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Abstract—This paper considers the synchronization problem
of coupled nonlinear dynamical systems over time-varying inter-
action graphs. We first show that infinite joint connectivity is
necessary for achieving globally asymptotic synchronization. We
then show that the commonly used Lipschitz condition on the
nonlinear self dynamics is not sufficient to ensure synchronization
even for an arbitrarily large coupling strength. A sufficient
synchronization condition is established in terms of the times of
connectivity, the integral of the Lipschitz gain, and the network
parameters.
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I. INTRODUCTION

In recent years, the study on synchronization of coupled
nonlinear dynamical systems has attracted considerable at-
tention, partly due to that an increasing number of circuits
and systems can be described in such a framework. Examples
include arrays of Chua circuits [1], Lorenz systems [2], chaotic
systems [3]–[5], and other physical systems surveyed in [6].

The interaction among the dynamical systems is often
modeled by a graph. Most works in the literature studied the
case where the graph is fixed, e.g., [7]–[11]. It has been shown
that if the nonlinear self dynamics is globally Lipschitz, then
synchronization is achieved for a connected graph provided
that the coupling strength is sufficiently large.

For the case where the graph is time-varying, most at-
tention has been devoted to a few special cases, where the
self dynamics is a single integrator [12]–[18] or a neutrally
stable system [19]–[22]. For such systems, it has been shown
that synchronization is achieved if the interaction graph is
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uniformly jointly quasi-strongly connected or infinitely jointly
connected. When the self dynamics is nonlinear, the problem
becomes much more challenging and existing works mainly
focused on the special case where the interaction graph has
some particular structure. In particular, the authors of [23]
assumed that the graph is weakly connected and balanced at all
time and the self dynamics is globally Lipschitz. They showed
that synchronization is achieved if the coupling strength is
sufficiently large. A similar result was obtained in [24] for a
more general case where the interaction graph frequently has
a directed spanning tree. These special time-varying graphs
are rather restrictive compared to joint connectivity where the
interaction can be lost at any particular time.

The goal of this paper is to study synchronization of coupled
nonlinear dynamical systems over jointly connected graphs.
We begin to show that a weak form of graph connectivity,
infinite joint connectivity, is necessary for achieving global
asymptotic synchronization. For infinitely jointly connected
graphs, we show through an example that the commonly used
global Lipschitz condition on the nonlinear self dynamics
alone is not sufficient to ensure synchronization even for
an arbitrarily large coupling strength. We then establish a
sufficient condition for reaching synchronization in terms of
the times of connectivity, the integral of the Lipschitz gain,
and the network parameters.

The rest of the paper is organized as follows: In Section II,
we provide some background on graph theory and Dini deriva-
tive. Section III formulates the three synchronization problems
considered in this paper. Our main results are presented in
Section IV followed by concluding remarks.

II. PRELIMINARIES

Let us first recall some basic concepts from graph theory
[25]. A graph G = (V, E) consists of a nonempty finite set
of nodes V = {1, 2, . . . , n} and a set of edges E ⊆ V × V ,
where an edge (j, i) ∈ E denotes that nodes i and j can obtain
each other’s information mutually. All neighbors of node i are
denoted Ni := {j : (j, i) ∈ E}. A path is a sequence of edges
of the form (i1, i2), (i2, i3), . . .. The graph G is connected if
each node has a path to any other node. For the graph G, the
weighted adjacent matrix A = [aij ] ∈ Rn×n is defined such
that aij > 0 if (j, i) ∈ E and aij = 0 otherwise. The weighted
adjacency matrix A associated with the undirected graph is
not necessarily symmetric since aij 6= aji in general.
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In this paper, we model the time-varying interaction among
the coupled dynamical systems by a time-varying graph
Gσ(t) = (V, Eσ(t)), where σ : [0,+∞) → P is a piecewise
constant function and P is a finite set of all possible graphs.
Gσ(t) remains constant for t ∈ [t`, t`+1), ` = 0, 1, . . . and
switches at t = t`, ` = 1, . . . . Throughout the paper, we
assume that inf`(t`+1 − t`) ≥ τd > 0, ` = 1, . . . with
lim`→∞ t` = ∞, where τd is a constant denoting the dwell
time [26]. The joint graph of Gσ(t) during time interval
[ta, tb) with ta < tb ≤ ∞ is defined by G([ta, tb)) =⋃
t∈[ta,tb) G(t) = (V,

⋃
t∈[ta,tb) Eσ(t)). Moreover, j is a neigh-

bor of i at time t when (j, i) ∈ Eσ(t), and Ni(σ(t)) represents
the set of node neighbors of i at time t. We denote {Ap}p∈P
as the set of adjacency matrices associated with the graph
{Gp}p∈P . The upper Dini derivative of V (t, x(t)) at t is
defined as [27, pp.659]

D+V (t, x(t)) = lim sup
δ→0+

V (t+ δ, x(t+ δ))− V (t, x(t))

δ
.

The following lemma holds [28].
Lemma 1: Let Vi(t, x) : R×Rp → R (i = 1, . . . , n) be con-

tinuously differentiable and V (t, x) = maxi=1,...,n Vi(t, x).
If I(t) = {i ∈ {1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is
the set of indices where the maximum is reached at t, then
D+V (t, x(t)) = maxi∈I(t) V̇i(t, x(t)).

III. PROBLEM FORMULATION

Consider a network with n coupled nonlinear dynamical
systems. The dynamics of the systems are described by the
following equations:

ẋi = f(t, xi) + γ
∑

j∈Ni(σ(t))

aij(σ(t))(xj − xi), i ∈ V, (1)

where xi ∈ Rp is the state of node i, γ > 0 is a coupling
gain, aij(p) > 0 is the (i, j)-th entry of the adjacency matrix
Ap associated with the graph Gp for all p ∈ P , and f(t, xi) :
[0,∞)×Rp → Rp is piecewise continuous in t and continuous
in xi representing the nonlinear self dynamics of system i.

It is not hard to show that a∗ ≤ aij(p) ≤ a∗, for
all aij(p) 6= 0, all i, j ∈ V , and all p ∈ P , where
a∗ = maxp∈P,i,j∈V aij(p) and a∗ = minp∈P,i,j∈V{a|a ∈
{aij(p)} and a 6= 0}. We denote x = [xT

1, x
T
2, . . . , x

T
n]T ∈ Rpn

and assume that the initial time is t0 ≥ 0, and the initial state
x(t0) = (xT

1(t0), . . . , xT
n(t0))T ∈ Rpn.

For single integrators (i.e., f(t, xi) = 0 in (1)) over an
undirected graph, the following assumption is a necessary and
sufficient condition for achieving global asymptotic synchro-
nization [16].

Assumption 1: The time-varying graph Gσ(t) is infinitely
jointly connected, i.e., G([t,∞)) is connected for all t ≥ t0.

Throughout the paper, we assume that Assumption 1 is
satisfied. We are interested in the following synchronization
problems.

Definition 1: System (1) achieves global asymptotic syn-
chronization if limt→∞(xi(t) − xj(t)) = 0, ∀i, j ∈ V ,
∀xi(t0) ∈ Rp.

Definition 2: System (1) achieves global exponential syn-
chronization if there exist constants ξ1 > 0 and λ1 > 0

such that ‖xi(t) − xj(t)‖ ≤ ξ1e
−λ1(t−t0)‖xi(t0) − xj(t0)‖,

∀i, j ∈ V , ∀xi(t0) ∈ Rp, ∀t ≥ t0.
Definition 3: System (1) achieves global polynomial syn-

chronization if there exist constants ξ2 > 0 and λ2 > 0 such
that ‖xi(t) − xj(t)‖ ≤ ξ2

(t−t0)λ2
‖xi(t0) − xj(t0)‖, ∀i, j ∈ V ,

∀xi(t0) ∈ Rp, ∀t ≥ t0.

IV. MAIN RESULTS

In this section, we present our main results.

A. Necessity of Infinite Joint Connectivity
We begin to show that infinite joint connectivity given in

Assumption 1, is necessary for achieving global asymptotic
synchronization of (1).

Theorem 1: Assume that the equilibrium point x = x∗ of
ẋ = f(t, x) is not asymptotically stable. If global asymptotic
synchronization is achieved for (1), then Gσ(t) is infinitely
jointly connected.

Proof: We prove Theorem 1 by contraposition. Suppose
that Gσ(t) is not infinitely jointly connected. Then there exists
t∗ ≥ t0 such that the union graph G([t∗,∞)) is not connected.
This implies that there exist two nonempty, disjoint subsets
Va ⊂ V and Vb ⊂ V such that there is no link between sets
Va and Vb for all t ≥ t∗. Let us choose xi(t

∗) = x∗ for
all i ∈ Va and xi 6= x∗ for all i ∈ Vb, where x = x∗ is
the equilibrium point of ẋ = f(t, x). Then xi(t) = x∗ for
all i ∈ Va and for all t ≥ t∗. In addition, ẋi(t) = f(t, xi),
for all i ∈ Vb and for all t ≥ t∗. Based on the fact that the
equilibrium point x = x∗ of ẋ = f(t, x) is not asymptotically
stable, we know that limt→∞(xi(t)− x∗) 6= 0 for all i ∈ Vb.
This shows that global asymptotic synchronization cannot be
achieved for (1). Hence, the result follows.

B. Globally Lipschitz Self Dynamics
In the literature, it has been established that for fixed

connected graphs [2], [7]–[9], [11] and for some special
switching graphs [23], [24], synchronization is achieved for
a sufficiently large coupling γ if the self dynamics satisfies
the following global Lipschitz assumption.

Assumption 2: The self dynamics f(t, x) is globally Lips-
chitz continuous in x with the Lipschitz constant L > 0, i.e.,
‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rp, ∀t ≥ t0.

The following example shows that for the general time-
varying graph satisfying Assumption 1, Assumption 2 alone
is not sufficient for achieving synchronization even if the
coupling strength γ is arbitrarily large.

Example 1: Consider a group of two agents switching
between two graphs G1 and G2 with adjacency matrices
A1 = [ 0 0

0 0 ] and A2 = [ 0 1
1 0 ], respectively. The self dynamics

is f(t, xi) = Lxi, where xi is scalar. The dynamics of each
system are described by

ẋ1 = Lx1 + γa12(σ(t))(x2 − x1),

ẋ2 = Lx2 + γa21(σ(t))(x1 − x2).

Note that a12(σ(t)) = a21(σ(t)) = 1 or 0 for all t ≥ t0. Then,
the relative dynamics can be written as

ẋ = (L− 2γa12(σ(t)))x, (3)
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where x = x1 − x2. Let the switching signal σ(t) be equal
to 2 when t ∈ [t0 + %2 − 1, t0 + %2) and equal to 1 when
t ∈ [t0 + %2, t0 + (%+ 1)2 − 1) for % = 1, 2, . . . . It is easy to
see that Assumption 1 is satisfied. It follows that the solution
of (3) is

x(t) =e(L−2γ)(ρ−1)+L(ρ+1)ρe(L−2γ)(t−t0−%
2+1)x(t0)

for t ∈ [t0 + %2 − 1, t0 + %2), and

x(t) =e(L−2γ)ρ+L(ρ−1)ρe(L−2γ)(t−t0−%
2)x(t0)

for t ∈ [t0 + %2, t0 + (% + 1)2 − 1). Thus limt→∞ x(t) = ∞
for any L > 0 and arbitrarily large γ. Hence, it is not enough
that the coupling strength γ is arbitrarily large to achieve
synchronization.

C. Synchronization Conditions

In this section, we shall investigate, besides the global
Lipschitz condition, what additional condition is needed to
guarantee synchronization of (1). We make the following
global Lipschitz-like assumption regarding the self dynamics.

Assumption 3: There exists a continuous nonnegative
bounded function L(t) ≥ 0 such that ‖f(t, x) − f(t, y)‖ ≤
L(t)‖x− y‖, ∀x, y ∈ Rp, ∀t ≥ t0.

We introduce the concept of times of connectivity. To do
so, for the case of switching graph Gσ(t), we first introduce
a subsequence of the switching time sequence {t`}∞0 as
t0 = T0 < T1 < T2 . . . , where T`, ` = 1, 2, . . . is iteratively
obtained by

T` = inf{t ≥ T`−1 : G([T`−1, t)) is connected, T`−1 ∈ {tl}∞0 }.

Let J(t) denote how many jointly connected graphs can be
found during [t0, t): J(t) = max{` : t > T`}.

We are now ready to present the sufficient synchronization
condition in terms of the times of connectivity J(t) and the
integral of the Lipschitz gain L(t).

Theorem 2: Let Assumptions 1 and 3 hold. Global asymp-
totic synchronization is achieved for (1) if

lim
t→∞

(J(t)− 2

ρ

∫ t

t0

L(s)ds) =∞, (4)

where ρ is a constant depending on the network parameters,
explicitly given in the proof as (21).
The proof is based on the convergence analysis of the scalar
quantity

V (t, x) = max
{i,j}∈V×V

Vij(t, x), (5)

where

Vij(t, x) =
1

2γ
e
−2

∫ t
t0
L(s)ds‖xi(t)− xj(t)‖2. (6)

In order to prove Theorem 2, the following lemma is needed.
Lemma 2: Along solutions to (1), D+V (t, x) ≤ 0 for all

t ≥ 0.
Proof: Let I1(t)×I2(t) be the set containing all the node

pairs that reach the maximum at time t, i.e., I1(t)× I2(t) =
{{i, j} ∈ V × V|Vij(t) = V (t)}. It is not hard to obtain that

D+V = max
{i,j}∈I1×I2

{
1

γ
e
−2

∫ t
t0
L(s)ds

(xi − xj)T

× (f(t, xi)− f(t, xj))− e−2
∫ t
t0
L(s)ds

(xi − xj)T

×
∑

k1∈Ni(σ(t))

aik1(σ(t))(xi − xk1) + e
−2

∫ t
t0
L(s)ds

× (xi − xj)T
∑

k2∈Nj(σ(t))

ajk2(σ(t))(xj − xk2)

− 1

γ
L(t)e

−2
∫ t
t0
L(s)ds‖xi − xj‖2

}

≤ − 1

2
e
−2

∫ t
t0
L(s)ds

max
{i,j}∈I1×I2

 ∑
k1∈Ni(σ(t))

aik1(σ(t))

×(‖xi − xj‖2 − ‖xj − xk1‖2)

+
∑

k2∈Nj(σ(t))

ajk2(σ(t))(‖xj − xi‖2 − ‖xi − xk2‖2)


≤ − γ max

{i,j}∈I1×I2

 ∑
k1∈Ni(σ(t))

aik1(σ(t))(Vij − Vjk1)

+
∑

k2∈Nj(σ(t))

ajk2(σ(t))(Vij − Vik2)

 ≤ 0,

where the equality follows from Lemma 1 and (1), the first
inequality follows from Assumption 3 and the fact that ±ab ≤
a2+b2

2 for all a, b ∈ R, and the last inequality follows from
(6). Therefore, V (t, x(t)) ≤ V (t0, x(t0)) , V0.

Remark 1: In view of Lemma 2, we see that if the initial
state x0 ∈ Ωβ at t = t0, where Ωβ = {x ∈ Rpn|V (t, x) ≤ β},
then every solution of (1) lies in Ωβ . Also note that Ωβ is
compact. Together with the facts that f(t, x) is piecewise con-
tinuous in t and globally Lipschitz in x and a∗ ≤ aij(p) ≤ a∗,
for all aij(p) 6= 0, all i, j ∈ V , and all p ∈ P , it follows that
(1) has a unique solution over t ∈ [t0,∞) [27, Theorem 3.3].

Proof of Theorem 2: For any node i1 ∈ V , let us define
a constant t1 ≥ t0 as

t1 = inf{t ≥ t0 : ∃i2, such that {i1, i2} ∈ Eσ(t)}.

Note that t1 + τd ≤ T1. Then, for t ∈ [t1, t1 + τd), it follows
that

V̇i1i2 ≤ − γ
∑

k1∈Ni1 (σ(t))\{i2}

ai1k1(σ(t))(Vi1i2 − Vi2k1)

− γ
∑

k2∈Ni2 (t)\{i1}

ai2k2(σ(t))(Vi1i2 − Vi1k2)

− ai1i2(σ(t))γVi1i2 − ai2i1(σ(t))γVi1i2

≤ − αγ(Vi1i2(t)− 2(n− 2)a∗

α
V0),

where a∗ and a∗ are given in Section III and α = 2(n−2)a∗+
2a∗. Therefore, we obtain

Vi1i2(t1 + τd) ≤ β1V0, (7)

where
β1 = 1− 2a∗

α
(1− e−αγτd) ∈ (0, 1). (8)

We next define that

t2 = inf{t ≥ t1 : ∃i3, s.t. {i1, i3} ∈ Eσ(t) or {i2, i3} ∈ Eσ(t)}.
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It follows from this definition that there is no edge between
the set {i1, i2} and the set V\{i1, i2} for t ∈ [t1 +τd, t2]. It is
then not hard to see that V̇i1i2(t) ≤ 0 for all t ∈ [t1 + τd, t2].
This together with (7) implies that

Vi1i2(t2) ≤ β1V0. (9)

Note that for all t ∈ [t2, t2 + τd],

V̇i1i2 ≤ −2(n− 1)a∗γ(Vi1i2 − V0). (10)

By using the above relation, (8) and (9), we obtain that for all
t ∈ [t2, t2 + τd],

Vi1i2(t) ≤ βV0, (11)

where
β = 1− (1− e−αγτd)

2a∗
α
e−α1γτd , (12)

and α1 = 2(n− 1)a∗.
We next estimate Vi1i3 by considering two cases.
• Case I: (i1, i3) ∈ Eσ(t2). Following a similar analysis to

that to obtain (7) for Vi1i2 , we obtain

Vi1i3(t2 + τd) ≤ β1V0. (13)

• Case II: (i1, i3) /∈ Eσ(t2). By the definition of t2, we
know that (i2, i3) /∈ Eσ(t2). It then follows that for all
t ∈ [t2, t2 + τd),

V̇i1i3(t) ≤ − 2(n− 1)a∗γ(Vi1i3 − V0)

− ai3i2γ(Vi1i3 − Vi1i2). (14)

We proceed our analysis for two subcases.
– Case II(a): Vi1i3(t) > Vi1i2(t) for all t ∈ [t2, t2+τd).

It then follows that

V̇i1i3(t) ≤ −α2γ(Vi1i3 −
2(n− 1)a∗ + a∗β

α2
V0),

where α2 = 2(n− 1)a∗ + a∗. This shows that

Vi1i3(t2+τd) ≤
(

1− a∗(1− β)

α2
(1− e−α2γτd)

)
V0.

(15)
– Case II(b): there exists a time t∗ ∈ [t2, t2 + τd) such

that
Vi1i3(t∗) ≤ Vi1i2(t∗) ≤ βV0. (16)

Applying the same analysis as we obtained (10) to
(14) yields,

V̇i1i3(t) ≤ −2(n− 1)a∗γ(Vi1i3 − V0). (17)

By using (16), (17) and α1 < α2, we obtain that for
all t ∈ [t∗, t2 + τd),

Vi1i3(t2 + τd) ≤
(
1− e−α2γτd(1− β)

)
V0. (18)

We shall find an upper bound for Vi1i3 for the above cases. It
follows from (12) and (18) that for Case II(b),

Vi1i3(t2 + τd) ≤
(

1− e−(α1+α2)γτd(1− e−αγτd)
2a∗
α

)
V0.

Also note that from (8) and (13), for Case I, we have

Vi1i3(t2 + τd) ≤
(

1− (1− e−αγτd)
2a∗
α

)
V0.

Therefore, the bound in Case II(b) is larger than that of
Case I. By noting that a∗(1−β)

α2
(1 − e−α2γτd)e−α2γτd ≤

min{e−α2γτd(1 − β), a∗(1−β)α2
(1 − e−α2γτd)} and comparing

(15) and (18), it is not hard to see that

Vi1i3(t2 + τd) ≤
(

1− a∗(1− β)

α2
(1− e−α2γτd)e−α2γτd

)
V0

= β2V0, (19)

where

β2 = 1− 2a2∗
αα2

(1− e−α2γτd)e−α2γτd(1− e−αγτd)e−α1γτd

∈ (0, 1).

Note that t2 + τd ≤ T2. It follows from (11) and (19) that

Vi1k(t2 + τd) ≤ β2V0, k ∈ {i2, i3}.

We then proceed the above analysis for other nodes k ∈
V\{i1}. Eventually, we obtain that

Vi1k(tn−1 + τd) ≤ βn−1V0, k ∈ V\{i1},

where tn−1 + τd ≤ Tn−1.
Let us now consider node i2 and try to bound

Vi2i3 , . . . , Vi2in . By going through a similar analysis, we
obtain that Vi2k(tn + τd) ≤ β2n−3V0, k ∈ V\{i2}. Con-
tinuing, we eventually obtain that Vij(t(n−1)n/2 + τd) ≤
β(n−1)n/2V0, ∀i, j ∈ V, where β(n−1)n/2 is a constant de-
pending on the network parameters, namely, τd, n, a∗, a∗ and
γ. Also note that t(n−1)n/2 + τd ≤ T(n−1)n/2. Therefore, it
follows that V (T(n−1)n/2+1) ≤ β(n−1)n/2V0. We then have
that

V (t, x(t)) ≤ β
b J(t)
(n−1)n/2+1

c
(n−1)n/2 V0 ≤

1

β(n−1)n/2
e−ρJ(t)V0, (20)

where bcc denotes the largest integer not greater than c ∈ R
and

ρ =
1

(n− 1)n/2 + 1
ln

1

β(n−1)n/2
> 0. (21)

Note that limt→∞ J(t) = ∞ based on Assumption 1. It thus
follows from (5), (6) and (20) that

max
{i,j}∈V×V

‖xi(t)− xj(t)‖2

≤ 2γ

β(n−1)n/2
e
2
∫ t
t0
L(s)ds−ρJ(t)

V (t0, x(t0)).

Hence, global asymptotic synchronization is achieved provided
that limt→∞(J(t)− 2

ρ

∫ t
t0
L(s)ds) =∞.

Remark 2: A necessary condition to ensure (4) is
limt→∞ J(t) = ∞. Since the dwell time assumption is
imposed, the maximum of J(t) is bounded because each
time interval between two consecutive switching instants is
connected and at least τd long. In such a case, 1

τd
(t−t0)−1 ≤

J(t) ≤ 1
τd

(t− t0), for all t ≥ t0 + τd. This together with the
synchronization condition (4) implies that L(t) needs to be
bounded for all t ≥ t0. Therefore, in view of Theorem 1,
the global Lipschitz condition is necessary to achieve global
asymptotic synchronization but not sufficient.
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The following two corollaries provide sufficient conditions
for achieving global exponential synchronization and global
polynomial synchronization, respectively, provided that the
times of connectivity J(t) satisfies certain conditions.

Corollary 1: Let Assumptions 1 and 3 hold. If there exist
positive constants κ > 0 and ξ ≥ 0 such that J(t) ≥ κt − ξ,
for all t ≥ t0, then global exponential synchronization of (1)
is achieved when L(t) < ρκ

2 .
Corollary 2: Let Assumptions 1 and 3 hold. If there exists

positive constants κ > 0 and ξ ≥ 0 such that J(t) ≥ κ ln t−ξ,
for all t ≥ t0, then global polynomial synchronization of (1)
is achieved when L(t) < ρκ

2t .
Based on Corollaries 1 and 2, we can slightly revise Exam-

ple 1 so that global asymptotic synchronization is achieved.
Example 2: Let the switching signal σ(t) be equal to 2 when

t ∈ [t0+%−1, t0+%) and equal to 1 when t ∈ [t0+%, t0+%+1),
for % = 1, 3, . . . . Then, the solution of (3) is

x(t) = e(L−2γ)(ρ−1)+Lρe(L−2γ)(t−t0−%+1)x(t0)

for t ∈ [t0 + %− 1, t0 + %), and

x(t) = eL(ρ−1)+(L−2γ)ρeL(t−t0−%)x(t0)

for t ∈ [t0 + %, t0 + % + 1). Therefore, limt→∞ x(t) = ∞ if
L < γ

2 . This can be easily checked by the sufficient condition
in Corollary 1 by noting that J(t) ≥ t

2 , for all t ≥ t0.
Example 3: Let the switching signal σ(t) be equal to 2

when t ∈ [t0 + %2 − 1, t0 + %2) and equal to 1 when t ∈
[t0 + %2, t0 + (% + 1)2 − 1) for % = 1, 2, . . . , but the self
dynamics now be f(t, xi) = Lxi

t , where xi is scalar. Then,
global asymptotic synchronization is achieved if L < 1. This
can be easily checked by the sufficient condition in Corollary 2
by noting that J(t) ≥

√
t− 2 ≥ ln t− 2, for all t ≥ t0.

V. CONCLUDING REMARKS

This paper studied synchronization of coupled nonlinear
dynamical systems over time-varying graphs. We first showed
that infinite joint connectivity is necessary for achieving
global asymptotic synchronization. We then constructed a
simple example to show that the commonly used Lipschitz
condition on the self dynamics is not sufficient for achieving
synchronization in the case where the graph is infinitely jointly
connected. Finally, we established sufficient synchronization
conditions in terms of the times of connectivity, the integral
of the Lipschitz gain, and the network parameters.

REFERENCES

[1] C. W. Wu and L. O. Chua, “Application of graph theory to the
synchronization in an array of coupled nonlinear oscillators,” IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 8, pp. 494–
497, Aug. 1995.

[2] X. Liu and T. Chen, “Boundedness and synchronization of y-coupled
Lorenz systems with or without controller,” Physica D, vol. 237, no. 5,
pp. 630–639, May 2008.

[3] R. Zhang, D. Chen, Y. Do, and X. Ma, “Synchronization and anti-
synchronization of fractional dynamical networks,” Journal of Vibration
and Control, 2014.

[4] D. Chen, R. Zhang, J. C. Sprott, and X. Ma, “Synchronization between
integer-order chaotic systems and a class of fractional-order chaotic
system based on fuzzy sliding mode control,” Nonlinear Dynamics,
vol. 70, no. 2, pp. 1549–1561, Oct. 2012.

[5] J. Lu, J. Cao, and D. Ho, “Adaptive stabilization and synchronization
for chaotic Lur’e systems with time-varying delay,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1347–1356, Jun. 2008.

[6] Y. Chen, J. Lu, X. Yu, and D. J. Hill, “Multi-agent systems with
dynamical topologies: Consensus and applications,” IEEE Circuits Syst.
Mag., vol. 13, no. 3, pp. 21–34, 2013.

[7] C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynam-
ical Systems. Singapore: World Scientific: Singapore, 2007.

[8] V. Belykh, I. Belykh, and M. Hasler, “Connection graph stability method
for synchronized coupled chaotic systems,” Physica D, vol. 195, no. 1-2,
pp. 159–187, Aug. 2004.

[9] H. Liu, M. Cao, and C. W. Wu, “Coupling strength allocation for
synchronization in complex networks using spectral graph theory,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 5, pp. 1520–1530, May
2014.

[10] P. DeLellis, M. di Bernardo, and G. Russo, “On QUAD, Lipschitz, and
contracting vector fields for consensus and synchronization of networks,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 3, pp. 576–583,
Mar. 2011.

[11] W. Yu, G. Chen, and M. Cao, “Consensus in directed networks of agents
with nonlinear dynamics,” IEEE Trans. Autom. Control., vol. 56, no. 6,
pp. 1436–1441, Jun. 2011.

[12] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control., vol. 31, no. 9, pp. 803–812, Sep. 1986.

[13] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control., vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[14] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control., vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[15] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Trans. Autom. Control., vol. 50, no. 2, pp. 169–
182, Feb. 2005.

[16] Z. Lin, B. Francis, and M. Maggiore, “State agreement for continuous-
time coupled nonlinear systems,” SIAM J. Control Optim., vol. 46, no. 1,
pp. 288–307, 2007.

[17] M. Cao, A. S. Morse, and B. Anderson, “Reaching a consensus in
a dynamically changing environment: a graphical approach,” SIAM J.
Control Optim., vol. 47, no. 2, pp. 575–600, 2008.

[18] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.
Control., vol. 50, no. 5, pp. 655–661, May 2005.

[19] L. Scardovi and R. Sepulchre, “Synchronization in networks of identical
linear systems,” Automatica, vol. 45, no. 11, pp. 2557–2562, 2009.

[20] Y. Su and J. Huang, “Stability of a class of linear switching systems with
applications to two consensus problem,” IEEE Trans. Autom. Control.,
vol. 57, no. 6, pp. 1420–1430, Jun. 2012.

[21] T. Yang, S. Roy, Y. Wan, and A. Saberi, “Constructing consensus
controllers for networks with identical general linear agents,” Int. J.
Robust & Nonlinear Control, vol. 21, no. 11, pp. 1237–1256, Jul. 2011.

[22] Z. Meng, T. Yang, D. V. Dimarogonas, and K. H. Johansson, “Coordi-
nated output regulation of heterogeneous linear systems under switching
topologies,” Automatica, vol. 53, no. 3, pp. 362–368, 2015.

[23] J. Qin, H. Gao, and W. Zheng, “Exponential synchronization of complex
networks of linear systems and nonlinear oscillators: a unified analysis,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 61, no. 2, pp. 499–511, Mar.
2014.

[24] G. Wen, Z. Duan, G. Chen, and W. Yu, “Consensus tracking of
multi-agent systems with Lipschitz-type node dynamics and switching
topologies,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 2,
pp. 499–511, Feb. 2014.

[25] C. Godsil and G. Royle, Algebraic Graph Theory, ser. Graduate Texts
in Mathematics. New York: Springer-Verlag, 2001, vol. 207.

[26] D. Liberzon and A. S. Morse, “Basic problem in stability and design of
switched systems,” IEEE Control Syst. Mag., vol. 19, no. 5, pp. 59–70,
Oct. 1999.

[27] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ:
Prentice Hall, 2002.

[28] J. Danskin, “The theory of max-min, with applications,” SIAM J. Appl.
Math., vol. 14, no. 6, pp. 641–664, 1996.


