam-
pling instants each node updates its own state not necessarily as a
nonnegative-weighted average of the state of itself and that of its
neighboring nodes. We analyze the convergence of the consensus
algorithm under two random network models. In the first model,
each node independently samples its neighbors in a random man-
ner over the underlying graph, while in the second model each
node samples its neighbors by following a Markov chain. The
impact of sampling intervals on consensus convergence and di-
vergence is studied. We believe that the models considered in this
paper are applicable to some applications since they incorporate
sampling by digital devices, limited node connections, and ran-
dom interactions imposed by unreliable networks. Three types of
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consensus—consensus in expectation, mean-square and almost
sure sensor—are considered. The main contributions of this paper
are summarized as follows. For both independent and Markovian
random network models, necessary and sufficient conditions for
mean-square consensus are derived in terms of the spectral radius
of the corresponding state transition matrix. These conditions can
be interpreted as critical thresholds on the inter-sampling interval
and we show that they can be computed by a generalized eigen-
value problem, which can be further stated as a quasi-convex
optimization problem. For each random network model, we ob-
tain an upper bound on the inter-sampling interval below which
almost sure convergence is reached, and a lower bound on the
inter-sampling interval above which almost sure divergence is
reached. To the best of our knowledge, this is the first time that
almost sure consensus convergence and divergence are studied
for sampled-data systems, and also the first time that almost sure
divergence is considered for Markovian random graphs.

The remainder of the paper is organized as follows. Section II
provides the problem formulation and introduces the proba-
bilistic consensus notions. Then their relations are discussed.
Section III focuses on independent random networks. In this sec-
tion, we present necessary and/or sufficient conditions for expec-
tation consensus, mean-square consensus, almost sure consensus,
and almost sure divergence. The same problems are addressed
under a Markovian network in Section IV. In Section V, we
illustrate our theoretical results through numerical simulations.
Finally, some concluding remarks are drawn in Section VI.

Notation: N, C, R and R+ are the sets of nonnegative in-
tegers, complex numbers, real numbers and positive real num-
bers, respectively. For x, y ∈ R, x ∨ y and x ∧ y stand for the
maximum and minimum of x and y, respectively. The set of
n by n positive semi-definite (positive definite) matrices (that
are restricted to be Hermitian) over the field C is denoted as
Sn

+ (Sn
++). For simplicity, we write X ≥ Y (X > Y ), where

X,Y ∈ Sn
+ , if X − Y ∈ Sn

+ (X − Y ∈ Sn
++). For a matrix

X = [x1 , x2 , . . . , xn ] ∈ Rm×n , ‖ X ‖ represents the spectral
norm of X; X∗ and X ′ are the Hermitian conjugate and the
transpose of X , respectively. The Kernel of X is defined as
ker(X) = {v ∈ Rn : Xv = 0}. vec(X) is the vectorization of
X , i.e., vec(X) := [x′

1 , x
′
2 , . . . , x

′
n ]′ ∈ Rmn . ⊗ denotes a Kro-

necker product of two matrices. If m = n, ρ(X) and Tr(X)
are the spectral radius and the trace of X , respectively. For vec-
torization and Kronecker product, the following properties are
frequently used in this work: i)vec(ABC) = (C ′ ⊗ A)vec(B);
ii) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), where A,B,C and D
are matrices of compatible dimensions. For vectors x, y ∈ Rn ,
x ⊥ y is a short hand for 〈x, y〉 = 0, where 〈·, ·〉 denotes Eu-
clidean inner product. For a set A , 2A means the power set
of A . The indicator function of a subset A ⊂ Ω is a function
1A : Ω → {0, 1}, where 1A (ω) = 1 if ω ∈ A , and 1A (ω) = 0
if ω /∈ A . The notation σ( · ) represents the σ-algebra generated
by random variables. Depending on the argument, | · | stands for
the absolute value of a real number, or the cardinality of a set.

II. PROBLEM FORMULATION

A. Sampling and Random Networks

Consider a network of N nodes indexed in the set V =
{1, 2, . . . , N}. Each node i holds a value xi(t) ∈ R for t ∈
[0,∞). The evolution of xi(t) is described by

ẋi (t) = ui (t) , (1)

where ui ∈ R is the control input.
The directed interaction graph G = (V,E) describes under-

lying information exchange. Here E ⊆ V × V is an arc set and
(j, i) ∈ E means there is a (possibly unreliable) communication
link from node j to node i. The set of neighbors of node i in the
underlying graph G is denoted as Ni := {j ∈ V : (j, i) ∈ E}.
The maximum degree of G is defined as Dmax := maxi∈V |Ni |.

The Laplacian matrix L := [lij ] ∈ RN×N associated with G is
defined as

lij =
{
−1, if i �= j and (j, i) ∈ E∑

m �=i 1{(m,i)∈E}, if i = j.

A directed path from node i1 to node il is a sequence of nodes
{i1 , . . . , il} such that (ij , ij+1) ∈ E for j = 1, . . . , l − 1. A di-
rected tree is a directed subgraph of G = (V,E) such that every
node has exactly one parent, except a single root node with no
parents. Therefore, there must exist a directed path from the root
to every other node. A directed spanning tree is a directed tree
that contains all the nodes of G.

Let G be a σ-algebra associated with G, which contains all sub-
graphs of G, and {Gk = (V,Ek )}k∈N be a sequence of random
graphs, in which by definition each Gk is a random variable tak-
ing values in G . The Laplacian matrix L(k) := [lij (k)] ∈ RN×N

associated with Gk is defined as

lij (k) =
{
−1, if i �= j and (j, i) ∈ Ek∑

m �=i 1{(m,i)∈Ek }, if i = j.

The set of neighbors of node i in denoted as Ni(k) := {j :
(j, i) ∈ Ek}. Let the triple (G N ,F ,P ) denote the probability
space capturing the randomness contained in the random graph
sequence, where F is the set of all subsets of G N . Furthermore,
we define a filtration Fk = σ(G0 , . . . ,Gk ) for k ∈ N.

We define a sequence of node sampling instants as 0 = t0 <
· · · < tk < tk+1 < · · · with τk = tk+1 − tk representing the
inter-sampling interval. The sampled-data consensus scheme as-
sociated with the random graph sequence {Gk}k∈N is given by

ui (t) =
∑

j∈Ni (k)

[xj (tk ) − xi (tk )] , t ∈ [tk , tk+1) . (2)

The closed-loop system can then be written in the compact form

x (tk+1) = [I − τkL (k)]x (tk ) := W (k)x (tk ) (3)

with W (k) := [wij (k)] and x(tk ) := [x1(tk )′, . . . , xN(tk )′]′.
Note that in W (k), τk is a positive weight of L(k). Since τk

can be arbitrarily large, W (k) is not necessarily nonnegative.
Remark 1: In the sampled-data algorithm (3), each node sam-

ples its own state at the sampling instants {tk}∞k=0 . If each node
has continuous access to its own state for all t ≥ 0, we can intro-
duce the algorithm:

ui (t) =
∑

j∈Ni (tk )

[xj (tk ) − xi (t)] , t ∈ [tk , tk+1) , (4)

as considered in [26]. The the corresponding closed-loop system
is then

x (tk+1) =
[
I −

(
1 − e−τk

)
L (k)

]
x (tk ) . (5)

By replacing τk in (3) with 1 − e−τk in (5), all conclusions for
(3) throughout the paper can thus be readily translated into those
for (4).
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B. Consensus Metrics

Define xmax(tk ) := maxi∈Vxi(tk ) and xmin(tk ) :=
mini∈Vxi(tk ) and the agreement measure X(k) := xmax
(tk ) − xmin(tk ). We have the following definitions for
consensus convergence and divergence.

Definition 1:
i) Algorithm (3) achieves (global) consensus in expec-

tation if for any initial state x(t0) ∈ RN there holds
limk→∞E[X(k)] = 0.

ii) Algorithm (3) achieves (global) consensus in mean
square if for any initial state x(t0) ∈ RN there holds
limk→∞E[X2(k)] = 0.

iii) Algorithm (3) achieves (global) consensus almost
surely if for any initial state x(t0) ∈ RN there holds
P (limk→∞X(k) = 0) = 1.

iv) Algorithm (3) diverges almost surely if there
holds P (lim supk→∞X(k) = ∞) = 1 for any initial
state x(t0) ∈ RN except for x(t0) ⊥ 1, where 1 :=
[1, . . . , 1]′ ∈ RN.

We focus on whether or not Algorithm (3) is able to achieve
agreement in terms of various metrics rather than which limiting
point the algorithm agrees to, if any. The latter problem is out of
the scope of the present paper, and will be pursued in the future.

C. Relations of Consensus Notions

The following lemma suggests that if the inter-sampling inter-
val is small enough, the consensus notations in Definition 1 are
equivalent.

Lemma 1: Suppose τk ∈ (0, 1/Dmax] for all k. Then expec-
tation consensus, mean-square consensus, and almost sure con-
sensus are all equivalent for Algorithm (3).

Proof: We begin with the observation that W (k) is a row
stochastic matrix for all k ∈ N when τk ∈ (0, 1/Dmax], where
a row stochastic matrix means a nonnegative square matrix with
the sum of each row being 1. Therefore,

xmax (tk+1) = max
i∈V

N∑
j=1

wij (k)xj (tk )

≤ max
i∈V

N∑
j=1

wij (k) (xj (tk ) ∨ xmax (tk ))

= xmax (tk ) , (6)

implying that xmax(tk ) is non-increasing in k. We show that
xmin(tk ) is non-decreasing in k in precisely the same way. The
foregoing two observations together suggest that X(k) is non-
increasing in k. Finally, the conclusion follows by showing the
following implications:

i) Expectation consensus =⇒ mean-square con-
sensus. Since X(k) is non-increasing, we have
E[X2(k)] ≤ X(0)E[X(t)]. By the hypothesis,
E[X2(k)] ≤ X(0)E[X(k)] → 0 as k → ∞.

ii) Mean-square consensus =⇒ almost sure consensus. Ac-
cording to Chebyshev’s inequality [27], P (|X(k)| > ε) ≤
E[X2 (k)]

ε2 holds for any ε > 0. If limk→∞E[X2(k)] = 0,
then limk→∞P (|X(k)| > ε) = 0. As a result, there ex-
ists a subsequence of {X(k)}k∈N that converges to 0
almost surely [28]. Since {X(k)}k∈N is non-increasing,
limk→∞X(k) = 0 almost surely.

iii) Almost sure consensus =⇒ expectation consensus. Since
the sequence {X(k)}k∈N is nonnegative and non-
increasing, and X(0) is given, by the Monotone Conver-
gence Theorem [28], limk→∞E[X(k)] = 0. �

Remark 2: In [29], the equivalence of Lp consensus, con-
sensus in probability, and almost sure consensus was proved
over a random network generated by i.i.d. stochastic matrices. In
Lemma 1, we show that this equivalence holds regardless of the
type of random process the row stochastic matrices are generated
by.

III. INDEPENDENT RANDOM NETWORKS

In this section, we investigate sampled-data consensus when
the random graph Gk is obtained by each node independently
sampling its neighbors in a random manner over G. Regarding the
connectivity of the underlying graph G, we adopt the following
assumption:

(A1) The underlying graph G has a directed spanning tree.
We also impose the following assumption.

(A2) The random variables 1{(j,i)∈Ek }, (j, i) ∈ E, k ∈ N,
are (temporally and spatially) i.i.d. Bernoulli with mean
q > 0.

The techniques developed in this section also apply when q =
q(i) is a function of node index i. In order to simplify the notation
used in the derivation of the results through this section, we also
make the following assumption.

(A3) Let τk = τ∗ for all k with τ∗ > 0.
When each node samples its neighbors as Assumption

(A2) describes, {L(k)}k∈N are i.i.d. random variables, whose
randomness originates from the primitive random variables
1{(j,i)∈Ek }’s. We denote the sample space of L(k) by L :=
{L(1) , L(2) , . . . , L(M)}, where M = |G | and L(l) := [l(l)ij ] ∈
RN×N is the Laplacian matrix associated with a subgraph G(l) ∈
G . By counting how many edges are present in Gk and how
many are absent from Gk , respectively, the distribution of L(k)
is computed by

P
(
L (k) = L(i)

)
= qTr(L ( i ) )(1 − q)Tr(L−L ( i ) ) := πi (7)

for i = 1, . . . , M. When τk = τ∗, W (k) inherits the same distri-
bution as L(k) from Gk . We denote W (l) := I − τ∗L

(l) .

A. Conjunction of Various Consensus Metrics

When the inter-sampling interval is small enough (to be precise
τ∗ < 1/Dmax , each node updates its state as a convex combina-
tion of the previous states of its own and its neighbors. Every up-
date drives nodes’ states closer to each other and can be thought of
as attraction of the nodes’ states. Under the independent random
network model, we show in the following theorem that Algorithm
(3) achieves consensus, simultaneously in expectation, in mean
square, and in almost sure sense, provided that G has a directed
spanning tree.

Theorem 1: Let Assumptions (A1), (A2), and (A3) hold. Then
expectation consensus, mean-square consensus, and almost sure
consensus are achieved under Algorithm (3) if τ∗ ∈ (0, 1/Dmax).

Proof: By Lemma 1, it suffices to show that Algorithm (3)
achieves consensus in expectation.

Fix a directed spanning tree GT := (V,ET ) of graph G and a
sampling time tk . Let the root of GT be i1 ∈ V, and define a set
M1 := {i1}. Denote

η := (τ∗) ∧ (1 − Dmaxτ∗) .
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Then, there holds η > 0 when τ∗ ∈ (0, 1/Dmax). We assume
xi1 (tk ) ≤ 1/2(xmax(tk ) + xmin(tk )) while the other case for
xi1 (tk ) > 1/2(xmax(tk ) + xmin(tk )) will be discussed later.

Choose a node i2 ∈ V such that i2 /∈ M1 and (i1 , i2) ∈ GT .
Define M2 := M1 ∪ {i2}. Consider the event E2 := {(i1 , i2) ∈
Ek+1}. When E2 happens, xi2 (tk+1) evolves as follows:

xi2 (tk+1) = wi2 i1 (k)xi1 (tk ) +
∑
j �=i1

wi2 j (k)xj (tk )

≤ 1
2
wi2 i1 (k) (xmin (tk ) + xmax (tk ))

+ (1 − wi2 i1 (k))xmax (tk )

≤ 1
2
ηxmin (tk ) +

(
1 − 1

2
η

)
xmax (tk ) ,

where the last inequality holds because η ≤ wi2 i1 (k). Since η ≤
wi1 i1 (k), we show that xi1 (tk+1) is bounded by

xi1 (tk+1) ≤
1
2
ηxmin (tk ) +

(
1 − 1

2
η

)
xmax (tk ) .

At time tk+2 ,

xi2 (tk+2 ) = wi2 i2 (k + 1) xi2 (tk+1 ) +
∑
j �= i2

wi2 j (k + 1) xj (tk+1 )

≤ wi2 i2 (k + 1)
[

1
2
ηxm in (tk ) +

(
1 − 1

2
η

)
xm ax (tk )

]

+ (1 − wi2 i2 (k + 1)) xm ax (tk+1 )

≤ 1
2
η2xm in (tk ) +

(
1 − 1

2
η2
)

xm ax (tk ) ,

where the last inequality is due to xmax(tk+1) ≤ xmax(tk ) by
(6) and η ≤ wi2 i2 (k + 1). The same is true of node i1 , i.e.,
xi1 (tk+2) ≤ 1

2 η2xmin(tk ) + (1 − 1
2 η2)xmax(tk ). Recursively,

we see that xi1 (tk+n ) ≤ 1
2 ηnxmin(tk ) + (1 − 1

2 ηn )xmax(tk )
and xi2 (tk+n ) ≤ 1

2 ηnxmin(tk ) + (1 − 1
2 ηn )xmax(tk ) holds for

n = 1, 2, . . ..
Again, choose a node i3 ∈ V such that i3 /∈ M2 and there

exists a node j ∈ M2 satisfying (j, i3) ∈ ET . Define M3 :=
M2 ∪ {i3}. Consider the event E3 := {(j, i3) ∈ Ek+2 : (j, i3) ∈
ET , j ∈ M2}. If E3 happens, we obtain a similar result for node
i3 :

xi3 (tk+2 )

≤ η (xi1 (tk+1 ) ∨ xi2 (tk+1 )) + (1 − η) xm ax (tk+1 )

≤ 1
2
η2xm in (tk ) +

(
η − 1

2
η2
)

xm ax (tk ) + (1 − η) xm ax (tk )

=
1
2
η2xm in (tk ) +

(
1 − 1

2
η2
)

xm ax (tk ) .

From the same argument as above,

xi3 (tk+n ) ≤ 1
2
ηnxmin (tk ) +

(
1 − 1

2
ηn

)
xmax (tk )

holds for n = 2, 3, . . ..
We choose nodes i1 , . . . , iN in sequel and accordingly define

M1 , . . . ,MN and E2 , . . . ,EN. Consider E2 , . . . ,EN sequentially

happen, then

xim (tk+n ) ≤ 1
2
ηnxmin (tk ) +

(
1 − 1

2
ηn

)
xmax (tk )

holds for all 1 ≤ m ≤ N and n ≤ N − 1, which entails

xmax (tk+N−1) = max
i

xi (tk+N−1)

≤ 1
2
ηN−1xmin (tk ) +

(
1 − 1

2
ηN−1

)
xmax (tk ).

In this case, the relationship between X(k + N − 1) and X(k) is
given by

X (k + N − 1)

= xmax (tk+N−1) − xmin (tk+N−1)

≤ 1
2
ηN−1xmin (tk ) +

(
1 − 1

2
ηN−1

)
xmax (tk ) − xmin (tk )

=
(

1 − 1
2
ηN−1

)
X (k) .

If xi1 (tk ) > 1/2(xmax(tk ) + xmin(tk )) is assumed, a symmet-
ric analysis leads to that, when E2 , . . . ,EN sequentially oc-
cur, xmin(tk+N−1) ≥ 1

2 ηN−1xmax(tk ) + (1 − 1
2 ηN−1)xmin(tk ).

Then X(k + N − 1) is bounded by

X (k + N − 1)

= xmax (tk+N−1) − xmin (tk+N−1)

≤ xmax (tk ) − 1
2
ηN−1xmax (tk ) −

(
1 − 1

2
ηN−1

)
xmin (tk )

=
(

1 − 1
2
ηN−1

)
X (k) ,

exactly the same result as when xi1 (tk ) ≤ 1/2(xmax(tk ) +
xmin(tk )) is assumed. Therefore, the above inequality holds ir-
respective of the state of xi1 (tk ).

In addition, we know that probability that the events E2 , . . . ,EN
sequentially occur is

P
(
1∩N

i = 2 Ei
= 1

)
=

N∏
i=2

P (1Ei
= 1) ≥ qN−1 .

Combining all the above analysis,

E [X (k + N − 1)]

≤ qN−1
(

1 − 1
2
ηN−1

)
E [X (k)] +

(
1 − qN−1)E [X (k)]

=
(

1 − 1
2
(qη)N−1

)
E [X (k)] . (8)

Since 0 < qη < 1, then limk→∞E[X(k)] = 0, which completes
the proof. �

When the inter-sampling interval τ∗ is too large, then W (k)
may have negative entries. Consequently, some nodes may mutu-
ally repel, and consensus of Algorithm (3) may not be achieved.
When repulsive actions exist, expectation consensus, mean-
square consensus, and almost sure consensus are not equiva-
lent in general since the Monotone Convergence Theorem does
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not apply. Of course, consensus in mean square still implies ex-
pectation consensus as consistent with that convergence of ran-
dom variables in Lr -norm implies convergence in Ls -norm for
r > s ≥ 1. In the subsequent two subsections, mean-square con-
sensus and almost sure consensus/divergence will be separately
analyzed.

B. The Mean-Square Consensus Threshold

In this part, we focus on mean-square consensus. First of all, we
give a necessary and sufficient mean-square consensus condition
in terms of the spectral radius of a matrix that depends on τ∗, G
and q, by studying the spectral property of a linear system. Note
that the analysis is carried out on the spectrum restricted to the
smallest invariant subspace containing I − 1

N11′. The condition
is then interpreted as the existence of critical threshold on the
inter-sampling intervals, below which Algorithm (3) achieves
mean-square consensus and above which X(k) diverges in mean-
square sense for some initial state x(t0). This translation relies
on the equivalence between the stability of a certain matrix and
the feasibility of a linear matrix inequality.

Proposition 1: Let Assumptions (A1), (A2), and (A3) hold.
Then the following statements are equivalent:

i) Algorithm (3) achieves mean-square consensus;
ii) There holds ρ(E[W (0) ⊗ W (0)](J ⊗ J)) < 1, where

J := I − 1
N

11′; (9)

iii) There exists a matrix S > 0 such that

φ (S) :=
M∑

i=1

πiJW (i)JSJ
(
W (i)

)′
J < S, (10)

where πi is defined in (7).
Proof: The proof needs the following lemma.
Lemma 2 (Lemma 2 in [30]): For any G ∈ Cn×n there ex-

ist Gi ∈ Sn
+ , i = 1, 2, 3, 4, such that G = (G1 − G2) + (G3 −

G4)i, where i =
√
−1.

Define the difference between x(tk ) and its average as

d (k) := x (tk ) − 1
N

11′x (tk ) . (11)

Evidently, d(k) = Jx(tk ). Since

X (k) = xmax (k) − 1
N

1′x (tk ) −
[
xmin (tk ) − 1

N
1′x (tk )

]

≤
∣∣∣∣xmax (tk ) − 1

N
1′x (tk )

∣∣∣∣+
∣∣∣∣xmin (tk ) − 1

N
1′x (tk )

∣∣∣∣

≤

√√√√2
N∑

i=1

[
xi (tk ) − 1

N
1′x (tk )

]2

=
√

2 ‖ d (k) ‖

(12)

and

X (k) = N−1/2
√

N(xmax (tk ) − xmin (tk ))2

≥ N−1/2

√√√√ N∑
i=1

[
xi (tk ) − 1

N
1′x (tk )

]2

= N−1/2 ‖ d (k) ‖, (13)

limk→∞E[X2(k)] = 0 is equivalent to limk→∞E‖ d(k) ‖2 = 0.
From the Cauchy-Schwarz inequality, |E[di(k)dj (k)∗]| ≤
E[|di(k)|2 ]1/2E[|dj (k)|2 ]1/2 holds for any 1 ≤ i, j ≤ N,
which furthermore implies the equivalence between
limk→∞E‖ d(k) ‖2 = 0 and limk→∞E[d(k)d(k)∗] = 0. Thus,
to study the mean-square consensus, we only need to focus on
whether E[d(k)d(k)∗] converges to a zero matrix.

Observe that

d (k) = JW (k − 1)x (tk−1)

= JW (k − 1)x (tk−1) −
1
N

JW (k − 1)11′x (tk−1)

= JW (k − 1) d (k − 1) (14)

holds for k = 1, 2, . . ., where the second equality is due to
JW (k)1 = J1 = 0. It entails

E [d (k) d(k)∗] = E [JW (k − 1) d (k − 1)

d(k − 1)∗W (k − 1)′J
]
.

Taking vectorization on both sides yields

vec (E [d (k) d(k)∗])

= E [(JW (k − 1)) ⊗ (JW (k − 1)) vec (d (k1) d(k − 1)∗)]

= (J ⊗ J)E [W (0) ⊗ W (0)] vec (E [d (k − 1) d(k − 1)∗])

= ((J ⊗ J)E [W (0) ⊗ W (0)])kvec (d (0) d(0)∗)

= ((J ⊗ J)E [W (0) ⊗ W (0)])k (J ⊗ J) vec (x (t0)x(t0)
∗)

= (J ⊗ J) (E [W (0) ⊗ W (0)] (J ⊗ J))kvec (x (t0)x(t0)
∗) ,
(15)

where the first equality is based on the property vec(ABC) =
(C ′ ⊗ A)vec(B) for matrices A,B and C of compatible dimen-
sions, and the separation of expectations in the second equality
is due to the independence of the random interconnections.

The implications from one statement to the next are provided
as follows.

(i) ⇒ (ii). If ρ(E[W (0) ⊗ W (0)](J ⊗ J)) ≥ 1, there exist a
number λ with |λ| ≥ 1 and a non-zero vector v ∈ CN2

corre-
sponding to λ satisfying E[W (0) ⊗ W (0)](J ⊗ J)v = λv. Let
v1 , . . . , vl be all the eigenvectors corresponding to the eigen-
value 0 of J ⊗ J . Since E[W (0) ⊗ W (0)](J ⊗ J)vi = 0 for
any i = 1, . . . , l, there holds v �=

∑l
i=1 aivi for any ai ∈ R and

(J ⊗ J)v �= 0. Therefore

lim
k→∞

(J ⊗ J) (E [W (0) ⊗ W (0)] (J ⊗ J))k v = lim
k→∞

λk (J ⊗ J) v

�= 0. (16)

In order to show that mean-square consensus is not achieved for
Algorithm (3), it remains to prove that v can be expressed as
a linear combination of different initial states. Note that there
exist G ∈ CN×N and G1 , . . . , G4 ∈ SN

+ such that v = vec(G)
and G = G2 − G4 + (G3 − G1)i by Lemma 2 (the order of
G1 , G2 , G3 and G4 is immaterial in this lemma). Since each
Gi can be expressed as

Gi =
N∑

j=1

λ
(i)
j u

(i)
j

(
u

(i)
j

)∗
,
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where Gi = U (i)diag{λ(i)
1 , . . . , λ

(i)
N }(U (i))

∗
with λ

(i)
j ∈ σ(Gi)

and U (i) =: [u(i)
1 , . . . , u

(i)
N ] unitary. Then, we have

v =
4∑

i=1

N∑
j=1

−λ
(i)
j iivec

(
u

(i)
j

(
u

(i)
j

)∗)
.

We see from (16) that mean-square consensus is not achieved for
some x(t0) = u

(i)
j . Let w = w0 + iw1 , where w0 , w1 ∈ RN, be

such a u
(i)
j that with x(t0) = w Algorithm (3) achieves mean-

square divergence. When x(t0) = w, we have

vec (E [d (k) d(k)∗]) = (J ⊗ J) (E [W (0) ⊗ W (0)] (J ⊗ J))k

· (w0w
′
0 + w1w

′
1 + iw1w

′
0 − iw0w

′
1) .

From the Cauchy-Schwarz inequality, for any 1 ≤ i, j ≤ N,

|E[di(k)dj (k)∗]| ≤ E[|di(k)|2 ]1/2E[|dj (k)|2 ]1/2 , therefore Al-
gorithm (3) achieves mean-square divergence when x(t0) = w0
or when x(t0) = w1 .

(ii) ⇒ (iii). Denote R := (J ⊗ J)E[W (0) ⊗ W (0)](J ⊗
J). From (ii),

ρ (R) = ρ
(
E [W (0) ⊗ W (0)] (J ⊗ J)2

)

= ρ (E [W (0) ⊗ W (0)] (J ⊗ J)) < 1.

Then, (I − R)−1 exists and is nonsingular, (I − R)−1 =∑∞
j=0 Rj . For any given positive definite matrix V ∈ RN×N,

there corresponds a unique matrix S ∈ RN×N such that

vec (V ) = (I − R) vec (S) . (17)

Then,

vec (V ) = (I − E [(JW (0)J) ⊗ (JW (0)J)]) vec (S)

= vec (S − φ (S)) ,

where φ( · ) is defined in (10), which implies S − φ(S) > 0 by
the one-to-one correspondence of the vectorization operator. The
positive definiteness of S follows from

vec (S) = (I − R)−1vec (V )

=
∞∑

i=0

Ri vec (V )

= vec

( ∞∑
i=0

φi (V )

)
,

implying S =
∑∞

i=0 φi(V ) ≥ V > 0, again by the one-to-one
correspondence of the vectorization operator.

(iii) ⇒ (i). By the hypothesis, there always exists a μ ∈ (0, 1)
satisfying φ(S) < μS. Fix any given X ∈ SN

+ and then choose
a c > 0 satisfying X ≤ cS. Then, by the linearity and non-
decreasing properties of φ(X) in X over the positive semi-
definite cone,

φk (X) ≤ cφk (S) < cφk−1 (μS) = cμφk−1 (S) < · · · < cμk S

holds for all k ∈ N. It leads to limk→∞φk (X) = 0, which means

lim
k→∞

Rkvec (X) = 0. (18)

In light of Lemma 2, for any G ∈ Rn×n there ex-
ist X1 ,X2 ,X3 ,X4 ∈ Sn

+ such that G = (X1 − X2) + (X3 −
X4)i. Then, we see from (18)

lim
k→∞

Rkvec (G)

= lim
k→∞

Rk (vec (X1) − vec (X2) + vec (X3) i − vec (X4) i)

= 0.

Since G is arbitrarily chosen, we have ρ(E[W (0) ⊗ W (0)](J ⊗
J)) = ρ(R) < 1. Then,

lim
k→∞

vec (E [d (k) d(k)∗])

= (J ⊗ J) lim
k→∞

(E [W (0) ⊗ W (0)] (J ⊗ J))k vec (x (t0 ) x(t0 )
∗)

= 0

holds for any x(t0) ∈ RN, which means limk→∞E[d(k)d(k)∗]
= 0. �

The following result holds.
Theorem 2: Let Assumptions (A1), (A2), and (A3) hold. Then

Algorithm (3) achieves mean-square consensus if and only if τ∗ ≤
τ†, where τ† is given by the following quasi-convex optimization
problem:

minimizeτ −τ

subject to S − φ (S) > 0,

S > 0, (19)

where φ is defined in (10).
Proof: Consider the following optimization problem:

minimizeτ −τ

subject to Ψ > 0 (20a)

Y,Z > 0, (20b)

Y − τZ ≥ 0, (20c)

where Ψ is defined in (20), shown at the bottom of the next page.
The problem (20) is a generalized eigenvalue problem, which is
quasiconvex [31]. Next we shall show the equivalence between
(19) and (20).

Necessity: Suppose that there exists a matrix S >
0 such that φ(S) < S holds. First we shall show∑M

i=1 πiJW (i)JSJ(W (i))
′
J < JSJ + 11′. Without loss of

generality, choose for (v1 , . . . , vN) an orthonormal basis of RN

with v1 = 1
N1. Then, any vector 0 �= x ∈ Rn can be expressed as

x =
∑N

i=1 aivi with coefficients a1 , . . . , aN not all 0. We have

x′φ (S)x =

(
N∑

i=2

aivi

)′

φ (S)

(
N∑

i=2

aivi

)

and

x′ (JSJ + 11′)x =

(
N∑

i=2

aivi

)′

S

(
N∑

i=2

aivi

)
+ a2

1 .

Since a1 , . . . , aN are not all 0 and φ(S) < S, there holds∑M
i=1 πiJW (i)JSJ(W (i))

′
J < JSJ + 11′. Finally, let Z = S

and Y = τ∗S. By Schur complement lemma, we see that (20a)
and (20c) hold.
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Sufficiency: Suppose that there exist Y and Z such that (20a),
(20b), and (20c) hold. According to Schur complement lemma,
(20a) is equivalent to

JZJ + 11′ −
M∑

i=1

πi

(
JZ − JL(i)JY

)
Z−1(JZ − JL(i)JY

)∗
> 0,

which gives

JZJ + 11′

>
M∑

i=1

πi

(
JZ − JL(i)JY

)
Z−1(JZ − JL(i)JY

)∗

≥
M∑

i=1

πi

[
τ∗JL(i)JY J

(
L(i))′J − JY J

(
L(i))′J − JL(i)JY J

]

+ JZJ

≥ JZJ − τ∗
−1JY J + τ∗

−1φ (Y ) , (21)

where the second inequality holds by substituting Z−1 with
τ∗Y

−1 in accordance with (20c). Therefore, it leads to JY J +
τ∗11′ > φ(Y ). Letting S = JY J + τ∗11′, we have

φ (Y ) =
M∑

i=1

πiJW (i)J (JY J + τ∗11′)J
(
W (i)

)′
J = φ (S)

and then S > φ(S). In addition, the positive definiteness of S
can be seen from the following lemma.

Lemma 3: There holds JMJ + ε11′ > 0 for all M > 0 and
ε > 0.

Proof: Choose for (v1 , . . . , vN) an orthonormal basis with
v1 = 1

N1. For any nonzero vector x =
∑N

i=1 aivi ,

x′ (JMJ + ε11′)x =

(
N∑

i=2

aivi

)′

M

(
N∑

i=2

aivi

)
+ εa2

1 .

Since a1 , . . . , aN are not all 0 and M > 0, we have x′(JMJ +
ε11′)x > 0. �

By Proposition 1, Algorithm (3) achieves mean-square consen-
sus if and only if there exists S > 0 such that φ(S) < S, which
completes the proof. �

The optimization problem (19) can be efficiently solved by
interior-point algorithms. Many codes, which are based on inte-
rior point methods, are available, such as CSDP, SeDuMi, SDPT3,
DSDP, SDPA [32]. The computational complexity of solving (19)
is in O(N3) by using, for instance, the algorithm in [33], which
is rather efficient for large-scale graphs.

C. Almost Sure Consensus/Divergence

In this part, we focus on the impact of sampling intervals on al-
most sure consensus/divergence of Algorithm (3). The following
theorem gives the relationships between τ∗ and almost sure con-
sensus/divergence: almost sure divergence is achieved when τ∗
exceeds an upper bound and almost sure consensus is guaranteed
when τ∗ is sufficiently small. Also note these two boundaries are
not equal in general.

Theorem 3: Let Assumptions (A1), (A2), and (A3) hold.
i) If τ∗ ≤ τ† with τ† given in Theorem 2, Algorithm (3)

achieves almost sure consensus.
ii) If τ∗ > τ
 , where τ
 ∈ R+ is given by

τ
 :=min
{

τ : log
2N (τ − 1)

N − 1
≥ (1 − q) log (2N)

q∗q

}

∨min
{

τ : λm in

(
τ
(
L(i))′JL(i) − JL(i) −

(
L(i))′J) ≥ 0,

∀L(i) ∈ L
}

with q∗ := min{(1 − q)|Ni |+ |Nj | : (j, i) ∈ E}, Algorithm
(3) diverges almost surely for any initial state x(t0) ∈ RN

except x(t0) ⊥ 1.
Proof: We start by presenting supporting lemmas.
Lemma 4 (Lemma (5.6.10) in [34]): Let A ∈ Cn×n and ε >

0 be given. There is a matrix norm ‖ · ‖† such that ρ(A) ≤
‖ A ‖† ≤ ρ(A) + ε.

Lemma 5 (Borel-Cantelli Lemma): Let (S ,S, μ) be a prob-
ability space. Assume that events Ai ∈ S for all i ∈ N. If∑∞

i=0 μ(Ai) < ∞, then μ(Ai i.o.) = 0, where “Ai i.o.” means
Ai occurs infinitely often. In addition, assuming that events
Ai , i ∈ N, are independent, then

∑∞
i=0 μ(Ai) = ∞ implies

μ(Ai i.o.) = 1.
Proof of (i): Note that

E
[
‖ d (k) ‖2

]
= Tr (E [d (k) d(k)∗])

≤ N1/2 ∥∥vec (E [d (k) d(k)∗])
∥∥ .

The inequality results from the fact that, for any
X := [xij ] ∈ Sn

+ , ‖ vec(X) ‖2 =
∑n

i=1
∑n

j=1 x2
ij ≥

∑n
i=1 x2

ii

≥ 1
n (
∑n

i=1 xii)
2 = 1

n (Tr(X))2 . If τ∗ < τ† or equivalently
ρ(E[W (0) ⊗ W (0)](J ⊗ J)) < 1 by Theorem 2, there exists a
matrix norm ‖ · ‖† such that ‖ E[W (0) ⊗ W (0)](J ⊗ J) ‖† <
λ < 1 by Lemma 4. Moreover, by the equivalence of norms on a
finite-dimensional vector space, for the two norms ‖ · ‖ and ‖ · ‖†,
there exists a real number c ∈ R+ implying ‖ X ‖≤ c ‖ X ‖†
for all X ∈ Rn×n . From the forgoing observations, (15) and the

Ψ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

JZJ + 11′ √
π1
(
JZ − JL(1)JY

)
· · · √

πM
(
JZ − JL(M)JY

)
∗ Z · · · 0

...
...

. . .
...

∗ ∗ · · · Z

⎤
⎥⎥⎥⎥⎥⎥⎦

(20)

with ∗ ’ s standing for entries that are the Hermitian conjugates of entries in the upper triangular part.
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submultiplicativity of a matrix norm,

E[‖ d(k)‖2 ]

≤ N1/2 ‖ (J ⊗ J)(E[W (0) ⊗ W (0)]

×(J ⊗ J))kvec(x(t0)x(t0)
∗) ‖

≤ N1/2c
∥∥∥(E[W (0) ⊗ W (0)](J ⊗ J))k

∥∥∥
†

∥∥vec(x(t0)x(t0)
∗)
∥∥

≤ N1/2c ‖E[W (0) ⊗ W (0)](J ⊗ J)‖k
†
∥∥vec(x(t0)x(t0)

∗)
∥∥

< cλk N1/2 ∥∥vec(x(t0)x(t0)
∗)
∥∥ .

Therefore,

∞∑
k=0

E
[
‖ d (k) ‖2 ] < c (1 − λ)−1 N1/2 ‖vec (x (t0 ) x(t0 )

∗)‖ < ∞,

(22)
together with Markov’s inequality resulting in that,

∞∑
k=0

P (‖ d (k) ‖> δ) ≤
(
1/δ2) ∞∑

k=0

E
[
‖ d (k) ‖2

]
< ∞

holds for any δ > 0. According to Lemma 5, limk→∞ ‖
d(k) ‖= 0 almost surely for any initial state x(t0) ∈ RN. Then,
P (limk→∞X(k) = 0) = 1 follows from (12) and (13).

Proof of (ii): Intuitively, the key point to show almost sure
divergence is to show the repulsion effect during state update can
beat the attraction effect in a long run. To prove (ii), we partition
the rest of the proof into three steps. In the first step, we study a
best-case attraction effect for any given sequence of Gk ’s. In the
second step, we construct a specific event, each sample point of
which contributes at least a certain amount of repulsion effect. At
the third step, the strong law of large numbers is applied to derive
the almost sure divergence from the averages of some random
events. To meet the i.i.d. assumption of the strong law of large
numbers used in Step 3, we introduce auxiliary random variables
in the second step.

Step 1. First of all, observe that for all k ∈ N and ω ∈ G N

‖ d (k + 1, ω) ‖2 = d(k, ω)∗W (k, ω)′JJW (k, ω) d (k, ω)

≥ min
‖v ‖= 1 ,

v ⊥1

∥∥v∗W (k, ω)′JW (k, ω) v
∥∥ ‖ d (k, ω) ‖2 ,

where the inequality holds because d(k, ω) ⊥ 1. If
λmin(W (k, ω)′JW (k, ω) + 1

N11′) ≥ 1 for any k ∈ N and
ω ∈ G N , then min ‖v ‖= 1 ,

v ⊥1
‖ v∗W (k, ω)′JW (k, ω)v ‖≥ 1,

which together with (12) and (13) implies that

P

(
X2 (k) ≥ X2 (k − 1)

2N

)
= 1 (23)

holds for all k ∈ N. Therefore, X(k) > 0 for all k ∈ N provided
that X(0) > 0. The following random variables are well defined:

ξ (k) :=
X2 (k + 1)

X2 (k)
, k ∈ N. (24)

One condition guaranteeing λmin(W (k, ω)′JW (k, ω) +
1
N11′) ≥ 1 is established as follows. Note that for any L(i) ∈ L ,

λmin

(
W (k, ω)′JW (k, ω) +

1
N

11′
)

= λmin

(
τ 2
(
L(i)

)′
JL(i) − τJL(i) − τ

(
L(i)

)′
J + I

)

= τλmin

(
τ
(
L(i)

)′
JL(i) − JL(i) −

(
L(i)

)′
J

)
+ 1.

Introduce

τ = min
{

τ : λmin

(
τ
(
L(i)

)′
JL(i) − JL(i) −

(
L(i)

)′
J

)

≥ 0, ∀L(i) ∈ L
}

. (25)

A basic but vital observation is that τ < ∞, which makes τ well
defined. To see this, choose a positive number τi for any given
L(i) ∈ L . If λmin(τi(L(i))

′
JL(i) − JL(i) − (L(i))

′
J) ≥ 0 for

any L(i) , we are done. Otherwise let v ∈ CN with ‖ v ‖= 1 be
any vector such that

v∗
(

τi

(
L(i)

)′
JL(i) − JL(i) −

(
L(i)

)′
J

)
v < 0. (26)

Using the property ker((L(i))
′
JL(i)) = ker(JL(i)), we deduce

from (26) v /∈ ker(JL(i)) and v∗(L(i))
′
JL(i)v > 0. Let τi take

a new value satisfying

τi >
max‖v‖=1v

∗
(
JL(i) +

(
L(i)

)′
J
)

v

min‖v‖=1,v /∈ker(J L ( i ) )v
∗
(
L(i)

)′
JL(i)v

.

Then, λmin(τi(L(i))
′
JL(i) − JL(i) − (L(i))

′
J) ≥ 0. Finally,

letting τ0 = max1≤i≤nτi , we have τ ≤ τ0 < ∞. According to

Weyl Theorem (Theorem 4.3.1 in [34]), λmin(τ(L(i))
′
JL(i) −

JL(i) − (L(i))
′
J) ≥ 0 whenever τ > τ for each L(i) ∈ L .

Recalling that L(k, ω) ∈ L , we see that τ > τ guarantees
λmin(W (k, ω)′JW (k, ω) + 1

N11′) ≥ 1 for all k ∈ N and ω ∈
G N . Step 2. First, we propose the following claim.

Claim. There always exist two (random) nodes i, j ∈ V at each
time k such that (j, i) ∈ E and |xi(tk ) − xj (tk )| ≥ 1

N−1 X(k).
To prove the claim, fix any time instance k. With-

out loss of generality, index all the nodes in the graph
such that xmin(tk ) = xi1 (tk ) ≤ xi2 (tk ) ≤ · · · ≤ xiN(tk ) =
xmax(tk ). Then, there at least exists a node in ∈ {i2 , . . . , iN} sat-
isfying xin

(tk ) − xin −1 (tk ) ≥ 1
N−1 X(k); otherwise xiN(tk ) −

xi1 (tk ) =
∑N

l=2(xil
(tk ) − xil−1 (tk )) < X(k), reaching a con-

tradiction. If |xi(tk ) − xj (tk )| < 1
N−1 X(k) for all (j, i) ∈ E,

then neither (i, j) /∈ E nor (j, i) /∈ E for any i = i1 , . . . , in−1
and j = in , . . . , iN, since xin

(tk ) − xin −1 (tk ) ≥ 1
N−1 X(k), con-

tradicting with the hypothesis that G has a directed spanning tree.
In view of this claim, for each ω ∈ G N , we choose two

nodes ik (ω), jk (ω) ∈ V at time k according to G0 , . . . ,Gk−1
such that (jk (ω), ik (ω)) ∈ E and |xik (ω )(tk ) − xjk (ω )(tk )| ≥

1
N−1 X(k, ω). The dependence of the node selections on specific
sample paths gives rise to a challenge in the analysis—without
independence, it is difficult to apply the strong law of num-
bers at Step 3. To get rid of this, we introduce an additional
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sequence of random variables. Let {zk}k∈N be a sequence of

i.i.d. random variables defined on ((0, 1)N , (B(0, 1))N ,l), where
B(0, 1) denotes the Borel algebra on (0, 1), with zk (ζ) = ζk

for all ζ ∈ (0, 1)N and each zk uniformly distributed in (0, 1).
Let z0 , z1 , . . . and G0 ,G1 , . . . be independent. Formally, we
are allowed to define a product probability space (S ,S, μ)
where S = G N × (0, 1)N , S is the σ-algebra generated by
{A × B : A ∈ F ,B ∈ (B(0, 1))N}, and μ is the probabil-
ity measure satisfying μ(A × B) = P (A )l(B). Define Sk =
σ((G0 , z0), . . . , (Gk , zk )). Introduce a sequence of events asso-
ciated with ik (ω), jk (ω) and zk :

D (k) = {∪ω∈G N (ω × Bk (ω)) :

Nik (ω ) (k, ω) = {jk (ω)} ,Njk (ω ) (k, ω) = ∅

}

with

Bk (ω) =
{

ζ ∈ (0, 1)N : zk (ζ) < q∗/(1 − q)|Ni k (ω ) |+ |Nj k (ω ) |
}

.

Since ik (ω), jk (ω) ∈ Fk−1 , one can verify D(k) ∈ Sk . If
τ∗ > 1, for all (ω, ζ) ∈ D(k) and k ∈ N,

X (k + 1, ω) ≥ |xik (ω ) (tk+1) − xjk (ω ) (tk+1) |

= (τ∗ − 1) |xik (ω ) (tk ) − xjk (ω ) (tk ) |

≥ τ∗ − 1
N − 1

X (k, ω) . (27)

Direct calculation yields

μ ((ω, ζ) ∈ D (k)) =
q∗q

1 − q
. (28)

Step 3. Now we define random variables

M (k) =

{
τ∗−1
N−1 , if (ω, ζ) ∈ D (k) ,

1
2N , otherwise;

(29)

which together with (27) leads to

μ

(
ξk =

X2 (k + 1)
X2 (k)

≥ M2 (k)
)

= 1.

Therefore, μ(
∏t

k=0 ξk = X2 (t+1)
X2 (0) ≥

∏t
k=0 M2(k)) = 1, which

gives

μ

(
log X (t + 1) − log X (0) ≥

t∑
k=0

log M (k)

)
= 1. (30)

Since each node samples the neighbors independently, where the
“independence” is in both spatial and temporal sense (Assump-
tion (A2)), therefore, for any k ∈ N,

μ ((ω, ζ) ∈ D (k) | Sk−1) =
p∗p

1 − p
= μ ((ω, ζ) ∈ D (k)) ,

indicating that M(k)’s are independent random variables for
D(0), . . . ,D(k − 1) ∈ Sk−1 . By induction, we eventually have
{M(k)}k∈N are i.i.d. with the mean computed as

E [log M (k)] =
q∗q

1 − q
log

τ∗ − 1
N − 1

+
(

1 − q∗q

1 − q

)
log

1
2N

:= M(τ∗). (31)

Additionally, since M(k)’s have uniformly bounded covariances,
Kolmogorov’s strong law of large numbers [35] shows that

μ

(
lim
t→∞

1
t

t∑
k=0

log M (k) =m(τ∗)

)
= 1, (32)

which together with (30) implies that, when m(τ∗)>0,

P (lim infk→∞X(k) = ∞) = 1. Notice that m(τ∗) is increasing in
τ∗. Defining τ� = inf{τ :m(τ∗)>0} and choosing τ∗ > τ ∨ τ� :=
τ
 , the conclusion follows. �

IV. MARKOVIAN RANDOM NETWORKS

In this section, we continue to investigate sampled-data con-
sensus when each node samples the neighbors by following a
Markov chain. The following assumption is imposed.

(A4) Independently among (j, i) ∈ E, the random variables
1{(j,i)∈Ek }, k = 0, 1, . . . , are a binary Markov chain
with the failure rateP (1{(j,i)∈Ek + 1 } = 0 | 1{(j,i)∈Ek } =
1) := p and the recovery rate P (1{(j,i)∈Ek + 1 } = 1 |
1{(j,i)∈Ek } = 0) := q positive and strictly less than one.

Note that the techniques developed in this section also apply
when p(i) and q(i) vary depending on the node index i.

Under Assumption (A4), {L(k)}k∈N are a sequence of ran-
dom variables taking values from L , governed by a finite-state
time-homogeneous Markov chain. Compared with random net-
works, Markovian networks allow each link to have “memory”.
The transition probability of {L(k)}k∈N is induced from the
transition of edges between the “on” state and the “off” state,
which is

P
(
L (k) = L(j ) | L (k − 1) = L(i)) = ps1 (1 − p)s2 qs3 (1 − q)s4

:= πij . (33)

where

s1 =
∑

(n,m )∈E

1{
l
( i )
m n �=0,l

( j )
m n =0

} , s2 =
∑

(n,m )∈E

1{
l
( i )
m n �=0,l

( j )
m n �=0

} ,

s3 =
∑

(n,m )∈E

1{
l
( i )
m n =0,l

( j )
m n �=0

}

and

s4 =
∑

(n,m )∈E

1{
l
( i )
m n =0,l

( j )
m n =0

} .

For convenience, we denote Π := [πij ] as the transition proba-
bility matrix of L(k). Again, W (k) inherits the same distribution
from L(k). The positiveness of the recovery and failure rates in
Assumption (A4) makes L(k) an ergodic Markov chain and Π a
positive matrix.

A. Conjunction of Various Consensus Metrics

In this part, we show that an analog of Theorem 1 holds over a
Markovian random network. From the probabilistic point of view,
the difference between the independent model and the Markovian
model can be interpreted using a finite permutation argument as
follows. Let q be a finite permutation from N onto N such that
q(i) �=i for finitely many i. For any given ω ∈ G N , we define
a finite permutation as (qω )i = ωq(i) for all i ∈ N. In the i.i.d.
model, the probability measure is invariant with respect to a finite
permutation of the sample path, i.e., P (ω ∈ F) = P (ω ∈qF);
while in the Markovian model this property is absent because
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of the Markov property. Nevertheless, if τk = τ∗ ∈ (0, 1/Dmax)
for all k, any finite permutations does not play any key role
in whether or not X(k) converges in expectation for Algorithm
(3). Moreover, Lemma 1 guarantees mean-square consensus, and
almost sure consensus regardless of the random network model.

Theorem 4: Let Assumptions (A1), (A3), and (A4) hold. Then
expectation consensus, mean-square consensus, and almost sure
consensus are achieved for Algorithm (3) if τ∗ ∈ (0, 1/Dmax).

Proof: The proof is similar to that of Theorem 1. Here we only
provide a sketch. Fix a directed spanning tree GT of graph G and a
sampling time tk . We choose i1 , . . . , iN and define M1 , . . . ,MN
in sequel by the following iterated algorithm: 1) Set i1 as the root
node of GT , M1 := {i1} and l = 2; 2) Choose a node il ∈ V
such that there exists a node j ∈ Ml−1 satisfying (j, il) ∈ GT

and il /∈ Ml−1 ; 3) Update Ml := Ml−1 ∪ {il}; 4) If l ≤ N, set
l = l + 1 and go to step 2); otherwise stop. Consider a sequence
of events E2 , . . . ,EN where El := {L(k + l − 1) ∈ {L(j ) ∈ L :
l
(j )
il il−1

�= 0}} for l = 2, 3, . . . , N. If E2 , . . . ,EN sequentially oc-
cur, similar to the proof of Theorem 1, we see that

X (k + N − 1) ≤
(

1 − 1
2
ηN−1

)
X (k) (34)

where η := (τ∗) ∧ (1 − τ∗/Dmax) > 0. Then, we estimate the
probability of the sequential occurrence of E2 , . . . ,E3 by

P
(
1∩N

i = 2 Ei
= 1 | L (k − 1) ∈ L

)

= P (1EN = 1 | 1EN−1 = 1) · · ·P (1E2 = 1 | L (k − 1) ∈ L )

≥ πN−1 ,

where π := min1≤i,j≤Mπij > 0. Therefore,

E [X (k + N − 1)]

=
∑

γ=0,1

E
[
P
(
1∩N

i = 2 Ei
= γ | L (k − 1)

)

× E
[
X (k + N − 1) | 1∩N

i = 2 Ei
= γ, L (k − 1)

]]

≤
(
1 − πN−1)E [E [X (k) | L (k − 1)]]

+ πN−1
(

1 − 1
2
ηN−1

)
E [E [X (k) | L (k − 1)]]

=
(

1 − 1
2
(πη)N−1

)
E [X (k)] ,

which implies limk→∞E[X(k)] = 0 and therefore consensus in
expectation is achieved. Finally, the conclusion follows from
Lemma 1. �

Remark 3: The assumption of a uniform inter-sampling in-
terval τk simplifies the notations used in Theorems 1 and 4.
It should be emphasized that the techniques used in the proof
of Theorems 1 and 4 also apply to the non-uniform inter-
sampling interval case. To make the conclusion hold, we require
limk→∞ log(E[X(k(N − 1))]/E[X(0)]) = −∞, which can be
guaranteed by

∑∞
k=0

∏N−2
j=0 ηk+j = ∞ with ηk = (τk ) ∧ (1 −

(N − 1)τk ) for k ∈ N. This is seen from (8) and the fact that,
for a sequence {ak}k∈N with ak ∈ [0, 1),

∑∞
k=1 ak = ∞ if and

only if
∏∞

k=1(1 − ak ) = 0 [36].

B. The Mean-Square Consensus Threshold

Now, we are interested in establishing a necessary and suffi-
cient condition on τ∗ for mean-square consensus of Algorithm
(3). We first present an implicit condition in terms of the spectral
radius of a certain matrix. Then, this stability condition is trans-
lated to a threshold on τ∗. The analysis in this section is based on
the techniques using in the proof of Proposition 1 as well as the
tools from the theory of Markov jump linear systems.

Proposition 2: Let Assumptions (A1), (A3), and (A4) hold
and, for each (j, i) ∈ E, let 1{(j,i)∈E0 } start at any initial distri-
bution. Then the following statements are equivalent:

i) Algorithm (3) achieves mean-square consensus;
ii) There holds ρ(ΓΘ) < 1, where

Γ := diag
(
W (1) ⊗ W (1) , . . . ,W (M) ⊗ W (M)

)
(35)

and

Θ := Π′ ⊗ (J ⊗ J) (36)

with J defined in (9) and Π defined in (33);
iii) There exist matrices S1 , . . . , SM > 0 such that

ϕj (S) :=
M∑

i=1

πijJW (j )JSiJ
(
W (j )

)′
J < Sj (37)

holds for all 1 ≤ j ≤ M, where S := (S1 , . . . , SM).
Proof: Recall d(k) from (11). Obviously, (12) to (14) still

hold. In what follows, we consider a linear space over the
complex field C: HM := {(M1 , . . . ,MM) : Mi ∈ CN×N, i =
1, . . . , M} and a convex cone in HM: HM

+ := {(G1 , . . . , GM) :
Gi ∈ S+

N , i = 1, . . . , M}. Define

H (k) :=
(
d (k) d(k)∗1{L (k )=L ( 1 )}, . . . , d (k) d(k)∗1{L (k )=L ( M)}

)
.

Since

E [d (k) d(k)∗] = E [H (k)] [IN, . . . , IN︸ ︷︷ ︸
M times

]′,

it follows from (12) and (13) that limk→∞E[X2(k)] = 0 is equiv-
alent to limk→∞E[H(k)] = 0. Taking vectorization on both sides
of E[H(k)] gives

vec (E [H (k)])

= Π′ ⊗

⎡
⎢⎣
(
JW (1)

)
⊗
(
JW (1)

)
. . . (

JW (M)
)
⊗
(
JW (M)

)

⎤
⎥⎦

·

⎡
⎢⎢⎢⎣

vec
(
E
[
d (k − 1) d(k − 1)∗1{L (k−1)=L ( 1 )}

])
...

vec
(
E
[
d (k − 1) d(k − 1)∗1{L (k−1)=L ( M)}

])

⎤
⎥⎥⎥⎦

= ((Π′ ⊗ IN2 ) (IM ⊗ (J ⊗ J)) Γ) vec (E [H (k − 1)])

= ((Π′ ⊗ IN2 ) (IM ⊗ (J ⊗ J)) Γ)k vec (E [H (0)])

= ((IM ⊗ (J ⊗ J)) (Π′ ⊗ IN2 ) Γ)k (IM ⊗ (J ⊗ J)) vec (E [H (0)])

= (IM ⊗ (J ⊗ J)) ((Π′ ⊗ IN2 ) Γ (IM ⊗ (J ⊗ J)))k

·vec (E [h(x (t0 ) ,L (0))]) ,
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where

h (x (t0) , L (0))

:=
(
x (t0)x(t0)

∗1{L(0)=L ( 1 )}, . . . , x (t0)x(t0)
∗1{L(0)=L ( M)}

)
.

The fourth equality holds because (A ⊗ B)(C ⊗ D) = (AC) ⊗
(BD) for matrices A,B,C and D of compatible dimensions. In
addition, ρ((P ′ ⊗ IN2 )Γ(IM ⊗ (J ⊗ J))) = ρ(ΓΘ).

It follows from Lemma 2 that for any H ∈ HM, there exist
H1 , . . . ,H4 ∈ HM

+ such that H = (H1 − H2) + (H3 − H4)i.
Moreover, for each Hi = (G(i)

1 , . . . , G
(i)
M ),

Hi =
M∑

m=1

N∑
n=1

λ(i)
m,n h

(
u

( i )
m , n ,L (m )

)

with U
(i)
m =: [u(i)

m,1 , . . . , u
(i)
m,N] unitary and G

(i)
m =

U
(i)
m diag{λ(i)

m,1 , . . . , λ
(i)
m,N}(U

(i)
m )

∗
for m = 1, . . . , M, which

means that, for any H ∈ HM, vec(H) can be expressed as a
linear combination of different initial states.

The rest of the proof follows from the arguments used in
the proof of Theorem 1 and the mean-square stability theory
of Markov jump linear systems ([37], Theorem 3.9).�

The following theorem holds, analogous to Theorem 2. The
proof is omitted.

Theorem 5: Let Assumptions (A1), (A3), and (A4) hold. Then
Algorithm (3) achieves mean-square consensus if and only if τ∗ ≤
τ̃†, where τ̃† is given by the following quasi-convex optimization
problem:

minimizeτ −τ

subject to Sj − ϕj (S) > 0,

Sj > 0, j = 1, . . . , M, (38)

where S := (S1 , . . . , SM) and ϕj is defined in (37).
To solve the optimization problem (38), it has a complexity

O(N32|E |) by using interior-point algorithms [33]. In general,
solving (38) is computational intractable for large-scale networks.
More efficient approximate algorithms will be left as a future
work.

C. Almost Sure Consensus/Divergence

In this part, we explore the almost sure consensus/divergence
condition for Algorithm (3) over Markovian random networks.
The following theorem exhibits a correlation between τ∗ and the
asymptotic behavior of every sample path, that is, a small τ∗
guarantees almost sure consensus while a large τ∗ tends to result
in almost sure divergence. In the following theorem, the almost
sure divergence analysis is restricted to complete graphs. The
assumption of complete graph simplifies the analysis. We believe
that the techniques used in developing almost sure divergence
result in Theorem 6 can also deal with generic directed graphs.
We plan to remove this restriction and consider more general
graphs in future work.

Theorem 6: Let Assumptions (A1), (A3), and (A4) hold and,
for each (j, i) ∈ E. Let 1{(j,i)∈E0 } start at any initial distribution.

i) If τ∗ ≤ τ̃†, then Algorithm (3) achieves almost sure con-
sensus.

ii) If G is a complete graph and τ∗ > τ̃
 , where τ̃
 is given by

τ̃
 := min
{

τ : q̃∗ log
2N (τ − 1)

N − 1
+ log

1
2N

≥ 0
}

∨min
{

τ : λm in

(
τ
(
L(i))′JL(i) − JL(i) −

(
L(i))′J)≥ 0,

∀L(i) ∈ L
}

with q̃∗ := (1 − p) ∧ q, then Algorithm (3) diverges almost
surely for any initial state x(t0) ∈ RN except x(t0) ⊥ 1.

Proof: To show (i), note that

E
[
‖ d (k) ‖2

]
= Tr

⎛
⎝E [H (k)] [IN, . . . , IN︸ ︷︷ ︸

M times

]′
⎞
⎠

≤ (MN)1/2 ‖vec (E [H (k)])‖ .

When ρ(ΓΘ) < 1, by using the same argument as in (22), we
know that

∑∞
k=0 E[‖ d(k) ‖2 ] < ∞ holds for any initial state

x(t0) ∈ RN and any initial distribution of 1{(j,i)∈E0 } for each
(j, i) ∈ E. By Markov’s inequality and Lemma 5, limk→∞ ‖
d(k) ‖= 0 almost surely.

Next, we shall prove (ii). Similar to the proof of Theorem 3,
the analysis is divided into three steps. Step 1. Suppose τ > τ ,
where τ ∈ R+ is defined in (25). Adopting the analysis used in
the proof of Theorem 3, we define ξ(k) as in (24) and conclude
that (23) holds for all k ∈ N.

Step 2. In the first place, for each ω ∈ G N , we choose two (ran-
dom) nodes ik (ω), jk (ω) ∈ V at time k such that |xik (ω )(tk ) −
xjk (ω )(tk )| = X(k, ω). Let {zk}k∈N be a sequence of i.i.d. ran-

dom variables defined on ((0, 1)N , (B(0, 1))N ,l) with zk (ζ) =
ζk for all ζ ∈ (0, 1)N and each zk uniformly distributed in
(0, 1), and let z0 , z1 , . . . and G0 ,G1 , . . . be independent. For-
mally, we are allowed to define a product probability space
(S ,S, μ) with μ the product probability measure satisfying
μ(A × B) = P (A )l(B) for any A ∈ F and B ∈ (B(0, 1))N .
Define Sk = σ((G0 , z0), . . . , (Gk , zk )). Introduce a sequence of
events associated with ik (ω), jk (ω) and zk :

D (k) = {∪ω∈G N (ω × Bk (ω)) : (jk (ω) , ik (ω)) ∈ Ek}

with Bk (ω) given by

Bk (ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
ζ ∈ (0, 1)N : zk (ζ) < ((1 − p) ∧ q) / (1 − p)

}
,

if (jk (ω) , ik (ω)) ∈ Ek−1 (ω) ;{
ζ ∈ (0, 1)N : zk (ζ) < ((1 − p) ∧ q) /q

}
,

if (jk (ω) , ik (ω)) /∈ Ek−1 (ω) .

We have the following claim due to a complete underlying
graph G.

Claim. Suppose τ∗ > 1. There holds X(k + 1, ω) ≥ (τ∗ −
1)X(k, ω) for all (ω, ζ) ∈ D(k) and k ∈ N.

Step 3. We define random variables

M (k) =

{
τ∗−1
N−1 , if (ω, ζ) ∈ D (k) ;
1

2N , otherwise.
(39)



4490 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 17, SEPTEMBER 1, 2016

Fig. 1. A underlying graph G consisting of four nodes.

Similar to the proof of Theorem 3, for any t ∈ N,

μ

(
log X (t + 1) − log X (0) ≥

t∑
k=0

log M (k)

)
= 1. (40)

Since each node independently samples among its neighbors, for
any k ∈ N,

μ

(
(ω, ζ) ∈ D (k) | Sk−1

)
= (1 − p) ∧ q = μ ((ω, ζ) ∈ D (k))

:= q̃∗,

indicating that M(k)’s are independent random variables for
D(0), . . . ,D(k − 1) ∈ Sk−1 . By induction, we eventually have
{M(k)}k∈N are i.i.d. with the mean computed as

E [log M (k)] ≥ q̃∗ log
τ∗ − 1
N − 1

+ (1 − q̃∗) log
1

2N
:= m̃ (τ∗)

(41)
In addition, since M(k)’s have uniformly bounded covariances,
again by Kolmogorov strong law of large numbers [35],

μ

(
lim
t→∞

1
t

t∑
k=0

log M (k) = E [log M (k)]

)
= 1, (42)

together with (30) implying that, when m̃(τ∗) > 0,
P (liminfk→∞X(k) = ∞) = 1. Notice that m̃(τ∗) is in-
creasing in τ∗. The proof is completed by defining
τ̃� = inf{τ : m̃(τ∗) > 0} and choosing τ∗ > τ ∨ τ̃� := τ̃
 . �

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to validate the
theoretical results. We first illustrate the existence of the threshold
on τ∗, which decides the mean-square convergence or divergence
(see Theorems 2 and 5). We then discuss and illustrate how the
threshold depends on the number of nodes with cyclic underlying
graphs, for i.i.d. and Markovian network models, respectively.

A. Mean-Square Convergence vs. Divergence

We consider a network consisting of N = 4 nodes in-
dexed by V = {v1 , v2 , v3 , v4}. Let E = {(v1 , v2), (v2 , v3),
(v3 , v2), (v3 , v4)}. The underlying graph G = (V,E) is illus-
trated in Fig. 1. Evidently, G has a directed spanning tree. The
random variables 1{(j,i)∈Ek }, (j, i) ∈ E and k ∈ N, are i.i.d.
Bernoulli ones with P ((j, i) ∈ Ek ) = 0.5. We choose a uniform
inter-sampling interval, i.e., τk = τ∗ for all k. Then Algorithm
(3) is given by

x (tk+1) = [I − τ∗L (k)]x (tk ) . (43)

Fig. 2. The evolutions of E[X2 (k)] for different sample periods over an
independent random network with q = 0.5. In the upper figure, E[X2 (k)]
converges to 0 as k → ∞when τ∗ = 1. In the bottom figure,E[X2 (k)] diverges
as k → ∞ when τ∗ = 1.14.

Fig. 3. The relationship between N and τ† for a cycle underlying graph
over independent random networks (q = 0.6). For N = 3, two sample periods,
τ∗ = 1.1 (the red block) and τ∗ = 1.2 (the blue dot), are chosen to illustrate the
convergence and divergence behaviors of E[X2 (k)] respectively.

According to Theorem 2, we compute that system (43) achieves
consensus in mean square if and only if τ∗ ≤ 1.07. We next
illustrate this conclusion using simulations. Choose x(t0) =
[5 2 1 1]′, run 106 Monte Carlo simulations, and then use the
average as an approximation of E[X2(k)]. Fig. 2 illustrates that
E[X2(k)] converges to 0 as k becomes large when τ∗ = 1 and di-
verges as k increases when τ∗ = 1.14, validating the conclusion
of Theorem 2.

B. Independent and Markovian Random Graphs

Consider a network of N nodes connected by a directed cycle
graph as the underlying graph. We choose q = 0.6 for the i.i.d.
model. The relationship between N and the critical sampling in-
terval τ† is plotted in Fig. 3. As for the Markovian model, we
choose p = 0.4 and q = 0.7. The relationship between N and
τ̃† is plotted in Fig. 4. Note that each 1{(j,i)∈Ek } has a station-
ary distribution identical to the distribution of 1{(j,i)∈Ek } in the
independent model.

VI. CONCLUSION

In this paper, we have considered sampled-data consensus
problem over random networks. We first defined three types of
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Fig. 4. The relationship between N and τ̃† for a cycle underlying graph
over Markovian random networks (p = 0.6, q = 0.9). For N = 3, two sample
periods, τ∗ = 1.0 (the red block) and τ∗ = 1.1 (the blue dot), are chosen to
illustrate the convergence and divergence behaviors of E[X2 (k)] respectively.

TABLE I
SUMMARY OF THE CONSENSUS RESULTS FOR INDEPENDENT AND

MARKOVIAN RANDOM NETWORKS

Mean-square Mean-square Almost Sure Almost Sure
Consensue Divergence Consensue Divergence

Independent Sampling τ∗ ≤ τ† τ∗ > τ† τ∗ ≤ τ† τ∗ > τ


Markovian Sampling τ∗ ≤ τ̃† τ∗ > τ̃† τ∗ ≤ τ̃† τ∗ > τ̃


random consensus notions and established the equivalence of
these consensus notions provided a sufficient condition in terms
of the inter-sampling interval and the maximum degree of the
underlying graph. Under this condition, three types of consensus
were shown to be simultaneously achieved if the underlying graph
contains a directed spanning tree. Both independent and Marko-
vian random networks are then considered. In either network
model, necessary and sufficient conditions for mean-square con-
sensus were derived in terms of the inter-sampling interval. Suf-
ficient conditions for almost sure convergence/divergence were
also provided, respectively, in terms of the size of inter-sampling
interval. The results for the independent and Markovian random
networks are summarized in Table I. It is surprising that the phase
transition phenomenon of mean-square consensus exists for both
types of random networks.
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