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Finite-Time Convergent Gossiping
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Abstract—Gossip algorithms are widely used in modern dis-
tributed systems, with applications ranging from sensor networks
and peer-to-peer networks to mobile vehicle networks and social
networks. A tremendous research effort has been devoted to
analyzing and improving the asymptotic rate of convergence for
gossip algorithms. In this work we study finite-time convergence
of deterministic gossiping. We show that there exists a symmetric
gossip algorithm that converges in finite time if and only if the
number of network nodes is a power of two, while there always ex-
ists an asymmetric gossip algorithm with finite-time convergence,
independent of the number of nodes. For nodes, we prove
that a fastest convergence can be reached in
node updates via symmetric gossiping. On the other hand, under
asymmetric gossip among nodes with ,
it takes at least node updates for achieving finite-time
convergence. It is also shown that the existence of finite-time con-
vergent gossiping often imposes strong structural requirements
on the underlying interaction graph. Finally, we apply our results
to gossip algorithms in quantum networks, where the goal is to
control the state of a quantum system via pairwise interactions.
We show that finite-time convergence is never possible for such
systems.
Index Terms—Gossip algorithms, finite-time convergence,

computational complexity, quantum algorithms.

I. INTRODUCTION

A. Motivation and Related Work

G OSSIP protocols have become canonical solutions in
modern distributed computer systems for their simplicity

and scalability [1]–[3]. For a network of nodes without central
coordinator, gossip protocols provide an information spread
mechanism in which nodes communicate pairwise along with
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some deterministic or randomized pair-selection algorithm [4].
Formally, a gossip protocol consists of two parts [5]: an un-
derlying algorithm determining pairwise node interactions for
point-to-point communication, and an interaction rule built on
top of the algorithm determining the information for exchange
and the way nodes update their internal states. Gossip-based
protocols have been adopted to provide distributed solutions in
the areas of optimization, control, signal processing, and ma-
chine learning [6]–[9], and recently have even been generalized
to quantum information processing leading to the development
of quantum gossiping algorithms [10], [11].
The convergence speed of the underlying gossip algorithm

associated with a given gossip protocol, serves naturally as the
primary index to the performance of the protocol. In literature,
characterizations of gossip algorithm convergence focus on two
basic convergence-rate metrics: information dissemination and
aggregation times. The dissemination time concerns the min-
imum number of steps it takes for a message starting from one
node to spread across the whole network with a probability no
smaller than a given level [12]. The aggregation time concerns
the minimum number of steps it takes for nodes in the network
to compute a generic function (e.g., initial values' average) to
a given accuracy with a given probability [13]. These two met-
rics are essentially asymptotic rates of the probability decrease
for the hitting/mixing times being smaller than the current time
slot, along a Markovian process defined by the random gos-
siping. Various efforts have been made on bounding and opti-
mizing these two convergence metrics [12]–[22], where it has
been shown that they are determined by the pair selection mech-
anism and the structure of the underlying network.
Finite-time convergence then naturally serves as an in-

triguing limit in studying the convergence properties of gossip
algorithms. In a more general domain, the possibilities and
impossibilities of reaching finite-time convergence for dis-
crete-time consensus algorithms, represented by products of
stochastic matrices, have been systematically investigated in
[23]–[26]. These distributed algorithms have a finite compu-
tational cost, and surprisingly, certain distributed algorithms
converging in finite time can be faster than any possible cen-
tralized algorithm [25]. In this paper, we restrict our attention
to deterministic gossip algorithms and study their finite-time
convergence, which will, generally speaking, provide faster
information spreading than any asymptotically convergent
gossip protocols.

B. Model

Consider a network with node set . Time
is slotted and the value node holds at time is denoted as

for . The global network state is then given by
. A symmetric deterministic gossip

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SHI et al.: FINITE-TIME CONVERGENT GOSSIPING 2783

algorithm [13], [16] is defined by a sequence of node pairs
for and a node state update rule

Note that the two selected nodes update their state to the average
of the values they held prior to the interaction, while the states
of all other nodes remain unchanged.
Introduce

(1)

where is the by identity matrix, and
is the unit vector whose 'th com-

ponent is 1. We can write the class of all deterministic gossip
algorithms as

(2)
Algorithm (2) is called an asymmetric gossip algorithm if we
replace with [28]

In this case, it is allowed that only one of the interacting nodes
updates its state.
Let denote the all-one column vector with proper dimen-

sion. We now consider the following definition of finite-time
convergence.
Definition 1: Algorithm (2) achieves {finite-time con-

vergence} with respect to initial value
if there exists an integer such that

. Global finite-time convergence is
achieved if such exists for every initial value .
Note that global finite-time convergence is equivalent to

for some . Let be the
matrix norm defined by for any

with denoting the absolute value. We use the
following definition of computational complexity of finite-time
gossip algorithms:
Definition 2: Let define a symmetric or asymmetric

gossip algorithm. The number of node updates up to step
is defined as

The computational complexity of -node symmetric (asym-
metric) gossiping is defined as

whenever the above equation admits a finite number.

C. Main Results
In this paper, we obtain the following two results for sym-

metric and asymmetric gossip algorithms, respectively.

Theorem 1: There exists a deterministic symmetric gossip
algorithm that converges globally in finite time if and only if
there exists an integer such that . Moreover, the
following statements hold.

i) Suppose . Then the fastest symmetric gossip al-
gorithms take a total of node updates to converge.

ii) Suppose there exists no integer such that .
Then for almost all initial values, there exists no sym-
metric gossip algorithm with finite-time convergence. In
fact, the initial values admitting finite-time convergent
gossiping algorithms form a union of at most countably
many linear spaces whose dimensions are no larger than

.
Theorem 2: There always exists an asymmetric gossip algo-

rithm that converges globally in finite time. If with
and , global convergence requires and can

be achieved in node updates.
The two theorems are obtained by first establishing a lower

bound on the number of node updates required for reaching fi-
nite-time consensus, and then explicitly constructing gossip al-
gorithms that converge in a finite number of steps equal to the
lower bound. Although we allow every node to interact with
every other node (i.e., we do not impose any restricted network
structure on the allowed interactions), the fastest convergent al-
gorithms only use a subset of the edges. In fact, we prove that
for , finite-time convergent symmetric algorithms are
essentially unique. If the sequence of node pairs

is defined by an independent random process, the above
deterministic finite-time convergent gossiping implies funda-
mental robustness in the presence of repulsive links in light of
the the Borel-Cantelli Lemma [29]. Moreover, the deterministic
finite-time convergent results established in the current paper
can be used to derive almost sure finite-time convergence re-
sults under random gossiping models [30]. Theorems 1 and 2
were briefly reported in [31].

D. Application: Quantum Gossip Algorithms

We apply the obtained results to recent studies on quantum
gossip algorithms. In [10], [11], a gossiping algorithmwas intro-
duced to quantum systems in the aim of symmetrizing the infor-
mation contained in each qubit of an -qubit quantum network.
Accurate operations to large-scale quantum systems play a fun-
damental role in quantum information processing due to the ex-
ponentially growing system dimension and the fragility of state
preservation. We reveal that any -qubit quantum gossiping
algorithm is equivalent to a number of decoupled symmetric
gossip algorithms, with numbers of nodes ranging from to

. Therefore finite-time convergence can never be achieved
for any nontrivial quantum gossiping since
cannot all be equal to some of power of two as long as .
This result is summarized as follows.
Theorem 3: It is impossible to reach global finite-time con-

vergence to full symmetrization for quantum gossip algorithms
over any nontrivial (i.e., ) quantum networks.
In Theorem 3, by saying global {finite-time} convergence to

full symmetrization, we mean that the steady symmetric state
consensus (cf., [10]) is reached in some finite steps for all initial
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values as proper quantum states represented by density oper-
ators. Theorem 3 indicates some strong impossibility of finite-
time convergence to symmetric states for quantum gossiping al-
gorithms. However, it should be emphasized that, the reduced
states of the qubits essentially follow the same dynamics as
the classical symmetric gossip algorithms, and therefore we can
apply Theorem 1 to conclude that these reduced states will con-
verge to an agreement in finite time if and only if the number
of qubits is some power of two. This point will be detailed in
Section IV.
The authors of [10], [11] have shown some conceptual con-

sistency between the classical and quantum gossip algorithms
from a group-theoretic perspective, and it was shown in [10]
that the asymptotic convergence of quantum gossip algorithms
follows the same contraction-mapping analysis as its classical
analogue [16]. For quantum gossip algorithms, the distinction
between their finite-time convergence in reduced states and
their impossibility of reaching finite-time convergence in sym-
metric states arises directly from the quantum specificities of
the network.
E. Paper Organization
Section II focuses on the analysis of symmetric gossiping.

An all-or-nothing lemma is given for general averaging algo-
rithms for the proof of the necessity statement of Theorem 1.
We also discuss the number of algorithms reaching finite-time
convergence. Section III then turns to asymmetric gossip algo-
rithms. We establish a combinatorial lemma, by which we show
the necessary number of node updates. We then construct an
asymmetric algorithm which converges with the given number
of node updates. Section IV discusses the application of the
obtained results to quantum gossip algorithms and proves
Theorem 3 after a brief introductory to quantum states and
quantum gossip algorithms. Finally some concluding remarks
are given in Section V.
Notation and Terminology
All vectors are column vectors and denoted by lower case

letters. Matrices are denoted with upper case letters. The sets
of integers, real numbers, and complex numbers are denoted as
and , and , respectively. Also, and denote the
sets of positive and nonnegative integers, respectively. A finite
square matrix is called stochastic if
for all and for all [27]. A stochastic ma-
trix is called doubly stochastic if is also stochastic. De-
note is a stochastic matrix as the set
of stochastic matrices. Given a matrix ,
the vectorization of , denoted by , is the
column vector .
For all matrices with well defined, it holds that

, where is the Kronecker
product [37].

II. SYMMETRIC GOSSIP ALGORITHMS

In this section, we prove Theorem 1 and discuss unique-
ness of finite-time symmetric gossip algorithms. The proof is
structured in several steps. First, we show that the number of
nodes being some power of two is necessary for the existence
of a globally convergent symmetric gossip algorithm. We do

so by constructively giving one particular initial value and
showing that finite-time convergence cannot be achieved for
this initial value. In the second step, we note that even if global
finite-time convergence is impossible, there still might exist a
gossip algorithm that converges in finite time for some initial
values (say, half of ). We exclude such a possibility by
showing that the initial values from which there exists a gossip
algorithm converging in finite time form a measure zero set.
This is proved through an all-or-nothing property of distributed
averaging algorithms. In the third and final step of the proof,
we characterize the complexity of symmetric gossiping and
propose an algorithm that converges in the minimum number
of steps given by the complexity bound.

A. Critical Number of Nodes
We first prove the existence of the critical number of nodes

by a contradiction argument. Suppose that with
and an odd integer, and suppose that there

exists a finite integer and so that (2)
converges globally in steps. This means that there exists a
constant such that for all . Consider
the initial value and

. Since each element
in is symmetric and doubly stochastic, the initial average is
preserved at every iteration. Thus,

On the other hand, it is not hard to see that is an integer for the
given initial value, since pairwise averaging takes place
times. Consequently, we have with
an integer and an odd integer. Therefore, we conclude
that

which implies that

(3)

Since the left-hand side of (3) is an even number while the right-
hand side is odd, we have reached a contradiction. Therefore,
when is not a power of two, Algorithm (2) with symmetric
updates cannot achieve global finite-time convergence nomatter
how are chosen.

B. All-or-Nothing Lemma
Recall that denotes the set of stochastic matrices. Al-

gorithm (2) is a special case of distributed averaging algorithms
defined by products of stochastic matrices [42], [43]:

(4)

Let be a subset of . We define

s.t.

Let represent the standard Lebesgue measure on .
We have the following lemma for the finite-time convergence
of averaging algorithm (4).
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Lemma 1: Suppose is a set with at most countable el-
ements. Then either or . In fact, if

, then is a union of at most countably many linear
spaces whose dimensions are no larger than .
Remark 1: Lemma 1 implies, given countably many sto-

chastic matrices contained in a set , either for any initial value
, we can select a sequence of matrices from so

that the obtained averaging algorithm converges in finite time
starting from , or for almost all initial values, any averaging
algorithm obtained by a sequence selection from fails to con-
verge in finite time.
Remark 2: Note that in the definition of , different initial

values can correspond to different averaging algorithms. Even if
is finite, there are still uncountably many different averaging

algorithms on the form (4) as long as contains at least two
elements. Therefore, the proof of Lemma 1 requires a careful
structural characterization of .
Noticing that is a finite set and utilizing Lemma 1,

Claim (ii) of Theorem 1 follows immediately. The proof of
Lemma 1 is given in Appendix A.

C. Complexity
Now let for some integer . For any given

symmetric gossip algorithm , we define

and let denote the -entry of . We call node active
in matrix if the -entry of equals . Define

the number of ’s such that node is active in
for

Then, the following claim holds.
Claim. .
This claim can be easily proved using a recursive argument.
We introduce

Invoking the claim we clearly see that . That is to
say, when global finite-time convergence is achieved, each node
must have been active for at least times. Since only two nodes
are updated in each iteration is at least . It is then
straightforward to see that .

D. A Fastest Algorithm
Let . We now present a symmetric gossip algorithm

that converges globally in node updates. Such
an algorithm can be easily constructed recursively: Let the
nodes be divided into two subsets with an equal number
of nodes and suppose agreement has been achieved via sym-
metric gossiping, respectively, for each subset of nodes. Then
obviously finite-time agreement can be realized for the nodes
after pairwise matching the nodes in the two subsets and run-
ning a symmetric gossiping update among each of the pairs.
We remark that essentially the same algorithm has been pro-

posed implicitly in Example 2.4 of [35]. Moreover, such a re-
cursive construction is one of the key components of the clas-
sical Cooley-Tukey algorithm [32] for fast Fourier transform
(FFT), and in fact the symmetric gossiping algorithm that we

present below is even a special case of Cooley-Tukey arrange-
ment for inverse discrete Fourier transform (IDFT), where the
average value corresponds to zero-frequency coefficient [33].
The Cooley-Tukey algorithm however also made use of the
periodic nature of the exponential multipliers in FFT so the
matching between two subsets of nodes needs to be care-
fully selected, which is not required for reaching a simple fi-
nite-time agreement in our case. Nonetheless, for the comple-
tion of the paper we would like to make a full exposure to this
algorithm.
Introduce the notation

and associate each node with the binary representation

of the value . We denote the 'th digit of the binary repre-
sentation of as . We present the following algorithm
as a matrix selection process in :

Algorithm 1 Fastest Finite-time Convergence via Symmetric
Gossiping

1:
2: for do
3:

4: for do
5:
6:
7: end for
8: end for
9: return

The algorithm proceeds in stages. In each stage , a set
of all selection matrices involving the node pairs ,
with and , is formed.
We apply the matrices for symmetric gossiping following the
order of subsets , where matrices in the same

can be put in arbitrary order since they com-
mute with each other (we have used to denote the 'th ele-
ment in ). It is easy to verify that after all matrices in have
been applied there are at most different values left in the
network for . Thus, convergence is reached after

node updates.

E. Discussion

Although we don't intend to discuss how the structure of the
graph influences the existence and complexity of finite-time
convergent gossiping, the proposed Algorithm 1 certainly only
makes use of a fraction of edges, which naturally induces a
graphical structure. Indeed, the construction of Algorithm 1 is
inspired by “hypercubes”, whose precise definitions are given
as follows:
Definition 3: The Cartesian product of a pair of graphs

and , denoted by , is defined
by

i) the vertex set of is the Cartesian product of
and , denoted ;
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Fig. 1. An illustration of Algorithm 1 with , 4, and 8 nodes. The edges selected in the same step are marked with the same line style. The algorithm builds
hypercubes , and .

ii) there is an edge between in
if and only if either and ,

or and .
The -dimensional Hypercube is then defined as

where is the path graph with two nodes.
In Algorithm 1, the selected edges are exactly those who form

a -dimensional Hypercube with nodes. They are se-
lected in the order that arises naturally from the definition of
the Cartesian product (see Fig. 1).
We have shown that Algorithm 1 gives a fastest possible con-

vergence. It is intriguing to ask if this algorithm is the only
one that achieves finite-time consensus, or if there are (pos-
sibly many) other equally fast symmetric gossip algorithms.
This turns out to be a difficult question to answer. We can, how-
ever, establish the following result indicating that for
nodes, all finite-time convergent symmetric gossip algorithms
can be reduced to an essentially unique form.
Proposition 1: Let . Suppose

with and .
Then under certain permutation of indices, we have

and .
The proof of Proposition 1 is given in Appendix B.

III. ASYMMETRIC GOSSIPING

In this section, we investigate asymmetric gossiping. We first
establish a fundamental lower bound in terms of node updates
for finite-time convergence, using a combinatorial lemma. Then
we construct a fastest algorithm using exactly that number of
node updates.

A. Complexity

In this subsection, we first establish the least number of node
updates for finite-time convergence via asymmetric gossiping.
Let with . The following combinatorial
lemma decomposes 1 into suitable fractions, whose proof can
be found in Appendix C.
Lemma 2: Let with . Introduce

by

where is odd

For any , we define

Then it holds that .
Given any algorithm , we continue to use the notations

by which we analyze the symmetric case. Recall that

Just like the symmetric case, we define as the number of
's such that node is active in and

assume the algorithm converges within steps, i.e., all rows of
are the same.

The following lemma follows from a simply recursive
argument.
Lemma 3: For Algorithm (2) with each , the fol-

lowing always hold: (i) for all ; (ii)

for all ; (iii) for all .

Since all rows of are the same, it follows that
. That is to say,

is an element of the
set defined in Lemma 2. Furthermore, by Lemma 3. (ii),

. According to the definition of in
Lemma 2, . Therefore,

based on Lemma 2, i.e., the number
of node updates is at least for reaching convergence.

B. Existence
We now construct an algorithm that when node states con-

verge to the same value, only node updates have been
taken. Denote .
Again, we relabel the nodes in a binary system. We use the

binary number

to mark node if as a binary number. We
denote the 'th digit of in this binary system as for

and . We present the following
algorithm. Algorithm 2 selects a sequential subsets of matrices
in , indexed by .
Matrices in the same subset can be put in arbitrary orders since
they commute with each other. Matrices in
are symmetric, while matrices in are

asymmetric. It is straightforward to verify that after all matrices
in have been applied, at most different value remain
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Fig. 2. An illustration of Algorithm 2 for three nodes. Each directed arc represents selected node pairs and only the head nodes update their states. Using three
steps and five node updates, the three nodes reach the same state.

Algorithm 2 Fastest Finite-time Convergence via
Symmetric/Asymmetric Gossiping

1:
2:

3: for do
4:
5:
6: end for
7: for do
8:

and
9: for do
10:
11:
12: end for
13:

and
14: for do
15:
16:
17: end for
18: end for
19: return

in the network. The number of node updates in Algorithm 2 can
be easily calculated to be exactly .
An illustration of Algorithm 2 for three nodes is shown in

Fig. 2. Note that after the first step Node 1 and Node 2 hold the
same value (say, ) and Node 3 holds a maybe different one (say,
), while the three nodes eventually agree on after the
next two steps. Therefore, after the first step Nodes 1 and 2 can
be viewed as have been tied together as one node which carries
out a symmetric update with Node 3.
Algorithm 2 is constructed based on the above intuition for

three nodes. For nodes with distinct values, ma-
trices in carry out pairs of symmetric averaging and leave
only different values. In this way nodes are grouped into
virtual nodes and then the different values reach finite-time

convergence as in Algorithm 1 with the help of asymmetric up-
dates (cf., Fig. 3).
Remark 3: The Cooley-Tukey FFT algorithm, initially de-

signed for a data set with a size (known as the radix-2
factorization) [32], was later developed for general factoriza-
tion forms of [33], [34]. Such generalizations mainly used

Fig. 3. An illustration of Algorithm 2 for nodes. Divide the
nodes into two subgroups with nodes in each of the group. Tie the rest of
nodes pairwise with another nodes in one of the group. Then apply the above

three-node arrangement to the pair of nodes with another node selected from the
remaining group so that Algorithm 1 can be repeated. Finite-time convergence
is therefore achieved and it turns out this is the fastest algorithm in terms of
number of node updates.

the periodicity in the exponential FFT coefficients and generate
exact results of the FFT. This is significantly different from the
idea and construction of Algorithm 2, where it is not the exact
average, but an approximate value, is achieved. This sacrifice
is anyhow inevitable if finite-time convergence is required, as
suggested by the impossibility part of Theorem 1.
Remark 4: The rank-one matrix limit of Algorithm 2 under

proper permutation of indices can be written as , where
is given by

In contrast to the convergence limit of under symmetric
update, it can be simply computed that

which goes to zero as the network size tends to infinity.
Remark 5: Algorithm 2 is realized using ma-

trices (and therefore time steps) from the set .
We can however find examples of and alternative algorithms
that reach finite-time convergence using less than
matrices. This indicates that finding asymmetric gossip algo-
rithms reaching convergence using the least time steps can be a
quite different problem compared to finding algorithms using a
least number of node updates.
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IV. APPLICATION: QUANTUM GOSSIP ALGORITHMS

In this section, we discuss an application of the obtained re-
sults to quantum gossip algorithms [10], [11].

A. Quantum Mechanics Preliminaries: Notation and
Terminology
Information processing over quantum mechanical systems is

the foundation of quantum communication and quantum com-
putation, where fundamental challenges arise from quantum
mechanics [36]. In this subsection, we give a brief introduction
to quantum system states and we refer the readers to [36] for a
comprehensive treatment.
1) Quantum State Space and the Dirac Notion: The state

space associated with any isolated quantum system is a com-
plex vector space with inner product, i.e., a Hilbert space .
The system is completely described by its state vector, which is
a unit vector in the system's state space and often denoted by

(known as the Dirac notion). The state space of a com-
posite quantum system is the tensor product of the state space of
each component system, e.g., two quantum systems with state
spaces and , respectively, form a composite system with
state space , where stands for tensor product. If
the two quantum systems are isolated respectively with states

and , the composite system admits a
state .
2) Density Operators: For an open quantum system, its state

can also be described by a positive (i.e., positive semi-definite)
Hermitian density operator satisfying . A quantum
state , induces a linear operator, denoted , by

with being the inner product1 equipped by the Hilbert space
. Then defines the corresponding density oper-

ator. Density operators provide a convenient description of en-
sembles of pure state: If a quantum system is in state with
probability where , its density operator is

Any positive and Hermitian operator with trace one defines a
proper density operator describing certain quantum state, and
vice versa.
3) Qubit Network and Swapping Operators: The 2-dimen-

sional Hilbert space that forms the state-space of the most basic
quantum systems is called a qubit (short for quantum bit). Let
be a qubit system, i.e., a two-dimensional Hilbert space. Con-
sider a quantum network as the composite quantum system of
qubits in the set , whose state space is within

the Hilbert space . The swapping operator
between qubits and , denoted as , is defined by

for all . In other words, the swapping oper-
ator switches the information held on qubits and without

1Under Dirac notion this inner product is written as ,
where is the dual vector of .

changing the states of other qubits. The set of all swapping oper-
ators over the -qubit network is denoted by

.
4) Partial Trace: Let and be the state spaces of

two quantum systems and , respectively. Their composite
system is described as a density operator . Let ,
and be the spaces of (linear) operators over , and

, respectively. Then the partial trace over system ,
denoted by , is an operator mapping from to
defined by

for all . The reduced density
operator (state) for system , when the composite system is in
the state , is defined as . The physical in-
terpretation of is that holds the full information of system
in .

B. Quantum Gossip Algorithms
Introduce a notion of time indexed by , and let
denote the density operator of the considered -qubit net-

work at time . The quantum gossip algorithm introduced in
[10], [11] can then be written as

(5)

where and is the conjugate transpose
of the operator .
It has been shown in [10], [11] that under quite general (ran-

domized or deterministic) conditions on the swapping sequence,
Algorithm (5) converges asymptotically to the symmetric state

where is the permutation group over V, and is the unitary
operator over defined by

for any .
In the remainder of this section, we establish the proof

of Theorem 3. We first establish a relationship between the
quantum gossip algorithm and its classical analogue. Then
the conclusion follows directly from the critical node number
condition and the “all-or-nothing” lemma that we have derived
earlier.

C. Quantum vs. Classical Gossiping
For ease of presentation we identify the linear operators
, and as their matrix representations in under

the standard computational basis of in the rest of discus-
sions. Under vectorization, Algorithm (5) can be rewritten into
the following vector form:

(6)

where and is the by identity
matrix.
Associated with any swapping operator , we natu-

rally define a quantum graph, , where
is the quantum edge set containing only the edge . Since
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for all , each can be associated with a path
graph where contains only one edge cor-
responding to the node pair in . It is straightforward to
verify that under the computational basis, each is real,
symmetric, and stochastic in . We further introduce

and make the following
definition.
Definition 4: The induced graph of , denoted

, has , and if only if
for all .

Remark 6: Based on the matrix expression of swapping op-
erators, it is straightforward to verify that all the nonzero off-di-
agonal entries of are exactly . Since is a sto-
chastic matrix with positive diagonal entries (either 1 or ), it
means that for every row of containing one nonzero (i.e.,

) off-diagonal entry, its diagonal entry must be and the
nonzero off-diagonal entry is unique. In other words, car-
ries out disjoint pairwise averaging. Consequently, can be
written as some finite product of commuting matrices within the
set . Equivalently, we can identify so that Al-
gorithm (6) defines an algorithm on the form of (2).
The following lemma establishes a relationship between the

two graphs and . The proof can be
found in Appendix D.
Lemma 4: For associated with Al-

gorithm (5), the graph

has at least com-
ponents. This minimum number of components in is
obtained whenever is a connected
graph.
From now on, without loss of generality, we assume that

is connected since otherwise global
convergence (asymptotic or finite time) is obviously impossible
for Algorithm (5). In light of Lemma 4, then has
connected components. There is a permutation of the elements
of with associated permutation matrix such
that (6) can be written as

(7)
where , and is block diagonal

Here the dimension of is time-invariant and con-
sistent with the size of the 'th component of for

. Furthermore, each is a symmetric gos-
siping matrix in the form of (1) with a proper dimension (cf.,
Remark 6). In other words, (7) defines classical symmetric
gossip algorithms that are completely decoupled:

(8)

D. The Connected Components
In this subsection, we further explore the structure of the

components in .

We denote by and the standard computational basis of
, where represents a unit vector in known as the Dirac

notion [36]. Let be denoted as
for simplicity. The following is a basis of :

We use the notion [36]

to denote a linear operator over in that

for all , where is the inner product equipped by
the Hilbert space . We further obtain a basis for all linear
operators over :

Recall that denotes the permutation group over V, in which
each element defines a rearrangement of indices in V. In par-
ticular, we let be the permutation swapping indices and
with all others unchanged. Associated with any , we de-
fine an operator over by

for all . Letting be the permuta-
tion corresponding to , Algorithm (5) can be written
as

(9)

Note that is a basis for the space of all linear operators over
. Thus, it is clear from (9) that under the basis is

a matrix in such that corre-
sponds to an entry of , i.e., a node in . Furthermore, since
by our assumption is connected, all the swapping per-
mutations in form a generating subset of . There-
fore, identifying each element to its corresponding node ,
we now see that

is the set of nodes that are reachable from
in the graph . In other words, for any given

defines a node
subset as a connected component . From Lemma 4,
there are a total of such different .

E. Proof of Theorem 3
In this subsection, we complete the proof of Theorem 3. We

proceed in three steps.
Step 1. We first consider the following set of node subsets of

, each of which forms one of 's connected
components:

It is straightforward to see that fixing
, we have

and
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Therefore, there are different element in ,
and the number of nodes in each element ranges in

We can easily verify that for any , at least
one of the above combinatorial numbers is not some
power of two. From its equivalent form (8), we con-
clude from Theorem 1 that Algorithm (6) fails to
reach finite-time convergence for all

.
Step 2. Next, we show that Algorithm (6) fails to reach finite-

time convergence for all Hermitian matrices
. This point is immediately clear noticing the

following two facts: (i) each state-transition matrix
is real so that the

real and imaginary parts of define two
separate algorithms in the form of (6) with different
initial values; (ii) for any , we can
construct a Hermitian matrix such that

.
Step 3. In this step, we finally conclude the proof making

use of the “all-or-nothing” property established in
Lemma 1. Consider the following set

is Hermitian,

positive semi-definite, and

We treat the condition under the
basis , i.e., we index each entry of by

. Then is
equivalent to that

(10)

Clearly (10) defines an -dimensional sub-
space in . However, we see that the elements

are within different connected components
in (again, we have used that ).
We know from (8) that different connected compo-
nents have completely decoupled dynamics, which
gives the freedom that each can
take value from without vi-
olating (10). Here again repre-
sents the cardinality of .

Noticing also that the positive semi-definite Hermitian ma-
trices form a convex cone, we can finally conclude that the set
of values , restricted to the nodes of the 'th component of

, can never be a countable union of at
most -dimensional subspaces, where represents the
number of nodes in that component. Making use of Lemma 1,
we conclude that Algorithm (6) fails to reach finite-time con-
vergence for all . Equivalently, we have proved
that Algorithm (5) fails to reach global finite-time convergence
for all initial density operators. This concludes the proof of
Theorem 3.

F. Further Discussion: Finite-Time Convergence in Reduced
States

In this subsection, we further investigate the evolution of the
reduced states of the qubits along the algorithm (5). We denote
by

the reduced state of qubit at time for each ,
where stands for the remaining qubits' space

and is the partial trace. Note that
contains the information that qubit holds in the composite
network state . Taking partial trace, , for

, for the left and right hands of the algorithm (5), re-
spectively, yields

if
if
otherwise

(11)

This shows that, despite that each is formally a density
operator (i.e., a trace-one, Hermitian matrix in ), their evo-
lution is exactly the same as the classical symmetric gossiping
algorithms. We can therefore apply Theorem 1 to each entry of
the and conclude that
Proposition 2: Following the quantum gossiping algorithm

(5), the reduced states of the qubits converge globally to an
agreement in finite time, i.e., there exists such that

for all , if and only the number of qubits is some power
of two.
The distinction between the statements in Theorem 3 and

Proposition 2 is due to the failure of finite-time aggregation for
the information beyond the reduced states in the entire quantum
network state, which defines the quantum specificities of the
network.

V. CONCLUSION

We proved that there exists a symmetric gossip algorithm that
converges in finite time if and only if the number of network
nodes is a power of two, and for nodes, a fastest finite-
time convergence can be reached in node updates via sym-
metric gossiping.We also proved that there always exists a glob-
ally finite-time convergent gossip algorithm for any number of
nodes with asymmetric updates, and for nodes with

, it requires node updates for achieving a
finite-time convergence. Applying the results to quantum gossip
algorithms in quantum networks, we showed that finite-time
convergence is never possible for any nontrivial quantum net-
works. The results add to the fundamental understanding of gos-
siping algorithms. Future challenges lie in characterizing how
the complexity of finite-time convergent gossiping relates to the
structure of the underlying interaction graph, and how to con-
struct finite-time convergent algorithms in a distributed manner.
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APPENDIX A

A. Proof of Lemma 1

Define a function of a matrix by
(cf. [38])

(12)

Given an averaging algorithm (4) defined by with
. Suppose there exists an initial value

for which fails to achieve finite-time convergence.
Then obviously for all .
Claim. .
Let with . Since

, there must be two rows in
that are not equal. Say, . Note that
is a stochastic matrix because any product of stochastic
matrices is still a stochastic matrix. Thus, for all

. On the other hand, if for some
scalar , we have , which is im-
possible because . Therefore, we conclude that

. The claim
holds.
Suppose there exists some such that . We see

from the claim that the dimension of is at most
for all and .

Now for , introduce

s.t.
Then indicates the initial values from which convergence is
reached in steps. For any fixed , we
define

Clearly is a linear space. It is straightforward to see
that , and therefore

Noticing that implies
, we define a linear mapping

s.t. (13)
Suppose with . It is straight-
forward to see that either
or implies .
Hence, is injective. Therefore, noting that
is a linear space with dimension at most , we have

, and thus . Conse-
quently, we conclude that

because any finite power set is still a countable
set as long as is countable. This immediately leads to

Additionally, since every is a union of at most countably
many linear spaces, each of dimension no more than
is also a union of countably many linear spaces with dimension
no more than . The desired conclusion thus follows.

B. Proof of Proposition 1

Without loss of generality, we assume that for any
. Given , recall that . We define
as the 'th row vector of . We continue to define

as the number of different rows of . The following lemma
holds.
Lemma 5: There is no such that the following hold simul-

taneously: i) ; ii) there are three different elements
and from satisfying

Proof: We investigate two cases.
C1: For any , there exists such that
both the -entries of and equal .
In other words, in case C1, any two consecutive node pair
selections share a common node. Then by induction it can
be easily proved that and for
all .
C2: Suppose C1 does not hold. Then we can find ,
and a permutation of , such that

and . We let be the smallest
when such disjoint pairs are selected at time and .
The following claim holds by induction.

Claim. For any satisfies one of the following
three conditions:
1) ;
2) , and there is a permutation of

, such that and ;
3) , and there is a permutation

of , such that and
can be written as

, where is odd, is even.
Therefore, C1 and C2 indicate that i) and ii) in the lemma

cannot hold simultaneously, which completes the proof.
We are now in a place to prove the desired proposition by

reversing the convergence process.
After step , the four row vectors of have the same value

. Without loss of generality, we assume .
Since and

. Then,
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Moreover, and are two other different values
with . So it must be
that and .
Because and

, the first and second row vectors of are the
same as those of . Thus, . Then,
can not be or .
Without loss of generality, we assume . Thus,

(14)

Since ,

(15)

According to (14) and (15), we conclude .
Now that , it must be .
Since cannot be equal to . On the

other hand if . This implies
that , which is impossible since
it contradicts Lemma 5. Following the same argument,
cannot be equal to or as well. Thus, it leaves the
only option that , which completes the proof.

C. Proof of Lemma 2

First of all, it is easy to verify that
defined by

satisfies that .
Next, we show for all .

For simplicity, define . For any
and are uniquely determined,

we therefore denote them by and , respectively, for
. Denote .

Let be an element in satisfying

The existence of such is obvious by its definition.
According to the definition of , we have

Multiplying both side of the above equation by , we get

We know immediately that the cardinality of the set
must be an even number.

We shall show that has a similar form as : and
for all . This property is proved

by establishing the following two claims.
Claim 1. If , then .

Suppose the claim is not true. Then there exists an index
such that for some . We es-

tablish Claim 1 in the following two cases.
• There is such that and .
Define an element by

Now we have since
and for all . This

contradicts the fact that .
• For all satisfying , it holds that

. As mentioned above the cardinality of the set is an
even number. We denote the number of elements in as

with . We label these elements as .
Since is odd, they can be expressed as

, where is a positive integer, for .
Define , and

for all . Then
defines an element in the set with and

. This leads to a contradiction to the choice
of as well.

Claim 2. For all .
Suppose it is not true. Then, there exits a such that

. As Claim 1 says, if
then . Therefore, . More-
over, there are at least two index and such that

and .
We define in that

, and for any
. Since

and for , we
have , which contradicts the definition of . This
proves Claim 2.
From Claim 2, we conclude that and
for all . Thus, according to the definition of , one

has

(16)

where is the number of elements in . Since
, we can solve (16) and obtain that and

. As a result, can be computed as , and this
concludes the proof.

D. Proof of Lemma 4

Denote for . The induced
graph of , denoted as , is defined in that

if only if for all . We
first state a few useful properties:

P1. Each is doubly stochastic for all since
are doubly stochastic matrices and so are their

products.
P2. For any , we have . This
point can be easily verified noticing that all the diagonal
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elements of each are positive for all . As a result,
for any , there are such that

(17)

P3. The number of connected components of the graph
is equal to . Based on (i), (ii), this

point becomes clear seeing that defines a weighted
Laplacian of the graph (cf., Lemma 13.1.1 in
[39]).

We also need the following lemma to complete the proof.
Lemma 6: If is connected for some , then

has
components.

Proof: Take and let be connected.
Denote with specified in (17). The fol-
lowing equalities hold:

(18)

Here a) holds from (17); b) is obtained by plugging in the defini-
tion of ; c) is based on Lemma 5.2 in [40]; d) is from the fact
that the swapping permutations along each edge of a connected
graph consist of a generating set of the group . The equiva-
lence of ) and e) is obtained by that

if since for any .
Note that (18) immediately implies that

which in turn yields that has
components in light of

P3 stated above. This proves the desired lemma.
Now that both and are non-decreasing in
, Lemma 4 can be directly concluded from Lemma 6.
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