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Structural Balance and Opinion Separation
in Trust–Mistrust Social Networks

Weiguo Xia, Ming Cao, and Karl Henrik Johansson, Fellow, IEEE

Abstract—Structural balance theory has been developed in so-
ciology and psychology to explain how interacting agents, for
example, countries, political parties, opinionated individuals, with
mixed trust and mistrust relationships evolve into polarized
camps. Recent results have shown that structural balance is nec-
essary for polarization in networks with fixed, strongly connected
neighbor relationships when the opinion dynamics are described
by DeGroot-type averaging rules. We develop this line of research
in this paper in two steps. First, we consider fixed, not necessarily
strongly connected, neighbor relationships. It is shown that if
the network includes a strongly connected subnetwork containing
mistrust, which influences the rest of the network, then no opinion
clustering is possible when that subnetwork is not structurally
balanced; all of the opinions become neutralized in the end. In
contrast, it is shown that when that subnetwork is indeed struc-
turally balanced, the agents of the subnetwork evolve into two
polarized camps and the opinions of all other agents in the network
spread between these two polarized opinions. Second, we consider
time-varying neighbor relationships. We show that the opinion
separation criteria carry over if the conditions for fixed graphs
are extended to joint graphs. The results are developed for both
discrete-time and continuous-time models.

Index Terms—Opinion separation, signed graphs, structural
balance theory.

I. INTRODUCTION

IN THEORETICAL sociology and social psychology, a
strong interest has been maintained over the years in the

study of the evolution of opinions of social groups [1], [2].
There is a long tradition to study how continuous interactions
within an interconnected collective without isolated subgroups,
might lead to the emergence of segregation, or even polariza-
tion, of communities that form homogenous opinions only in-
ternally [3], [4]. One popular theory is that the balance between
trust and mistrust that dictate people’s opinions to become
closer or further apart, respectively, plays a major role in the
dynamical process of opinion separation [5]. This theory, when
explicitly expressed using signed graphs describing the trust
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and mistrust relationships among the interacting social agents,
is called structural balance theory [6]–[10]. Specifically, for the
graph describing the neighbor relationships between agents in a
social network, positive signs are assigned to those edges corre-
sponding to trust and negative signs to those edges correspond-
ing to mistrust. Then, the network is structurally balanced if
all of the vertices of its signed graph can be divided into two
disjoint sets such that every edge between vertices in the same
set is with a positive sign and every edge between vertices in
the distinct sets has a negative sign [9].

While structural balance theory tells clearly how the
trust–mistrust relationships should be distributed among the
agents for the presence of stable polarized opinions, it does not
specify how the agents’ opinions update. Recently, there is a
growing effort to introduce DeGroot type of opinion updating
rules to social networks with trust and mistrust relationships
[11]–[14]. The DeGroot model [15] describes how each agent
repeatedly updates its opinion to the average of those of its
neighbors. Since this model reflects the fundamental human
cognitive capability of taking convex combinations when inte-
grating related information [16], it has been studied extensively
in the past decades [17]. But to show the process of opinion
separation using the DeGroot model, more work [18]–[20] is to
rely on mechanisms that lead to disconnected networks, the so-
called bounded confidence Krause model, rather than to resort
to trust–mistrust relationships in connected networks. Some
other work has introduced an adaptive noisy updating model
that characterizes individuals’ diversified tendencies to explain
the occurrence of clustering in human populations [21]; in this
model, noise is critical in sustaining clusters of opinions in a
connected network.

For DeGroot-type opinion dynamics in trust–mistrust net-
works, it has been proved in [11] and [12] using continuous-
time models that in a strongly connected and structurally
balanced network consisting of two camps, where agents only
trust those within the same camp, the opinions of all the agents
within the same camp become the same, which is exactly the
opposite of the opinion of the other camp. It has also been
shown that in a structurally unbalanced network, the opinions
of all agents asymptotically converge to zero. It remains an
open question about how the opinions of the agents evolve
when the network is not strongly connected but structurally
unbalanced. What is even more intriguing is to investigate the
dynamical behavior under time-varying network topologies,
since in practical situations, the relationships between agents
may change over time.

In this paper, we investigate the opinion evolution of in-
teracting agents with trust–mistrust relationships under either
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fixed network topologies containing directed spanning trees
or dynamically changing topologies with joint connectivity.
For the fixed topology case, we show that when the network
graph contains a strongly connected subgraph with negative
edges, which has a directed path to every other vertex in the
network, the opinions of all the agents become neutralized
at zero if the strongly connected subgraph is not structurally
balanced. In comparison, if the strongly connected subgraph
is structurally balanced, it is shown that the opinions of the
agents in this subgraph polarize at the exact opposite values,
and the opinions of the rest of the agents lie in between the
polarized values. For dynamically changing network topolo-
gies, similar conclusions hold when the graphical conditions
are applied to the corresponding joint graphs. Our results show
that in addition to getting polarized and reaching consensus,
the DeGroot-type opinion dynamics can give rise to opinion
clustering in a network under weaker connectivity conditions.
This complements the existing mechanisms that induce clusters
in social networks through introducing bounded confidence
[18], updating noise [21], or delays [22].

The rest of this paper is organized as follows. In Section II,
several examples are presented to motivate our study. In
Section III, we introduce the opinion dynamics models and
formulate the problem considered in this paper. In Sections IV
and V, the behaviors of the systems with discrete-time and
continuous-time dynamics are studied, respectively. We present
simulation examples to verify the effectiveness of the theoreti-
cal results in Section VI. Section VII discusses the conclusions
and ideas for future work.

II. MOTIVATING EXAMPLE

In this section, to motivate introducing weaker connectivity
conditions for the DeGroot-type models in trust-mistrust social
networks, we present several examples showing that more
complex behaviors may take place compared to what have been
reported in the literature. Consider the directed graphs given
in Fig. 1. Each directed edge is associated with a positive or
negative sign and the weight of each edge is either 1 or −1.
Consider the network dynamics evolved in these graphs de-
scribed below. Each agent in the network is associated with a
scalar xi ∈ IR that represents its opinion on a certain subject.
If (vj , vi) is an edge in the graph, then agent i takes agent j as
a neighbor and, thus, agent j’s opinion is influencing agent i’s.
Time is slotted. At each time instant, each agent updates its state
to the weighted average of its neighbors’ and its own, and a
positive weight 1 is assigned to its own opinion. Take agent 2 in
G1 in Fig. 1(a) as an example. Taking the weights of the edges
into account, at time t, the state of agent 2 is updated to

x2(t+ 1) =
x1(t) + x2(t) + x3(t)− x9(t)

4
t ≥ 0

since agents 1, 3, and 9 are the neighbors of agent 2 and (v9, v2)
with a negative weight gives the term −x9(t) in the equation.
The other agents update their states in the same manner.

We are interested in the asymptotic behavior of the states of
the agents and Fig. 2 shows the evolution of the agents’ states
under different network topologies: in (a), the graph is G1; in

Fig. 1. Directed signed graphs G1, G2, G3, and G4.

Fig. 2. Evolution of the agents’ states when the graph topology (a) is G1;
(b) isG2; (c) switches betweenG1 andG3; and (d) switches betweenG1 andG4.

(b), the graph is G2; in (c), the graph is G1 at even times and
is G3 otherwise; in (d), the graph is G1 at even times and is G4

otherwise. The initial condition of each agent lies in the interval
[−1, 1].

It is clear that G1 is structurally balanced [6] (the formal
definition will be given in the next section) in the sense that it
can be partitioned into {1, . . . , 5} and {6, . . . , 10} with positive
edges within each set and negative edges in between. Since
G1 is strongly connected, we know from [12, Theor. 1] that
the agents’ states will “polarize” in the sense that agents in V1

reach the same value that is opposite of the agreed value of
those in V2. This is also called “bipartite consensus” in [12].
Although [12] only studied the switching case of strongly
connected graphs at each time, one may infer that the agents
still polarize since G1 and G3 are both structurally balanced
and share the same bipartition.
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However, when the topology switches between G1 and G4,
it is unclear why the agents reach an agreement since each
graph is structurally balanced though they do not share a
common bipartition. What is intriguing is the phenomenon
observed for Fig. 2(b) where the network topology G2 contains
a directed spanning tree but is not strongly connected. Instead
of getting polarized or reaching consensus, the agents’ opinions
become clustered and this clustering is a new behavior that
does not take place when the network is strongly connected.
More detailed theoretical analysis about such behavior is
provided in Theorems 2 and 5. The new opinion clustering
phenomenon has motivated us to study the system dynamics
when the network topologies are not strongly connected and/or
become time varying.

III. PROBLEM FORMULATION

Consider a network of N agents labeled by 1, . . . , N , where
each agent i, 1 ≤ i ≤ N , is associated with a scalar xi ∈ IR
that represents its opinion on a certain subject. Here, xi being
positive implies supportive opinions, being negative implies
protesting views, and being zero implies neutral reaction.
We use a directed signed graph G [7] with the vertex set
V = {v1, . . . , vN} to describe the trust–mistrust relationships
between the agents. The definition of signed graphs is as
follows.

Definition 1: A directed signed graph is a directed graph
where each edge is associated with either a positive or negative
sign.

Some notions in graph theory need to be introduced [23].
We consider only directed graphs without self-loops through-
out this paper. In a directed graph G = (V, E) with V =
{v1, . . . , vN} and E ⊆ V × V , a directed walk is a sequence
of vertices vi1 , . . . , vik such that (vis , vis+1

) ∈ E for s =
1, . . . , k − 1. A directed path is a walk with distinct vertices
in the sequence. A directed cycle is a walk with distinct vertices
vi1 , . . . , vik , k ≥ 2, and vi1 = vik . G is said to be strongly
connected if there is a directed path from every vertex to every
other vertex in G. A directed tree is a graph containing a unique
vertex, called root, which has a directed path to every other
vertex. A directed spanning tree G

s = (Vs, Es) of the directed
graph G = (V, E) is a subgraph of G such that Gs is a directed
tree and Vs = V . G is said to contain a directed spanning tree
if a directed spanning tree is a subgraph of G. “Directed” is
omitted for the rest of the paper and we simply say G contains
a spanning tree since we focus exclusively on directed graphs.
The root vertex set of G is a set of all the roots of G.

In the N -agent network, there is a directed edge (vj , vi) from
vj to vi if and only if agent i takes agent j as a neighbor
and, thus, agent j’s opinion is influencing agent i’s. Further-
more, the directed edge (vj , vi) is assigned with a nonzero
weight aij , which is positive if agent i trusts agent j and
negative otherwise; here, we assume the interagent relationship,
if there is any, is either trusting or mistrusting, although the
strength of the relationship may vary as reflected by the mag-
nitude |aij |. We use Ni to denote the set of indices of agent i’s
neighbors.

For the DeGroot-type updating rule, discrete-time and
continuous-time models have been constructed in the literature.
The discrete-time opinion dynamics can be described by

xi(t+ 1) =
∑

j∈{Ni(t),i}
pij(t)xj(t), i = 1, . . . , N, t = 0, 1, . . .

(1)

where aii(t) > 0 is a self-trusting weight and

pij(t) =
aij(t)

aii(t) +
∑

k∈Ni(t)
|aik(t)|

(2)

which obviously satisfies

pii(t) +
∑

j∈Ni(t)

|pij(t)| = 1. (3)

If we take x(t) = [x1(t), . . . , xN (t)]T to be the network state,
then (1) can be written in its state-space form

x(t+ 1) = P (t)x(t), t = 0, 1, . . . (4)

where P (t) = (pij(t))N×N is an N ×N matrix with positive
diagonals.

Similarly, the continuous-time update equation for agent i is

ẋi=−
∑

j∈Ni(t)

|aij(t)| (xi−sgn (aij(t))xj) , i=1, . . . , N (5)

where sgn(·) denotes the sign function. System (5) can be
written in the compact form

ẋ = −L(t)x (6)

where L(t) is the signed Laplacian matrix that is defined by

lii(t) =
∑

j∈Ni(t)

|aij(t)|

lij(t) =

{
−aij(t), for j ∈ Ni(t)
0, for j �= i and j �∈ Ni(t).

(7)

Since the graphs describing the interactions between agents
may change with time t, we use G(P (t)) and G(L(t)) to
denote the graph at time t for the discrete-time system (4) and
for the continuous-time system (6), respectively. Let P11(t)
be the principal submatrix of P (t) obtained from P (t) by
deleting the i1th, i2th,. . ., imth rows and columns, where 1 ≤
i1, . . . , im ≤ N . Then, G(P11(t)) = (Vs, Es) denotes the sub-
graph of G(P (t)) = (V, E) such that Vs = V\{vi1 , . . . , vim}
and Es = {(vi, vj) : (vi, vj) ∈ E and vi, vj ∈ Vs}. When the
graph is fixed, we omit t and write G(P ) and G(L).

Equations (4) and (6) both come from the DeGroot model and
share the same intuition: the opinions of those agents that agent
i trusts influence its opinion positively and, thus, the averaging
rule tries to bring them closer; at the same time, the opinions
of those agents that agent i does not trust influence its opinion
negatively and, thus, the averaging rule pushes them apart. It is
natural then that the distribution of positive and negative edges
of a graph affects the evolution of opinions and, for this reason,
the notion of “structural balance” becomes instrumental.
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Definition 2: A directed signed graph G with vertex set V is
structurally balanced if V can be partitioned into two disjoint
subsets V1 and V2 such that all the edges (vi, vj) with vi, vj
taken in the same set Vk, k = 1, 2, are of positive signs and all
of the edges (vi, vj) with vi, vj taken in different sets Vk are of
negative signs.

Note that in the definition of structural balance, a network
is still said to be structurally balanced if all the edges of the
network graph are assigned with the positive sign and, thus, one
of V1 and V2 in Definition 2 becomes empty.

A social network that is structurally balanced where the
agents’ opinions update according to the DeGroot-type aver-
aging rules (1) or (5) may evolve into two polarized camps. We
now make our notion of polarization precise.

Definition 3: System (4) or (6) polarizes if for almost all
initial conditions, limt→∞ |xi(t)|=limt→∞ |xj(t)|>0 for all i,
j=1, . . . , N, and limt→∞ xi(t)=−limt→∞ xj(t) for some i �=j.

It has been shown in [12] that system (6) with a fixed,
strongly connected network graph G(L) polarizes if G(L) is
structurally balanced. It is the goal of this paper to study for
both systems (4) and (6), what the relationship is between
structural balance and opinion separation, for which opinion
polarization is an extreme case, when the network topology is
either fixed and contains a spanning tree or is time varying. In
what follows, we separately study the discrete-time model (4)
and the continuous-time model (6).

IV. DISCRETE-TIME MODEL

We introduce a 2N -dimensional system1 [24] based on the
N -dimensional system (4). For a matrix P (t), define two non-
negative matrices P+(t) and P−(t) according to

(
P+(t)

)
ij
=

{
pij(t), pij(t) > 0
0, pij(t) ≤ 0(

P−(t)
)
ij
=

{
−pij(t), pij(t) < 0
0, pij(t) ≥ 0

(8)

where (P+(t))ij and (P−(t))ij are the ij-th elements of P+(t)
and P−(t), respectively. It is obvious that P (t) = P+(t)−
P−(t). Define x+

i (t) = xi(t), x−
i (t) = −xi(t). One knows that

x+
i (t) + x−

i (t) = 0 for all t ≥ 0. From system (4), we obtain
the following update equations for x+

i (t) and x−
i (t):

x+
i (t+ 1)=

∑
j, pij(t)>0

pij(t)x
+
j (t) +

∑
j, pij(t)<0

|pij(t)|xj
j(t),

x−
i (t+ 1)=

∑
j, pij(t)>0

pij(t)x
j
j(t) +

∑
j, pij(t)<0

|pij(t)|x+
j (t).

(9)

Let y(t) = [x+
1 (t), . . . , x

+
N (t), x−

1 (t), . . . , x
−
N (t)]

T
. Then sys-

tem (9) can be written as

y(t+ 1) =

[
P+(t) P−(t)
P−(t) P+(t)

]
y(t) = Q(t)y(t) (10)

where Q(t) =

[
P+(t) P−(t)
P−(t) P+(t)

]
is a stochastic matrix.

1We are indebted to Julien Hendrickx for pointing out this reformulation of
the update equations.

Fig. 3. A structurally balanced graph G and the corresponding graph Ḡ.

Fig. 4. A structurally unbalanced graph G and the corresponding graph Ḡ.

To study the properties of system (4), we will explore the
properties of system (10) which is a classical consensus system
and existing convergence results can be utilized [25]–[27].
We make the connection between the graph G(P (t)) as-
sociated with P (t) with the vertex set {v1, . . . , vN} and
the graph G(Q(t)) associated with Q(t) with the vertex set
{v′1, v′2, . . . , v′2N}, so that we can transform the graphical con-
ditions on G(P (t)) to conditions on G(Q(t)).

Given a directed signed graph G = (V, E) with V = {v1, v2,
. . . , vN}, we define an enlarged directed graph Ḡ = (V̄ , Ē)
based on G as follows. Ḡ has 2N vertices and all of its
edges are positive. Denote the vertices in Ḡ as v+1 , v

−
1 , v

+
2 ,

v−2 , . . . , v
+
N , v−N . If there is a positive edge (vi, vj) ∈ E , then

there are two directed edges (v+i , v
+
j ), (v

−
i , v

−
j ) ∈ Ē ; if there is

a negative edge (vi, vj) ∈ E , then there are two directed edges
(v+i , v

−
j ), (v

−
i , v

+
j ) ∈ Ē . In this manner, it is easy to see that if

there is a positive path2 from vi to vj in G, then there is a path
from v+i to v+j and a path from v−i to v−j in Ḡ; if there is a
negative path from vi to vj in G, then there is a path from v+i to
v−j and a path from v−i to v+j in Ḡ. Two examples are illustrated
in Figs. 3 and 4.

Lemma 1: Let G be a strongly connected signed graph and
let Ḡ be the enlarged graph based on G. Then G is structurally
balanced if and only if Ḡ is disconnected and composed of two
strongly connected components.

Proof (Necessity): If G is structurally balanced, there
is a bipartition V1 = {vi1 , . . . , vim}, V2 = {vim+1

, . . . , viN },
1 ≤ i1, . . . , iN ≤ N of V such that the edges between V1

and V2 are all negative and edges within each set Vi, i =
1, 2, are all positive. We claim that in Ḡ there is no
edge between V̄1 = {v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−iN } and V̄2 =

{v−i1 , . . . , v
−
im
, v+im+1

, . . . , v+iN }, and, thus, Ḡ is disconnected.

2In a directed signed graph, a path is said to be positive if it contains an even
number of edges with negative weights and to be negative otherwise. A positive
or negative cycle is defined similarly.
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If the contrary is true and there is an edge between V̄1 and V̄2,
then there is a positive edge between V1 and V2 or a negative
edge within V1 or V2, which contradicts the fact that G is
structurally balanced. Since G is strongly connected, each com-
ponent with the vertex set V̄i, i = 1, 2, is strongly connected.

(Sufficiency) Assume that the vertex sets of the two com-
ponents are V̄1 and V̄2 and v+i1 , . . . , v

+
im

are in V̄1 and
v+im+1

, . . . , v+iN are in V̄2. We claim that v−ij , j = 1, . . . ,m

are in V̄2 and v−ij , j = m+ 1, . . . , N are in V̄1. If this is

not true, then without loss of generality, assume v+i1 and v−i1
are both in V̄1. Since each component is strongly connected,
there is a path from v+i1 to v+ij and a path from v+ij to v−i1 for

j = 2, . . . ,m. Then from the definition of Ḡ, there is a path
from v−i1 to v−ij and a path from v−ij to v+i1 . It follows that v−ij , j =

2, . . . ,m are in V̄1 and, thus, V̄1 = {v+ij , v
−
ij
, j = 1, . . . ,m}.

Similarly V̄2 = {v+ij , v
−
ij
, j = m+ 1, . . . , N}. Since there is

no edge between V̄1 and V̄2 in Ḡ, it follows that G is
disconnected, which contradicts the assumption. One can
conclude that V̄1 = {v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−iN } and V̄2 =

{v−i1 , . . . , v
−
im
, v+im+1

, . . . , v+iN }. Then it is easy to see that G is
structurally balanced if we define V1 = {vi1 , . . . , vim}, V2 =
{vim+1

, . . . , viN }. �
Lemma 2: Let G be a strongly connected signed graph and

let Ḡ the enlarged graph based on G. Then G is structurally
unbalanced if and only if Ḡ is strongly connected.

Proof: Sufficiency is obvious in view of Lemma 1 and we
only prove the necessity.

Since G is structurally unbalanced, without loss of generality,
assume that there is a negative cycle from vk to vk in G [7]. For
any i �= j, 1 ≤ i, j ≤ N , since G is strongly connected, there
is a path from vi to vj . Without loss of generality, assume this
path is positive. Then there is a directed path from v+i to v+j
and a directed path from v−i to v−j in Ḡ. Since G is strongly
connected and there is a negative cycle starting from vk, we are
able to find a directed negative walk from vj to vi. Accordingly,
there is a walk from v+j to v−i in Ḡ. Thus, in Ḡ there is a directed
walk from v+i to v+j , to v−j and to v−i . Thus, there is a directed
path from v+i to v+j , to v−j and to v−i and it follows that Ḡ is
strongly connected. �

Two examples are given in Figs. 3 and 4 to illustrate these
two lemmas.

Let G(P (t)) be the enlarged graph based on G(P (t)). If
we denote the graph associated with Q(t) by G(Q(t)), then
it is easy to see from the structure of Q(t) that G(P (t)) and
G(Q(t)) are isomorphic [23], that is, G(P (t)) 
 G(Q(t)). The
bijection φ that maps the vertex set {v+1 , v−1 , . . . , v+N , v−N} of
G(P (t)) to the vertex set {v′1, v′2, . . . , v′2N} of G(Q(t)) is given
by: v+i → v′i, v−i → v′N+i for i = 1, . . . , N . We simply use
{v+1 , v−1 , . . . , v+N , v−N} to denote the vertex set for G(Q(t))
in the following for the clear correspondence. We have the
following result from Lemmas 1 and 2.

Proposition 1: Assume that G(P (t)) is strongly connected.
G(P (t)) is structurally balanced if and only if G(Q(t)) is
disconnected and composed of two strongly connected com-
ponents; G(P (t)) is structurally unbalanced if and only if
G(Q(t)) is strongly connected.

A. G(P (t)) Is Fixed

When G(P (t)) is fixed, the matrix P (t) in (4) and Q(t) in
(10) are also fixed, that is, P (t) ≡ P, Q(t) ≡ Q, t ≥ 0. In view
of (3), we know that3 |P | is a stochastic matrix.

Theorem 1: Consider an irreducible P with |P | being
stochastic. Assume that the graph G(P ) has at least one
negative edge. System (4) polarizes if and only if G(P ) is
structurally balanced. If G(P ) is structurally unbalanced, then
limt→∞ x(t) = 0 for every initial value.

Proof (Sufficiency): When G(P ) is structurally balanced
with at least one negative edge, from the proof of Lemma 1 and
Proposition 1 we know that G(Q) contains two disconnected
components each of which is strongly connected and {v+i1 , . . . ,
v+im , v−im+1

, . . . , v−iN } and {v−i1 , . . . , v
−
im
, v+im+1

, . . . , v+iN } are
the vertex sets of the two components, for some m, 1 ≤
m < N and 1 ≤ i1, . . . , iN ≤ N . Thus, the y-system (10) is
decomposed into two disconnected subsystems. It follows from
the classical consensus result [25], [26] that each subsystem
converges to some constant value. In system (4) the agents
in {vi1 , . . . , vim} have the same value and the other agents
in {vim+1

, . . . , viN } have the opposite value. Since the initial
conditions that renders the agreed value of each component to
be zero form a set which has zero Lebesgue measure, system
(4) polarizes.

(Necessity) Assume that system (4) polarizes. If G(P ) is
structurally unbalanced, then G(Q) is strongly connected based
on Proposition 1. It follows that yi(t) converges to some
constant α for all i = 1, . . . , 2N as t → ∞. Since the y-system
contains x+

i (t) and x−
i (t) as subsystems, α should always be

0 which contradicts the assumption that system (4) polarizes.
One can conclude that G(P ) is structurally balanced. �

The above discussion has assumed that P is irreducible or
equivalently G(P ) is strongly connected. Next, we discuss the
more general case when G(P ) is not necessarily strongly con-
nected but contains a spanning tree. Using some permutation of
rows and columns of P , P can be transformed into

P =

[
P11 0
P21 P22

]
(11)

where P11 ∈ IRr×r, P22 ∈ IR(N−r)×(N−r), P21 ∈ IR(N−r)×r

and 0 is a zero matrix of compatible dimension. The subma-
trix P11 is irreducible and the subgraph G(P11) is strongly
connected, and there is a directed path from every vertex in
G(P11) to every other vertex in G(P ). Note that the vertex set
of G(P11) is the root vertex set of G(P ). If P is irreducible,
then r = N .

Without loss of generality, assume that P is in the form of
(11). We discuss two scenarios when G(P ) contains edges of
mixed signs: the first is that G(P11) is structurally unbalanced
and the other is that G(P11) is structurally balanced with at least
one negative edge.

Case 1. G(P11) Is Structurally Unbalanced: Since G(P11)
is structurally unbalanced, the subgraph with the vertex set

3We take the absolute value of a matrix elementwise.
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{v+1 , . . . , v+r , v−1 , . . . , v−r } in the graph G(Q) is strongly con-
nected. In addition, since G(P ) contains a spanning tree, sim-
ilar to the proof of Lemmas 1 and 2, one can show that G(Q)
contains a spanning tree as well. y(t) in system (10) converges
to α1 for some constant α as t → ∞, where 1 is the all-one
vector of compatible dimension; in addition α must be 0 since
limt→∞(x+

i (t) + x−
i (t)) = 2α = 0. Thus, x(t) → 0 as t → ∞.

Case 2. G(P11) Is Structurally Balanced With at Least One
Negative Edge: If G(P ) is structurally balanced, then similar
to Lemma 1 one can show that G(Q) contains two disconnected
components with v+i in one component and v−i in the other. In
addition, each component contains a spanning tree. Thus, the
agents in each component reaches the same value which is the
opposite of the other component. It immediately implies that
the agents in (4) polarize.

Next, we consider the case when G(P ) is structurally un-
balanced. Since G(P11) is structurally balanced, we know
from Lemma 1 that in graph G(Q) the subgraph with the
vertex set V̄s = {v+1 , . . . , v+r , v−1 , . . . , v−r } is composed of two
disconnected components and each one is strongly connected.
The vertex sets of the two components can be denoted as V̄s

1 =
{v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−ir} and V̄s
2 = {v−i1 , . . . , v

−
im
, v+im+1

,

. . . , v+ir}, 1 ≤ i1, . . . , ir ≤ r. Since G(P ) contains a spanning
tree, one know that for every vertex in V̄\V̄s in G(Q), there is
a directed path from some vertex in V̄s to it.

We check the spectral property of Q and determine the limit
of Qk as k → ∞. Using some permutation of rows and columns
of Q, Q can be transformed into

Q =

⎡
⎣ Q1 0 0

0 Q2 0
Q31 Q32 Q33

⎤
⎦ (12)

with Q1 = Q2 and Q1 being irreducible. The vertices in the
subgraph G(Q1) are V̄s

1 and those in G(Q2) are V̄s
2 , and for

any vertex in G(Q33) there is a directed path from some vertex
either in G(Q1) or in G(Q2) to it. It can be shown that the
spectral radius of Q33 is less than 1, that is, ρ(Q33) < 1 [28].
Since Q1 has positive diagonals and is irreducible, 1 is a simple
eigenvalue of Q1 and the magnitudes of all the other eigenval-
ues of Q1 are less than 1. Hence Q has exactly two eigenvalues
equal to 1 and the magnitudes of all the other eigenvalues are
less than 1. The following lemma, the proof of which is pro-
vided in Appendix A, is useful for determining the asymptotic
state of system (10).

Lemma 3: Let Q = (qij)s×s =

⎡
⎣ Q1 0 0

0 Q1 0
Q31 Q32 Q33

⎤
⎦ be a

stochastic matrix, where Q1 ∈ IRr×r is a square matrix. As-
sume that Q has exactly two eigenvalues equal to 1 and the
magnitudes of all the other eigenvalues are less than 1. Then

lim
k→∞

Qk =

⎡
⎣ 1ξT 0 0

0 1ξT 0
η1ξ

T η2ξ
T 0

⎤
⎦ (13)

where ξ ≥ 0, ξTQ1 = ξT , ξT1 = 1, and η1 = (I −
Q33)

−1Q311, η2 = (I −Q33)
−1Q321 are some non-negative

column vectors. In addition, ‖η1 − η2‖∞ ≤ 1.

The matrix Q in (12) satisfies the condition in Lemma 3.
Hence, the states of all the agents in (10) converge. The agents
in V̄s have the same final absolute value given by |ξT [xi1(0),
. . . , xim(0),−xim+1

(0), . . . ,−xir (0)]
T |, where ξ is the left

eigenvector of Q1 corresponding to 1 defined as in the above
lemma. For every agent in V\V̄s, we have the following bound:

lim
t→∞

|yi(t)|
≤ ‖η1 − η2‖∞
×
∣∣∣ξT [

xi1(0), . . . , xim(0),−xim+1
(0), . . . ,−xir (0)

]T ∣∣∣
≤

∣∣∣ξT [
xi1(0), . . . , xim(0),−xim+1

(0), . . . ,−xir (0)
]T ∣∣∣

for i = 2r + 1, . . . , 2N .
We summarize the above discussion into the following

theorem.
Theorem 2: Consider P in the form of (11), with P11 be-

ing irreducible, |P | being stochastic, and G(P ) containing a
spanning tree. If G(P11) is structurally unbalanced, the state of
system (4) converges to zero for every initial value. If G(P11)
is structurally balanced with at least one negative edge, then the
agents of the subgraph G(P11) polarize, and the states of the
other agents converge and lie in the interval [−|C|, |C|], where
|C| is the absolute value of the polarized value of the agents in
G(P11). Furthermore, when G(P ) is structurally balanced with
at least one negative edge, system (4) polarizes.

Remark 1: In [29], the authors pointed out that when the
fixed graph is structurally unbalanced and contains a spanning
tree, the states of the agents may converge to zero or become
fragmented. Here by looking into the eigenvalues and eigenvec-
tors of system matrix Q of (10), we are able to give a complete
characterization of the final state of system (4).

B. G(P (t)) Is Time-Varying

In this subsection, we consider the case when G(P (t))
changes with time. Assume that there exists a constant γ, 0 <
γ < 1, such that the nonzero elements of P (t) satisfy∣∣∣(P (t))ij

∣∣∣ ≥ γ for (P (t))ij �= 0, t = 0, 1, 2, . . . . (14)

We have the following polarization result.
Theorem 3: Assume that P (t), t = 0, 1, 2, . . ., satisfy (3)

and (14) and there exists a bipartition of V into two nonempty
subsets, such that for each graph G(P (t)), t ≥ 0, the edges
between the two subsets are negative and the edges within
each subset are positive. Assume that there exists an infi-
nite sequence of nonempty, uniformly bounded time intervals
[ti, ti+1), i ≥ 0, starting at t0 = 0 with the property that across
each time interval [ti, ti+1), the union of the graphs G(P (t)) is
strongly connected. Then system (4) polarizes.

Proof: Assume that the bipartition of V is V1 =
{vi1 , . . . , vim}, V2 = {vim+1

, . . . , viN } for some 1 ≤ m < N
and 1 ≤ i1, . . . , iN ≤ N . Consider system (10). From the as-
sumption, one can show that across each time interval [ti, ti+1),
the union of the graphs G(Q(t)) contains two disconnected
components with the vertex sets {v+i1 , . . . , v

+
im
, v−im+1

, . . . , v−iN }
and {v−i1 , . . . , v

−
im
, v+im+1

, . . . , v+iN }, and in addition, each
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component is strongly connected. We conclude from [25], [26]
that the states of the agents in each of the two subsystems con-
verge to the same values, respectively, which are the opposite
of each other. Since the initial conditions that render the agreed
value of each component to be 0 come from a set with zero
measure, we know that system (4) polarizes. �

Remark 2: If P (t), t = 0, 1, 2, . . ., are all irreducible and
structurally balanced and, furthermore, the unique bipartitions
of V satisfying Definition 2 are the same for G(P (t)), t =
0, 1, 2, . . ., then the assumptions in Theorem 3 are satisfied
and the states of the agents converge to two opposite values.
Theorem 3 is a generalization of the previous results for distrib-
uted averaging algorithms in [25] and [26], where the weights
are non-negative and obviously P (t) are structurally balanced.

Theorem 4: Let P (t), t = 0, 1, 2, . . ., satisfy (3) and (14).
Assume that [ti, ti+1), i ≥ 0, t0 = 0 is an infinite sequence
of nonempty, uniformly bounded time intervals. Suppose that
across each time interval [ti, ti+1), the union of the graphs is
strongly connected and there does not exist a bipartition of
V into two subsets, such that for each graph G(P (s)), s ∈
[ti, ti+1), the edges between the two subsets are negative and
the edges within each subset are positive. Then, x(t) of system
(4) converges to zero asymptotically.

Note that in Theorem 4, one of the two subsets may be empty.
Remark 3: For each time interval [ti, ti+1), if there always

exists some t ∈ [ti, ti+1), such that P (t) is strongly connected
and structurally unbalanced, then the conditions in Theorem 4
are satisfied and, thus, the state of the system converges to zero.
Stated differently, if structural unbalance arises in the network
frequently enough, then polarization of the states of the agents
will not occur and instead the opinions of the agents in the
network become neutralized in the end.

Proof of Theorem 4: It suffices to prove that y(t) of
system (10) converges to α1 for some constant α as t goes
to infinity. For each time interval [ti, ti+1), we will prove that
the union of the graphs over [ti, ti+1), ∪s∈[ti,ti+1)G(Q(s)) is
strongly connected. Then, from [25, Theor. 3.10], it follows that
y(t) converges to α1 as t goes to infinity.

For each time interval [ti, ti+1), define a directed graph
G

m=(Vm, Em) with Vm=V as follows. For two vertices vj
and vk, there exists a positive edge (vj , vk)∈Em if (vj , vk) is
a positive edge in graph G(P (s)) for some s∈ [ti, ti+1); there
is a negative edge (vj , vk)∈Em if (vj , vk) is a negative edge in
graph G(P (s)) for some s∈ [ti, ti+1). Note that for an ordered
pair of vertices vj and vk, there may exist two directed edges
(vj , vk) in G

m with one being positive and the other being
negative. Let the enlarged graph based on G

m be Gm. Since
the union of the graphs G(P (s)) over the interval [ti, ti+1) is
strongly connected, Gm is strongly connected. In addition, from
the condition that there does not exist a bipartition of V into
two subsets, such that for each graph G(P (s)), s ∈ [ti, ti+1),
the edges between the two subsets are negative and the edges
within each subset are positive, there is a negative cycle in
the graph G

m. Mimicking the proof in the necessity part of
Lemma 2, it can be proved that the enlarged graph Gm is
strongly connected. Based on the way we define Gm, it can
be seen that Gm and ∪s∈[ti,ti+1)G(Q(s)) are isomorphic and,
thus, ∪s∈[ti,ti+1)G(Q(s)) is strongly connected. Hence, y(t)

converges to α1 asymptotically, which implies the state x(t)
converges to zero asymptotically. �

If the union of the graphs over [ti, ti+1), ∪s∈[ti,ti+1)G(P (s))
is not strongly connected, but only contains a spanning tree,
system (4) can give rise to some new behavior as discussed next.

Theorem 5: Let P (t), t = 0, 1, 2, . . ., satisfy (3) and (14).
Let the root vertex set of the union of the graphs over [0,∞)
be Vs. Assume that there exists a bipartition of Vs into two
nonempty subsets, such that for each graph G(P (t)), t ≥ 0,
the edges between the two subsets are negative and the edges
within each subset are positive. Assume that there exists an
infinite sequence of nonempty, uniformly bounded time inter-
vals [ti, ti+1), i ≥ 0, starting at t0 = 0 with the property that
across each time interval [ti, ti+1), the union of the graphs
contains a spanning tree. Then the agents in the root vertex set
polarize, and the other agents’ states will finally lie in between
the polarized values.

Proof: From Theorem 3 we know that the agents in the
root vertex set Vs polarize. Assume that the polarized values are
C and −C, where C is a non-negative constant. We prove that
the states of the other agents will asymptotically be bounded byC.

Let

C(t) = max
vi∈Vs

|xi(t)| , M(t) = max
vi∈V\Vs

|xi(t)|

for t ≥ 0. From the result in the previous paragraph, one knows
that limt→∞ C(t) = C. If M(t) > C(t) holds only for a finite
time t, then there exists a t′ such that M(t) ≤ C(t) for t ≥ t′

and hence

lim sup
t→∞

M(t) ≤ lim
t→∞

C(t) = C.

For this case, the desired conclusion follows.
Next, we assume that M(t) > C(t) holds for an infinite time

sequence t = t∗1, t
∗
2, . . .. We pick the specific time t∗1 to carry

out the discussion. It is easy to see from (3) and (4) that

C (t∗1 + l) ≤ C (t∗1) < M (t∗1) , M (t∗1 + l) ≤ M (t∗1) (15)

for all l ≥ 0. Pick an integer r such that tr−1 ≤ t∗1 < tr and
consider the time interval [tr, tr+1). Since the union of the
graphs across [tr, tr+1) contains a spanning tree, there exists
some time s1 ∈ [tr, tr+1) such that (vi0 , vi1) is an edge of the
graph G(P (s1)) with vi0 ∈ Vs and vi1 ∈ V\Vs. One has

|xi1(s1 + 1)| =

∣∣∣∣∣∣
N∑
j=1

pi1j(s1)xj(s1)

∣∣∣∣∣∣
≤ |pi1i0(s1)xi0(s1)|+

∑
j �=i0

|pi1j(s1)xj(s1)|

≤ γC (t∗1) + (1− γ)M (t∗1)
= C (t∗1) + (1− γ) (M (t∗1)− C (t∗1))

where γ is the constant in (14). Since P (t) has positive diago-
nals, further calculation shows that

|xi1(s1 + 2)|
≤ γ (C (t∗1)+(1− γ) (M (t∗1)− C (t∗1)))+(1− γ)M (t∗1)

= C (t∗1) +
(
1− γ2

)
(M (t∗1)− C (t∗1)) .
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Recursively, for l ≥ 0

|xi1(s1 + l)| ≤ C (t∗1) + (1− γl) (M (t∗1)− C (t∗1)) .

Specifically, the following inequality is true for l ≥ 0

|xi1(tr+1 + l)|≤C (t∗1)+(1− γtr+1−s1+l) (M (t∗1)−C (t∗1))
≤C (t∗1)+(1− γtr+1−tr+l) (M (t∗1)−C (t∗1)).

(16)

Define V1 = {vj |(vi, vj) as an edge in the union of the graphs
across the time interval [tr, tr+1) for some vi ∈ Vs and vj ∈
V\Vs}. Then the above inequality (16) holds for any vi1 ∈ V1.

Consider the time interval [tr+1, tr+2). Define V2 =
{vj |(vi, vj) as an edge in the union of the graphs across the time
interval [tr+1, tr+2) for some vi ∈ Vs ∪ V1 and vj ∈ V\(Vs ∪
V1)}. If vi2 ∈ V2, vi0 ∈ Vs ∪ V1 and (vi0 , vi2) is an edge of the
graph G(P (s2)) for some s2 ∈ [tr+1, tr+2), one has

|xi2(s2 + 1)|
≤ |pi2i0(s2)xi0(s2)|+

∑
j �=i0

|pi2j(s2)xj(s2)|

≤ γ
(
C (t∗1)+(1−γs2−tr)(M(t∗1)−C(t∗1))

)
+(1−γ)M(t∗1)

= C (t∗1) + (1− γs2−tr+1) (M (t∗1)− C (t∗1)) .

Thus, for l ≥ 0, the following inequality holds:

|xi2(s2 + l)| ≤ C (t∗1) + (1− γs2−tr+l) (M (t∗1)− C (t∗1)) .

For all vi ∈ V1 ∪ V2, it holds that

|xi(tr+2 + l)| ≤ C (t∗1)+(1− γtr+2−tr+l) (M (t∗1)− C (t∗1)) .

Continuing this process, one derives that for all vi ∈ V\Vr

|xi(tr+N−1)| ≤ C (t∗1)+(1− γtr+N−1−tr ) (M (t∗1)− C (t∗1))

≤ C (t∗1) +
(
1− γ(N−1)T

)
(M (t∗1)− C (t∗1))

where T is a uniform upper bound for tr+1 − tr. Repeating the
above calculation, we have that for all vi ∈ V\Vr

∣∣xi

(
tr+(N−1)l

)∣∣≤C (t∗1)+
(
1−γ(N−1)T

)l

(M (t∗1)−C (t∗1)).

Combining with (15), one has

M
(
tr+(N−1)l + s

)
≤max

{
M

(
tr+(N−1)l

)
, C

(
tr+(N−1)l

)}
≤C(t∗1)+

(
1−γ(N−1)T

)l

(M(t∗1)−C(t∗1))

for all 0≤s<tr+(N−1)(l+1)−tr+(N−1)l. From the above in-
equality, we can conclude that lim supt→∞ M(t) ≤ C(t∗1).
Since the above discussion applies to all t∗r, it holds that
lim supt→∞ M(t) ≤ C(t∗r) for all r = 1, 2, . . .. In view of the
fact that limt→∞ C(t) = C, one has lim supt→∞ M(t) ≤ C.
This completes the proof. �

Remark 4: In the fixed topology case in the previous sec-
tion, when the graph contains a spanning tree, it is shown in
Theorem 2 that the agents in the root vertex set polarize and
the states of the other agents converge and lie in between the
polarized values. However, when the network topologies are
time-varying, the states of the other agents may not converge
but they will finally lie in between the polarized values, which
will be illustrated though an example in Section VI.

Theorem 6: Let P (t), t = 0, 1, 2, . . ., satisfy (3) and (14).
Assume that [ti, ti+1), i ≥ 0, t0 = 0, is an infinite sequence
of nonempty, uniformly bounded time intervals. Suppose that
across each time interval [ti, ti+1), the union of the graphs
contains a spanning tree and for the root vertex set of the union
graph, there does not exist a bipartition of this set into two
subsets, such that for each graph G(P (s)), s ∈ [ti, ti+1), the
edges between the two subsets are negative and the edges within
each subset are positive. Then, the state of system (4) converges
to zero asymptotically.

Proof: Using similar arguments to the proof of Theorem 4,
we can show that the union of the graphs G(Q(t)) across
each time interval [ti, ti+1), i ≥ 0, contains a spanning tree. It
immediately follows that the y-system (10) converges to α1 for
some constant α from [25]. Thus, system (4) converges to zero
asymptotically. �

Remark 5: In [24], Hendrickx formally introduced the trans-
formation (9) and studied discrete-time and continuous-time
systems with reciprocal interactions between agents and nonre-
ciprocal interactions under joint strong connectivity conditions.
The convergence of the system to polarized values or to zero
were derived based on studies on consensus systems with “type-
symmetric” interactions and by looking into the persistent
interactions between agents [27]. Here, we have considered
nonreciprocal interactions between agents with joint graphs
containing spanning trees, where opinion separation of the
agents may appear.

V. CONTINUOUS-TIME MODEL

In this section, we present our main results for the
continuous-time model (6). For each A(t), similar to (8),
we can define two non-negative matrices A+(t) and A−(t)
based on A(t). Let x+

i (t) = xi(t), x−
i (t) = −xi(t) and y(t) =

[x+
1 (t), . . . , x

+
N (t), x−

1 (t), . . . , x
−
N (t)]T . From system (6), we

obtain the following update equations for y(t):

ẏ(t)=

([
A+(t) A−(t)
A−(t) A+(t)

]
−
[
D(t) 0
0 D(t)

])
y(t)=−W (t)y(t) (17)

where D(t)=diag{d1(t), . . . , dN (t)} with di(t)=
∑N

j=1,j �=i

|aij(t)| and W (t) =

[
D(t) 0
0 D(t)

]
−
[
A+(t) A−(t)
A−(t) A+(t)

]
is

the Laplacian matrix with nonpositive off-diagonal elements.
The dynamical behavior of system (6) can be revealed by
studying system (17).

A. G(L(t)) Is Fixed

Consider the continuous-time system (6) under fixed topolo-
gies. Let A(t)≡A∈ IRN×N be the signed adjacency matrix, and
let L(t)≡L be the signed Laplacian matrix given by (7) for all
t≥0. When the graph G(L) contains a spanning tree, by a suit-
able permutation of rows and columns of its associated signed
Laplacian matrix L, L can be brought into the following form:

L =

[
L11 0
L21 L22

]
(18)

where L11∈ IRr×r is irreducible, L22∈ IR(N−r)×(N−r), and L21∈
IR(N−r)×r. By looking into system (17) and in view of Lemmas 1
and 2, similar to Theorem 2, we have the following theorem.
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Theorem 7: Let G(L) be a signed graph containing a span-
ning tree and let L be its associated signed Laplacian matrix
in the form (18). If the subgraph G(L11) is structurally unbal-
anced, the state of system (6) converges to zero for every initial
value. If G(L11) is structurally balanced with at least one nega-
tive edge, then the agents in the subgraph G(L11) polarize and
the states of the other agents converge and lie in between the
polarized values; furthermore, if G(L) is structurally balanced
with at least one negative edge, system (6) polarizes.

B. G(L(t)) Is Time-Varying

In this subsection, we consider the case when the interaction
graph topologies are dynamically changing. Assume that A(t)
and L(t) are piecewise constant functions and the interaction
graph topologies or the weights of the edges change at time
instants t1, t2, . . .. System (6) can be rewritten as

ẋ(t) = −L(ti)x(t), t ∈ [ti, ti + τi) (19)

where t0 = 0 is the initial time, and τi = ti+1 − ti, i = 0, 1, . . .
are the dwell times. Let τ be a finite set of positive numbers
and let T be an infinite set generated from τ , which is closed
under addition, and multiplication by positive integers. Assume
that τi ∈ T , i = 0, 1, 2, . . .. Let the nonzero elements ajk(ti) of
A(ti) satisfy that ajk(ti) ∈ [γ1, γ2], where γ1, γ2 are positive
constants.

The y-system (17) can be written as

ẏ(t) = −W (ti)y(t), t ∈ [ti, ti + τi). (20)

Employing similar ideas as in the previous section for the
discrete-time model (4) and (10) and in view of [25, Theor. 3.12],
we can prove the following two theorems.

Theorem 8: Let the root vertex set of the union of the graphs
over [0,∞) be Vs. Assume that there exists a bipartition of Vs

into two nonempty subsets, such that for each graph G(L(t)),
t ≥ 0, the edges between the two subsets are negative and
the edges within each subset are positive. Assume that there
exists an infinite sequence of nonempty, uniformly bounded
time intervals [tik , tik+1

), k ≥ 0, starting at ti0 = 0 with the
property that across each time interval [tik , tik+1

), the union
of the graphs contains a spanning tree. Then, the agents in the
root vertex set of system (6) polarize, and the states of the other
agents will finally lie in between the polarized values.

Theorem 9: Assume that [tik , tik+1
), k ≥ 0, ti0 = 0, is an in-

finite sequence of nonempty, uniformly bounded time intervals.
Suppose that across each time interval [tik , tik+1

), the union of
the graphs contains a spanning tree and for the root vertex set of
the union graph, there does not exist a bipartition of this set into
two subsets, such that for each graph G(L(s)), s ∈ [tik , tik+1

),
the edges between the two subsets are negative and the edges
within each subset are positive. Then, the state of system (6)
converges to zero asymptotically.

VI. ILLUSTRATIVE EXAMPLES

In this section, we perform simulation studies on system (4)
with topologies containing spanning trees. Consider the two
graphs shown in Fig. 5, where the edges with negative weights
are labeled by “−” signs and those with positive weights are

Fig. 5. Two graphs G(P1) and G(P2) both contain spanning trees.
(a) G(P1). (b) G(P2).

labeled by “+” signs. Their corresponding matrices P1 and P2

are given by

P1=

[
(P1)11 0
(P1)21 (P1)22

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 − 1

2 0 0 0

0 1
2 − 1

2 0 0 0
− 1

3 − 1
3

1
3 0 0 0

0 1
4

1
4

1
4 − 1

4 0

0 0 1
2 0 1

2 0

0 0 0 1
3

1
3

1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

P2=

[
(P2)11 0
(P2)21 (P2)22

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3 − 1

3 0 0 0
1
2

1
2 0 0 0 0

− 1
2 0 1

2 0 0 0

0 1
3 0 1

3 − 1
3 0

0 0 1
2 0 1

2 0

0 0 0 − 1
3

1
3

1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

One can see that G(P1) is structurally unbalanced but the
subgraph G((P1)11) is structurally balanced. G(P2) is struc-
turally balanced. Let the initial state of the system be x(0) =
[0.9, 0.7,−0.9,−1, 0.2, 0.9]T .

The evolution of the states of the agents under the graph
topology G(P1) in Fig. 5(a) has been illustrated in Fig. 2(b)
in Section II. As indicated in Theorem 2, agents 1, 2, 3 in
the subgraph G(P11) achieve opposite values and the states of
agents 4, 5, and 6 converge and lie in between the opposite
values. For system (4) with

P (t) =

{
P1, t is even
P2, t is odd

(21)

the evolution of the states of the agents are shown in Fig. 6,
from which we can see that the states of agents 4 and 6 do
not converge but they still lie in between the opposite values
of agents 1, 2, 3.

VII. CONCLUSION

In this paper, we have studied the relationship between struc-
tural balance and opinion separation in social networks that
contain both trust and mistrust relationships. When the opinion
update rules are described by DeGroot-type models, we have
shown that under conditions that are closely related to whether
a network is structurally balanced or not, the opinions sometime
get separated, for which in the extreme case the network evolves
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Fig. 6. Evolution of the agents’ states with the graphs switching between
Fig. 5(a) and (b).

into two polarized camps, and sometimes become neutralized.
Our results complement the existing results in the literature.

We are interested in further developing opinion separation
models that rely less on the DeGroot averaging rules. One
promising direction is to look into the biased assimilation be-
havior in social groups. The nonlinearity inherently associated
with such behavior is a main challenge that we want to attack.

APPENDIX A

Proof of Lemma 3: Since Q1 is a stochastic matrix, 1
is an eigenvalue of Q1 with the corresponding eigenvector 1.
From the assumption of the lemma, we know that 1 is a simple
eigenvalue of Q1 and the magnitudes of all other eigenvalues
of Q1 are less than 1. In addition, ρ(Q33) < 1. Thus, from the
Perron-Frobenius theorem [30],

lim
k→∞

Qk
1 = 1ξT

where ξ ≥ 0, ξTQ1 = ξT , and ξT1 = 1.
It is easy to see that vT1 = [ξT 0T 0T ] and vT2 = [0T ξT 0T ]

are two independent left eigenvectors of Q corresponding to 1.
One can verify that u1 = [1T 0T ηT1 ]

T
and u2 = [0T 1T ηT2 ]

T

are two independent right eigenvectors of Q corresponding to
1, where η1 and η2 are given by

η1 = (I −Q33)
−1Q311, η2 = (I −Q33)

−1Q321.

I −Q33 is invertible because ρ(Q33) < 1. In addition, the
following equalities hold vT1 u1 = 1, vT2 u2 = 1, vT1 u2 = 0, and
vT2 u1 = 0. By using the Jordan canonical form, we can show
that Qk converges as k goes to infinity and

lim
k→∞

Qk = u1v
T
1 + u2v

T
2 =

⎡
⎣ 1ξT 0 0

0 1ξT 0
η1ξ

T η2ξ
T 0

⎤
⎦ .

Since 1 = (Q31 +Q32 +Q33)1, it follows that η1 + η2 =
(I −Q33)

−1(Q31 +Q32)1 = 1. From the non-negativity of
the vectors η1 and η2, one has that

‖η1 − η2‖∞ ≤ ‖η1 + η2‖∞ = 1.

�
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