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Abstract—In this paper, we propose and study a master-equation
based approach to drive a quantum network with n qubits to
a consensus (symmetric) state introduced by Mazzarella et al.
The state evolution of the quantum network is described by a
Lindblad master equation with the Lindblad terms generated
by continuous-time swapping operators, which also introduce an
underlying interaction graph. We establish a graphical method
that bridges the proposed quantum consensus scheme and clas-
sical consensus dynamics by studying an induced graph (with
22n nodes) of the quantum interaction graph (with n qubits).
A fundamental connection is then shown that quantum consensus
over the quantum graph is equivalent to componentwise classical
consensus over the induced graph, which allows various existing
works on classical consensus to be applicable to the quantum
setting. Some basic scaling and structural properties of the quan-
tum induced graph are established via combinatorial analysis.
Necessary and sufficient conditions for exponential and asymp-
totic quantum consensus are obtained, respectively, for switching
quantum interaction graphs. As a quantum analogue of classical
synchronization of coupled oscillators, quantum synchronization
conditions are also presented, in which the reduced states of all
qubits tend to a common trajectory.

Index Terms—Consensus seeking, quantum networks, qubits
synchronization.

I. INTRODUCTION

IN the past decades, distributed control and optimization
methods have witnessed a wide range of applications in

network systems such as multi-vehicle systems, wireless com-
munication networks, smart grids, and social networks [2]–[6].
A networked system consists of a number of interconnected
nodes, often denoted agents, each of which represents an
individual functioning unit ranging from a robot, a power
generator, to a member of a society. Recent development in
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quantum physics and quantum information science suggests
the possibility of modeling and analyzing quantum systems
as networks of quantum nodes [7]–[10]. In these networks,
each quantum node (agent) represents a photon, an electron,
an atom, or a finite dimensional quantum system. Nodes in
a quantum network are described by quantum mechanics and
the interactions between different agents involve non-classical
correlations. These unique quantum characteristics make the
development of distributed solutions in quantum networks more
difficult than classical network systems [7]. It is interesting to
understand how synchronization and consensus in quantum net-
works relate to traditional networks, and if the wealth of graph-
theoretic tools recently developed for traditional networks are
also applicable to quantum networks.

One of the primary objectives in distributed control and
coordination is to drive a network to a consensus, where all
agents hold the same state, by local interactions [11]–[13].
Several efforts have been made to investigate the consensus
problem in the quantum domain under discrete-time settings.
Sepulchre et al. [14] generalized consensus algorithms to non-
commutative spaces and presented convergence results for
quantum stochastic maps. They showed how the Birkhoff the-
orem can be used to analyze the asymptotic convergence of a
quantum system to a fully mixed state. Mazzarella et al. [15]
made a systematic study regarding consensus-seeking in quan-
tum networks, and pointed out that consensus in a quantum
network has close connection to distributed quantum compu-
tation, quantum communication and quantum random walk.
Four classes of consensus quantum states based on invariance
and symmetry properties were introduced, and a quantum gen-
eralization to the gossip iteration algorithm (e.g., [16]) was
proposed for reaching a symmetric state (consensus) over a
quantum network. Such a quantum gossip iteration algorithm
is realized through discrete-time quantum swapping operations
between two subsystems in a quantum network and can make
the quantum network converge to symmetric states while pre-
serving the expected values of permutation-invariant global
observables. The class of quantum gossip algorithms can be fur-
ther extended to so-called symmetrization problems in a group-
theoretic framework and be applied to consensus on probability
distributions and quantum dynamical decoupling [17].

Quantum systems with external inputs are modeled using
master equations that define continuous-time quantum state
evolution [18]–[20]. One of the simplest cases is when a
Markovian approximation can be applied under the assumption
of a short environmental correlation time permitting the neglect
of memory effects [23], where a so-called Lindblad equation
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can be employed to describe the quantum state evolution. In
this paper, we show that a Lindblad master equation [23], [24]
can be obtained with the Lindblad terms generated by swapping
operators among the qubits, for the dynamical evolution of the
quantum network. The swapping operations also introduce an
underlying interaction graph for the quantum network, which
indeed leads to a distributed structure for the master equation. In
this way, a continuous-time generalization of the work of [15],
[17] is introduced, under legitimate quantum state evolution.1

The contributions of the current paper are highlighted as
follows.

• A graphical approach is established bridging the proposed
quantum consensus scheme and classical consensus dy-
namics by introducing an induced graph (with 22n nodes)
of the quantum interaction graph (with n qubits). A funda-
mental connection is shown that quantum consensus evo-
lution over the n-qubit network is equivalent to a number
of independent classical consensus processes, running in
parallel over the connected components of the induced
graph. Several fundamental scaling and structural prop-
erties are obtained for the induced graph. The number of
components is characterized; tight bounds of component
sizes and node degrees are explicitly given; the induced
graph is shown to be regular and the diagonal induced
graph is proved to be almost strongly regular.

• The graphical approach provides a powerful tool in study-
ing quantum network dynamics via their classical counter-
parts. Making use of existing understandings of classical
consensus, we show how to carry out convergence speed
optimization via convex programming. We also estab-
lish two necessary and sufficient conditions for exponen-
tial and asymptotic quantum consensus, respectively, for
switching quantum interaction graphs.

• The possibility of quantum synchronization is also inves-
tigated, in the sense that the trajectory of each qubit (given
by the reduced state under partial trace with respect to
the space of other qubits) tends to the same trajectory. We
show that quantum synchronization can be achieved if the
network Hamiltonian admits an exact tensor product form
(or Kronecker sum form) of identical Hamiltonians for
each qubit. The trajectory synchronization of qubits serves
as the quantum analogue of classical synchronization
[36], [37].

The developments of the above quantum consensus results
are inspired and heavily rely on the concepts introduced in [15].
We study qubit networks for the ease of presentation. General-
ization to network of quantum nodes with identical but greater
than two dimensional Hilbert spaces is straightforward. We
remark that the proposed graphical approach applies directly
also to the discrete-time quantum consensus dynamics [15],
and thus the corresponding convergence rate characterization
and optimization can be obtained using the results in [16].

1The continuous-time generalization of [15], [17] for quantum consensus
with fixed but general quantum permutation interactions, was also indepen-
dently presented in [21], where a necessary and sufficient condition was derived
for reaching quantum symmetric consensus from a group-theoretical point
of view.

We believe that our results add to the understanding of dis-
tributed control and state manipulation of quantum networks.
The graphical approach proposed in the paper can also be useful
for a larger class of quantum network control problems.

This rest of the paper is organized as follows. Section II
presents some preliminaries including relevant concepts in lin-
ear algebra, graph theory and quantum systems. The n-qubit
network model and its state evolution master equations are pre-
sented in Section III. Section IV is devoted to a systematic study
of the relation between a quantum interaction graph and its
induced graph. Section V establishes quantum synchronization
conditions making use of the graphical approach. Section VI
concludes this paper with a few remarks.

II. PRELIMINARIES

In this section, we introduce some concepts and theory from
linear algebra [25], graph theory [26], and quantum systems [7].

A. Matrix Vectorization and Geršgorin Theorem

Given a matrix M ∈ C
m×n, the vectorization of M , denoted

by vec(M), is the mn× 1 column vector ([M ]11, . . . , [M ]m1,
. . . , [M ]1n, . . . , [M ]mn)

T . We have vec(ABC) = (CT ⊗
A)vec(B) for all matrices A, B, C with ABC well defined,
where ⊗ stands for the Kronecker product. We always use I� to
denote the �× � identity matrix, and 1� for the all one vector
in R

�.
The following is the Geršgorin disc Theorem which will be

used in the proof of main results.
Lemma 1 [25, pp. 344]: Let A = [ajk] ∈ C

n×n. Then all
eigenvalues of A are located in the union of n discs

n⋃
i=1

⎧⎨⎩z ∈ C : |z − aii| ≤
n∑

j=1,j �=i

|aij |

⎫⎬⎭ .

B. Graph Theory Essentials

A simple undirected graph G = (V,E) consists of a finite set
V = {1, . . . , N} of nodes and an edge set E, where an element
e = {i, j} ∈ E denotes an edge between two distinct nodes
i ∈ V and j ∈ V. Two nodes i, j ∈ E are said to be adjacent
if {i, j} is an edge in E. The number of adjacent nodes of v is
called its degree, denoted deg(v). The nodes that are adjacent
with a node v as well as itself are called its neighbors. A graph
G is called to be regular if all the nodes have the same degree.
A path between two vertices v1 and vk in G is a sequence of
distinct nodes v1v2 . . . vk such that for any m = 1, . . . , k − 1,
there is an edge between vm and vm+1. A pair of distinct nodes
i and j is called to be reachable from each other if there is a path
between them. A node is always assumed to be reachable from
itself. We call graph G connected if every pair of distinct nodes
in V are reachable from each other. A subgraph of G associated
with node set V∗ ⊆ V, denoted as G|V∗ , is the graph (V∗,E∗),
where {i, j} ∈ E∗ if and only if {i, j} ∈ E for i, j ∈ V∗. A
connected component (or just component) of G is a connected



376 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 2, FEBRUARY 2016

subgraph induced by some V∗ ⊆ V, which is connected to no
additional nodes in V \V∗.

The (weighted) Laplacian of G, denoted L(G), is defined as

L(G) = D(G)−A(G)

where A(G) is the N ×N matrix given by [A(G)]kj =
[A(G)]jk = akj for some akj > 0 if {k, j} ∈ E and
[A(G)]kj = 0 otherwise, and D(G) = diag(d1, . . . , dN )

with dk =
∑N

j=1,j �=k[A(G)]kj . It is well known that L(G) is
always positive semi-definite, and the following relation holds:

rank (L(G)) = N − C∗(G) (1)

where C∗(G) denotes the number of connected components
of G.

C. Quantum Systems

1) Quantum Systems and the Master Equation: The state
space associated with any isolated quantum system is a complex
vector space with inner product, i.e., a Hilbert space. The
system is completely described by its state vector, which is a
unit vector in the system’s state space. The state space of a
composite quantum system is the tensor product of the state
space of each component system. For an open quantum system,
its state can be described by a positive Hermitian density
operator (or density matrix) ρ satisfying tr(ρ) = 1. In many
situations, a master equation for the evolution of ρ(t) is a suit-
able way to describe the dynamics of an open quantum system.
One of the simplest cases is when a Markovian approximation
can be applied under the assumption of a short environmental
correlation time permitting the neglect of memory effects [23].
Markovian master equations have been widely used to model
quantum systems with external inputs in quantum control
[18]–[20], especially for Markovian quantum feedback [28].
Markovian master equations in the Lindblad form are described
as [24], [28]

ρ̇(t) = − ı

�
[H, ρ(t)] +

∑
k

γkD[Lk]ρ(t) (2)

where H is the effective Hamiltonian as a Hermitian operator
over the underlying Hilbert space, ı2 = −1, � is the reduced
Planck constant, the non-negative coefficients γk specify the
relevant relaxation rates, and

D[Lk]ρ = LkρL
†
k − 1

2
L†
kLkρ−

1

2
ρL†

kLk.

2) Swapping Operators: In quantum systems, the two-
dimensional Hilbert space forms the state-space of qubits (the
most basic quantum system). For any Hilbert space H∗, it is
convenient to use |·〉, known as the Dirac notion, to denote a
unit (column) vector in H∗ [7]. Moreover, |ξ〉†, i.e., the complex
conjugate transpose of |ξ〉, is denoted as 〈ξ|.

Let H be a two-dimensional Hilbert space for qubits. The
standard computational basis of H is denoted by |0〉 and |1〉.
An n-qubits quantum network is the composite quantum system
of n qubits in the set V = {1, . . . , n}, whose state space is

the Hilbert space H⊗n = H⊗ · · · ⊗ H, where ⊗ denotes the
tensor product. The swapping operator between qubits i and j,
denoted as Uij , is defined by

Uij (|q1〉 ⊗ · · · ⊗ |qi〉 ⊗ · · · ⊗ |qj〉 ⊗ · · · ⊗ |qn〉)
= |q1〉 ⊗ · · · ⊗ |qj〉 ⊗ · · · ⊗ |qi〉 ⊗ · · · ⊗ |qn〉

for all qi ∈ {0, 1}, i = 1, . . . , n. In other words, the swapping
operator Uij switches the information held in qubits i and j
without changing the states of other qubits.

Additionally, for any |p〉, |q〉 ∈ H∗, we use the notation |p〉〈q|
to denote the operator over H∗ defined by

(|p〉〈q|) |η〉 =
〈
|q〉, |η〉

〉
|p〉, ∀|η〉 ∈ H∗

where 〈·, ·〉 represents the inner product that the Hilbert space
H∗ is equipped with. In standard quantum mechanical notation,
the inner product 〈|p〉, |q〉〉 is denoted as 〈p|q〉.

3) Partial Trace: Let HA and HB be the state spaces of
two quantum systems A and B, respectively. Their composite
system is described by a density operator ρAB . Let LA, LB ,
and LAB be the spaces of (linear) operators over HA, HB ,
and HA ⊗HB , respectively. Then the partial trace over system
B, denoted by TrHB

, is an operator mapping LAB to LA

defined by

TrHB
(|pA〉〈qA| ⊗ |pB〉〈qB |) = |pA〉〈qA|Tr (|pB〉〈qB |)

for all |pA〉, |qA〉 ∈ HA, |pB〉, |qB〉 ∈ HB .
The reduced density operator (state) for system A, when

the composite system is in the state ρAB , is defined as ρA =
TrHB

(ρAB). The physical interpretation of ρA is that ρA holds
the full information of system A in ρAB . For a detailed intro-
duction, we refer to [7].

III. QUANTUM CONSENSUS AND SYNCHRONIZATION

MASTER EQUATIONS

A. Quantum Networks and Interaction Graphs

Consider a quantum network with n qubits. The qubits are
indexed in the set V = {1, . . . , n} and the state space of this
n-qubit quantum network is denoted as the Hilbert space
H⊗n = H⊗ · · · ⊗ H, where H denotes a two-dimensional
Hilbert space over C. The density operator of the n-qubit
network is denoted as ρ.

We define a quantum interaction graph over the n-qubit
network as an undirected graph G = (V,E), where each el-
ement in E, called a quantum edge, is an unordered pair of
two distinct qubits denoted as {i, j} ∈ E with i, j ∈ V. Let Ω
denote the set of all quantum interaction graphs over node set
V = {1, . . . , n}. Let σ(·) : [0,∞) �→ Ω be a piecewise constant
function. The obtained time-varying graph is then denoted as
Gσ(t) = (V,Eσ(t)). We assume that there is a constant τD >
0 as a lower bound between any two consecutive switching
instants of σ(t).
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B. Dynamics

Let H be the (time-invariant) Hamiltonian of the n-qubit
quantum network. In this paper, we propose and investigate
the state evolution of the quantum network described by the
following master equation:

dρ

dt
= − ı

�
[H, ρ] +

∑
{j,k}∈Eσ(t)

αjk

(
UjkρU

†
jk − ρ

)
(3)

where αjk > 0 is a constant marking the weight of edge {j, k},
and Ujk is the swapping operator between j and k.

The system (3) will be referred to as the quantum synchro-
nization master equation. When we assume H = 0, the system
(3) is reduced to

dρ

dt
=

∑
{j,k}∈Eσ(t)

αjk

(
UjkρU

†
jk − ρ

)
. (4)

We call the system (4) the quantum consensus master equation.
Remark 1: The Lindblad evolution (3) is a continuous-

time analogue of the quantum gossip algorithm proposed in
[15]. This continuous-time generalization to the discrete-time
dynamics [15], [17] has also been independently investigated in
[1], [21]. Compared to the results and analysis methodologies
in [15], [17], [21], in this work we provide a new approach
to investigate the connection between the proposed quantum
consensus scheme and classical consensus dynamics. As will
be shown in the following discussions, once this connection
has been made clear, various results for classical consensus can
then be adapted to establish convergence conditions under more
relaxed conditions imposed on quantum interaction graphs.

Remark 2: The system (3) is related to the proposed real-
ization of n-qubit quantum circuits by nearest-neighbor opera-
tions in [22], which showed that the ability to apply arbitrary
Lindblad operators implies encoding of quantum circuits with
polynomial overhead. In the system (3), the swapping operator
Ujk represents external interactions between qubit j and qubit
k through their local environment (cf., [22, Figure 1]), and the
network Hamiltonian generates internal qubit interactions.

C. Objectives

A permutation of the set V = {1, . . . , n} is a bijective map
from V onto itself. We denote by π such a permutation.
Particularly, a permutation π is called a swapping between
j and k, denoted by πjk, if π(j) = k, π(k) = j, and π(s) = s,
s ∈ V \ {j, k}. The set of all permutations of V forms a group,
called the n’th permutation group and denoted by P = {π}.
There are n! elements in P. Given π ∈ P, we define a unitary
operator, Uπ , over H⊗n, by

Uπ (|q1〉 ⊗ · · · ⊗ |qn〉) =
∣∣qπ(1)〉⊗ · · · ⊗

∣∣qπ(n)〉
where qi = 0 or 1 for all i = 1, . . . , n. Define an operator over
the density operators of H⊗n, P∗, by

P∗(ρ) =
1

n!

∑
π∈P

UπρU
†
π. (5)

Introduced in [15], P∗(ρ) serves as the quantum average of the
n-qubit network at the state ρ.

Let the initial time be t0 ≥ 0 and let ρ(t0) be the initial den-
sity operator of the quantum network. We make the following
definition.

Definition 1:
(i) The system (4) reaches an asymptotic (symmetric-state)

quantum consensus for initial time t0 ≥ 0 and initial state
ρ(t0) if limt→∞ ρ(t) = P∗(ρ(t0)).

(ii) The system (4) reaches global asymptotic (symmetric-
state) quantum consensus if quantum consensus is
achieved for all t0 ≥ 0 and all initial density operators
ρ(t0).

(iii) The system (4) reaches global exponential (symmetric-
state) quantum consensus, if there exist C(ρ(t0)) > 0
(which may depend on the initial state ρ(t0)) and γ > 0
(which does not depend on ρ(t0)) such that

‖ρ(t)− P∗ (ρ(t0))‖ ≤ C (ρ(t0)) e
−γ(t−t0), t ≥ t0

for all initial times t0 ≥ 0 and initial states ρ(t0).
Let

ρk(t) := Tr⊗j �=kHj
(ρ(t))

be the reduced state of qubit k at time t, k = 1, . . . , n, defined
by the partial trace over the remaining n− 1 qubits’ space
⊗j �=kHj . Here Hj denotes the two-dimensional Hilbert space
corresponding to qubit j, j ∈ V. Note that ρk(t) contains all
the information that qubit k holds in the composite state ρ(t).
Consistent with the classical definition of complex network
synchronization [36], [37], we also introduce the following
definition for quantum (reduced-state) synchronization.

Definition 2:
(i) The system (3) achieves global asymptotic quantum

(reduced-state) synchronization if

lim
t→∞

(
ρk(t)− ρm(t)

)
= 0, k,m ∈ V (6)

for all initial times t0 and initial values ρ(t0).
(ii) The system (3) achieves global exponential quantum

(reduced-state) synchronization if there are two constants
C(ρ(t0)) > 0 and γ > 0 such that∥∥ρk(t)− ρm(t)

∥∥ ≤ C (ρ(t0)) e
−γ(t−t0), t ≥ t0 (7)

for all k,m ∈ V.
Note that along the Lindblad master equation (4), ρ(t) will be

preserved as positive, Hermitian, and with trace one, as long as
ρ(0) defines a proper density operator. While the convergence
conditions to be derived in the paper do not depend on these
properties held by the density operators. Therefore, throughout
the rest of the paper, we assume that ρ(t) lies in the general
space C

2n×2n .

IV. THE QUANTUM LAPLACIAN AND INDUCED GRAPH

In this section, we explore the connection between the
quantum consensus dynamics (4) and its classical analogue
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through an induced (classical) graph from a graphical point of
view. We introduce the quantum Laplacian matrix associated
with a quantum interaction graph and show that the conver-
gence to quantum consensus is fully governed by this quantum
Laplacian. This inspired us to introduce the induced graph
of the quantum interaction graph, and then equivalence is
proved between quantum consensus over the interaction graph
and classical consensus over the induced graph. We also es-
tablish some basic scaling and structural properties of the
induced graph.

A. The Quantum Laplacian

We introduce quantum Laplacian associated with the interac-
tion graph G as follows.

Definition 3: Let G = (V,E) be a quantum interaction graph.
The quantum (non-weighted) Laplacian of G is defined as
LG :=

∑
{j,k}∈E(I2n ⊗ I2n − Ujk ⊗ Ujk).

Some properties of the quantum Laplacian can be clearly
observed: LG is real and symmetric, LG122n = 0, and all the
off-diagonal entries of LG are non-negative. Consequently,
invoking the Geršgorin disc theorem (cf., Lemma 1) we know
that all nonzero eigenvalues of LG are positive, and we denote
the smallest eigenvalue other than zero of LG as λ2(LG).

Consider the following quantum consensus master equation
defined over the quantum interaction graph G:

d

dt
ρ(t) =

∑
{j,k}∈E

(
Ujkρ(t)U

†
jk − ρ

)
. (8)

Then (8) can be exactly written as

d

dt
vec(ρ) = −LGvec(ρ) (9)

under the vectorization ρ(t).
There holds for the system (9) that vec(ρ(t)) converges to

a fixed point in the null space of LG exponentially, with the
convergence speed given by λ2(LG). Moreover, different from
classical definition of the Laplacian, the multiplicity of the zero
eigenvalue of LG is no longer one, even when the interaction
graph G is connected. The following lemma provides a charac-
terization of the null space of the quantum Laplacian.

Lemma 2: ker(LG)={vec(z) :P∗(z)=z} ifG is connected.
The proof of Lemma 2 can be found in Appendix A. In light

of Lemma 2, it can be easily deduced that the system (8) reaches
exponential quantum consensus as long as G is connected, with
convergence rate λ2(LG). This is consistent with the results in
[15], [21].

B. The Induced Graph

For further investigations of the quantum Laplacian, we
introduce the following definition.

Definition 4: The induced graph of the quantum interac-
tion graph G, denoted by G = (V, E), is defined in that V =
{1, . . . , 22n} and {r, s} ∈ E , r �=s∈V if and only if [LG]rs �=0.

Making use of (1) and noticing that LG is the classical
Laplacian of the induced graph G, the following lemma follows
from Lemma 2 as a preliminary property between a quantum
interaction graph and its induced graph.

Lemma 3: If the quantum interaction graph G is connected,
then its induced graph G has exactly

dim
({

vec(z) : P∗(z) = z, z ∈ C
2n×2n

})
= dim (ker(LG))

connected components.
We let X(t) = (x1(t) . . . x4n(t))

T := vec(ρ(t)) so that the
system (9) defines classical consensus dynamics over the in-
duced graph G = (V, E) (cf., [5], [11]), where xi(t) ∈ C stands
for the state of node i ∈ V at time t. Let the initial time be
t0 = 0. We make the following definition.

Definition 5: Componentwise consensus over the graph G in
the classical sense is achieved for the system (9) if

lim
t→∞

xi(t) =

∑
j∈Ri

xj(0)

|Ri|

for all i ∈ V , where Ri ⊆ V denotes the set of nodes of the
connected component in which node i lies.

It is well known that the system (9) reaching componentwise
consensus is equivalent to [2]

lim
t→∞

‖X(t)‖LG
= 0

where ‖X(t)‖LG
= XT (t)LGX(t). On the other hand, we have

from Lemma 2 that{
vec(z) : P∗(z) = z, z ∈ C

2n×2n
}
= ker(LG).

As a result, the following conclusion holds providing a direct
relation between quantum consensus and its classical analogue.

Theorem 1: Quantum consensus over G along (8) is equiva-
lent to componentwise consensus in the classical sense over the
induced graph G along (9).

Remark 3: Theorem 1 describes a form of quantum paral-
lelism (cf., [7, Chapter 1.4.2]) in the sense that the original
quantum consensus dynamics over n qubits, leads to indepen-
dent consensus processes over disjoint subsets of nodes. As
shown in Figs. 1 and 2, if the quantum interaction graph is
well chosen, the state evolution can be of the same form for
these different subsets of nodes, but starting from (in general)
different initial values.

C. The Connected Components

We have seen from Theorem 1 that we can indeed investigate
the connected components of the quantum induced graph G to
obtain every detail of the quantum consensus master equation.
Now we establish some basic properties of the connected
components of the quantum induced graph.

1) The Reachable Nodes: We index the elements V =
{1, . . . , 22n} under the standard computational basis of H⊗n.
Recall that |0〉 and |1〉 form a basis of H. Let |q1〉 ⊗ · · · ⊗



SHI et al.: REACHING A QUANTUM CONSENSUS 379

Fig. 1. The induced graph of the three-qubit quantum complete graph. There
are 64 nodes in the induced graph, and they can be indexed as the elements in
the basis B.

Fig. 2. The connected components of the induced graph for the three-qubits
quantum complete graph. There are a total of 20 components, consisting of
4 components each with one node, 12 components each with three nodes,
and the remaining 4 components each with six nodes. Note that all of these
components are regular graphs in the sense that every node within the same
component has the same degree.

|qn〉 ∈ H⊗n be denoted as |q1 . . . qn〉 for simplicity, where ⊗
represents the tensor product. Then, the following 2n elements:

|q1 . . . qn〉 : qi ∈ {0, 1}, i = 1, . . . , n

form a basis of H⊗n. We define

|q1 . . . qn〉〈p1 . . . pn| : H⊗n �→ H⊗n

as a linear operator over H⊗n such that

(|q1 . . . qn〉〈p1 . . . pn|) |ξ〉 = (〈p1 . . . pn|ξ〉) |q1 . . . qn〉

for all |ξ〉 ∈ H⊗n. We now obtain a basis for all linear operators
over H⊗n (which is isomorphic to C

2n×2n )

B := {|q1 . . . qn〉〈p1 . . . pn| : qi, pi ∈ {0, 1}, i = 1, . . . , n} .

Furthermore, associated with any π ∈ P with P being the
permutation group over V, we define an operator Fπ over
H⊗n ×H⊗n by

Fπ (|q1 . . . qn〉〈p1 . . . pn|) =
∣∣qπ(1) . . . qπ(n)〉 〈pπ(1) . . . pπ(n)∣∣

for all |q1 . . . qn〉〈p1 . . . pn| ∈ B. Particularly, when π ∈ P de-
fines a swapping permutation πjk, the corresponding Fπ will
be denoted as Fπjk

. Then the following lemma holds with its
proof given in Appendix B.

Lemma 4: For all ρ ∈ C
2n×2n and π ∈ P, it holds that

UπρU
†
π = Fπ(ρ).

Each node in V corresponds to one entry in ρ ∈ C
2n×2n

under vectorization. We identify the nodes in V as the ele-
ments in B. For any |q1 . . . qn〉〈p1 . . . pn| ∈ V , we denote by
N|q1...qn〉〈p1...pn| the set of nodes in V that are adjacent to

|q1 . . . qn〉〈p1 . . . pn| in the induced graph G. It is then clear
from Lemma 4 that

N|q1...qn〉〈p1...pn| =
{∣∣qπjk(1) . . . qπjk(n)

〉 〈
pπjk(1) . . . pπjk(n)

∣∣
�= |q1 . . . qn〉〈p1 . . . pn| : πjk ∈ E} .

Noting that all the swapping permutations in

{πjk : {j, k} ∈ E}

form a generating subset of P, the following lemma holds.
Lemma 5: Suppose G is connected. Then for any given node

|q1 . . . qn〉〈p1 . . . pn| ∈ V

R|q1...qn〉〈p1...pn| :=
{∣∣qπ(1) . . . qπ(n)〉〈pπ(1) . . . pπ(n)∣∣ : π∈P

}
is the set of nodes in V that are reachable from |q1 . . . qn〉
〈p1 . . . pn| in the graph G.

2) Several Counting Theorems: We now establish some
scaling properties of the components of the induced graph. First
of all the following theorem holds, with a detailed proof in
Appendix C.

Theorem 2: Suppose G is connected. Then

(i) There are dim({vec(z) : P∗(z) = z, z ∈ C
2n×2n})

connected components in G. Different choices of G give
the same node set partition of V along the connected
components of their induced graphs.

(ii) Let | · | stand for the cardinality of a finite set. The
degree of |q1 . . . qn〉〈p1 . . . pn| ∈ V is computed as
|N|q1...qn〉〈p1...pn||.

(iii) There are exactly four smallest components of G, each of
which contains only one node. The number of nodes in
the largest components of G lies in the interval[

max
0≤k≤n

Ck
n,

(
max
0≤k≤n

Ck
n

)2
]

where Ck
n is the combinatorial number of selecting k

different elements out of n different choices.

Remark 4: Note that max0≤k≤n C
k
n is achieved at k =

�(n+ 1)/2�, where �b� denotes the greatest integer no larger
than b for a given b ∈ R. Invoking the famous Stirling’s formula
it is known that

max
0≤k≤n

Ck
n ∼ 2n√

πn/2
.

Therefore, based on Theorem 2, we know that the size of
the largest component, asymptotically (as n tends to infinity)
lies in [

2n√
πn
2

,
4n

πn
2

]
.

Let Kn denote the complete graph with n nodes. The follow-
ing theorem establishes some tight bounds of the node degree
for the induced graph, whose proof is in Appendix D.
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Theorem 3:

(i) If n mod 4 = 0, then deg(v) ≤ 3n2/8 for all v ∈ V;
(ii) If n mod 4 = 1, then deg(v) ≤ (3n2 − 3)/8 for all

v ∈ V;
(iii) If n mod 4 = 2, then deg(v) ≤ (3n2 − 4)/8 for all

v ∈ V;
(iv) If n mod 4 = 3, then deg(v) ≤ (3n2 − 3)/8 for all

v ∈ V .

Moreover, there exist nodes with degrees at these upper
bounds when G = Kn.

Remark 5: Theorem 3 indicates that the maximum degree of
the induced graph asymptotically tends to 3n2/8 as n tends to
infinity. While the maximum component is of the size at least
2n/

√
πn/2 from Remark 4. As a result, the largest components

of the induced graph tend to be rather sparse as n becomes
large.

3) Component Structure: We now investigate the structure
of the components. We focus on the case when the quantum
interaction graph is the complete graph.

Recall that an undirected graph is regular if all nodes in
the graph have the same degree [26]. We further introduce the
following definition [27].

Definition 6: Let G be a simple, undirected regular graph
with N nodes and node degree k. We call G strongly regular if
there are two integers λ and μ such that

(i) Every two adjacent nodes have λ neighbors in common;
(ii) Every two non-adjacent nodes have μ neighbors in

common.

We also introduce the quantum induced graph on the diago-
nal entries as a subgraph of G.

Definition 7: The quantum diagonal induced graph, de-
noted Gdiag = (Vdiag, Ediag), is the subgraph generated by the
node set Vdiag := {|p1 . . . pn〉〈p1 . . . pn| : pi ∈ {0, 1}} in the
graph V .

With Lemma 5, there are no edges between Vdiag and V \
Vdiag in the graph G. The quantum diagonal induced graph
Gdiag therefore fully characterizes the dynamics of the diagonal
entries of the density operator. The physical interpretation of
the diagonal entries is that

[ρ]|p1...pn〉〈p1...pn|

represents the probability of finding the system at the state
|p1 . . . pn〉〈p1 . . . pn| when performing measurement to the
quantum network under the standard basis [7].

The following theorem provides a structural characterization
of the induced graph. The proof can be found in Appendix E.

Theorem 4: Suppose G = Kn. Then

(i) Every connected component of the induced graph G is
regular;

(ii) Every connected component of the diagonal induced
graph Gdiag is almost strongly regular in the sense that
a) every two adjacent nodes in Gdiag have n− 2 neigh-

bors in common;
b) every two non-adjacent nodes in Gdiag have either

zero or one neighbor in common.

Remark 6: The exponentially increasing dimension with
respect to the number of components is a fundamental obstacle
for understanding and analyzing large-scale quantum systems.
Theorems 1, 2, 3, and 4 illustrate the possibility of splitting
the dimensions into decoupled smaller pieces (e.g., Remark 4,
the dimension is reduced by a factor which is at least 2/πn)
by graphical analysis, and then combinatorial analysis would
be able to uncover deeper characterizations. The nature of
quantum systems engineered by sparse Lindblad operators, or
quantum systems with sparse Hamiltonians, suggests potential
applicability of the methodology to more studies of quantum
multi-body systems [31], [32].

D. Discussions

1) Why Swapping Operators?: We now provide a brief dis-
cussion to illustrate that the choice of swapping operators in the
quantum consensus dynamics (4), is very natural from classical
consensus dynamics [11]. A group-theoretic point of view for
their relationships is also provided in [15].

Consider a classical graph G=(V,E) with V = {1, . . . , N}.
Let xi(t) ∈ R be the state of node i in V. Denote x(t) =
(x1(t) . . . xN (t))T . Let every edge’s weight be one, and let
LG be the Laplacian in the classical sense of the graph G. Then
a classical average consensus process is defined by [5], [11]

d

dt
x(t) = −LGx(t). (10)

We introduce a classical swapping operator (matrix) along
the edge {i, j} ∈ E, denoted by Ũij ∈ R

N×N , in the way that

Ũij(z1 . . . zi . . . zj . . . zN )T = (z1 . . . zj . . . zi . . . zN )T (11)

for all (z1 . . . zN )T ∈ R
m. Then physically Ũij switches the

i’th and j’th entries with the rest unchanged, and is therefore
a classical version of the quantum swapping Uij . In fact Ũij

is a permutation matrix. It is interesting to note the following
equality:

LG = −
∑

{i,j}∈E
(Ũij − IN ). (12)

Plugging (12) into (10), we obtain the following equivalent
form of (10):

d

dt
x(t) =

∑
{i,j}∈E

(
Ũijx(t)− x(t)

)
. (13)

It is now clear that the system (4) is a formal quantum
version of the system (13), noting that in the quantum case the
swapping operator Uij maps a density operator ρ to UijρU

†
ij .

This is to say, the connection between the quantum consensus
and its classical prototype, is inherent within their structures,
and the realization of quantum consensus seeking via swapping
operators is remarkably natural.
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Remark 7: As a matter of fact, the quantum consensus state,
defined in (5) (originally introduced in [15]), is formally of the
same form as the classical average noticing

1

N !

∑
π∈P

Ũπz=
1

N !
· ((N−1)!)1T

Nz1N =

∑n
i=1 zi
N

1N (14)

for all z = (z1 · · · zN )T ∈ C
N , where Ũπ denotes the classical

permutation. We have now seen that the classical average (14)
and the quantum average (5) are closely connected.

2) Convergence Speed Optimization: If each edge {i, j} ∈
E is associated with a weight αij , we can correspondingly
define the weighted quantum Laplacian LG(α) :=

∑
{j,k}∈E

αjk(I2n ⊗ I2n − Ujk ⊗ Ujk) with α = (αjk : {j, k} ∈ E).
The speed of convergence to a quantum consensus for

dρ

dt
=

∑
{j,k}∈E

αjk

(
UjkρU

†
jk − ρ

)
(15)

is thus given by the smallest non-zero eigenvalue of LG(α),
denoted λ2(LG(α)).

As a continuous-time and quantum analogue of [3], we can
therefore optimally distribute a certain amount, say W0 > 0, of
edge weights onto the edges so that the fastest convergence rate
can be achieved

maximize λ2 (LG(α))

subject to
∑

{i,k}∈E
αjk ≤ W0. (16)

Following similar argument as in [3], we know that λ2(LG(α))
is a concave function of α. Therefore, the fastest convergence
can be obtained by solving (16) via standard convex program-
ming methods.

We conclude this section with a few remarks. In this sec-
tion we have provided a graphical approach for studying the
quantum consensus master equation. We introduce the quantum
Laplacian and the quantum induced graph, and show that
quantum consensus over the interaction graph is equivalent to
componentwise classical consensus over the induced graph,
with convergence rate given by the smallest eigenvalue of
the quantum Laplacian. We establish some basic properties of
the induced graph in terms its scaling and structure. Such a
fundamental connection makes the majority of graphical de-
velopments in classical network systems directly applicable to
quantum networks. The proposed graphical approach certainly
also applies to discrete-time quantum dynamics, e.g., [15].

V. QUANTUM SYNCHRONIZATION

In this section, we establish synchronization conditions for
the Lindblad equation (3). First of all, making use of the graph-
ical approach developed in the previous section, we establish
two necessary and sufficient quantum consensus conditions for
the system (4) in light of existing results on classical consensus.
Next, we show that for a class of network Hamiltonians, quan-
tum consensus of the system (4) implies synchronization of
the system (3). Finally, we discuss the connection between the

quantum synchronization results and their classical analogue
and present a numerical example.

A. Quantum Consensus Conditions

The following theorem establishes consensus conditions of
the system (4).

Theorem 5:

(i) The system (4) achieves global exponential quantum con-
sensus if and only if there exists a constant T > 0 such
that G([t, t+ T )) := (V,

⋃
t∈[t,t+T ) Eσ(t)) is connected

for all t ≥ 0.
(ii) The system (4) achieves global asymptotic quantum con-

sensus if and only if G([t,∞)) := (V,
⋃

t∈[t,∞) Eσ(t)) is
connected for all t ≥ 0.

The proof of Theorem 5 is based on the connection between
quantum consensus and classical consensus from a graphical
point of view, and has been put in Appendix F. These results
are essentially consistent with the results for consensus seek-
ing over classical networks [4]–[13]. We remark that under
the conditions of Theorems 5, the convergence rates can be
explicitly computed making use of the analysis in [13], for both
cases. We also remark that for simplicity of presentation we
assume the edge weights αjk to be a constant. Generalization
to the case where αjk is time-varying or even state-dependent
is straightforward using existing works in the literature on
classical consensus convergence, e.g., [13].

Remark 8: Theorem 5 provides a generalization to the result
in [21] for switching quantum interaction graphs. In fact, from
its proof it is clear that the convergence rate can be obtained
utilizing the results in [13] under the given conditions.

B. From Consensus to Synchronization

Let the initial time be t0 = 0 and denote ρ∗ = P∗(ρ(0)).
Introduce

ρ̃(t) = eıHt/�ρ(t)e−ıHt/�.

Suppose [H,Uπ] = 0 for all π ∈ P. Then some simple calcula-
tions lead to the fact that the evolution of ρ̃(t) satisfies

dρ̃

dt
=

∑
{j,k}∈E

αjk

(
Ujkρ̃U

†
jk − ρ̃

)
. (17)

Substituting the results in Theorem 5, we immediately obtain

lim
t→∞

[
ρ(t)− e−ıHt/�ρ∗e

ıHt/�
]
= 0 (18)

when the same connectivity conditions hold in Theorem 5 for
the switching quantum interaction graph.

Define ρk∗ (t) := Tr⊗j �=kHj
(e−ıHt/�ρ∗e

ıHt/�) for all k ∈ V.
The following lemma can be established from the definition of
the partial trace [7] (or, directly applying [15, Theorem 1]).

Lemma 6: Suppose [H,Uπ] = 0 for all π ∈ P. Then
ρk∗ (t) = ρm∗ (t) for all k,m ∈ V and all t.

As a result, the following theorem holds.
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Theorem 6: Suppose [H,Uπ] = 0 for all π ∈ P.
(i) If G([t,∞)) := (V,

⋃
t∈[t,∞) Eσ(t)) is connected for all

t ≥ 0, then the system (3) achieves global asymptotical
quantum (reduced-state) synchronization.

(ii) If there exists a constant T > 0 such that G([t, t+
T )) := (V,

⋃
t∈[t,t+T ) Eσ(t)) is connected for all t ≥ 0,

then the system (3) achieves global exponential quantum
(reduced-state) synchronization.

The following lemma, with its proof given in Appendix G,
presents two classes of Hamiltonians satisfying the condition
[H,Uπ] = 0 for all π ∈ P. Denote the Kronecker sum H⊕n

0 =∑n
i=1 I

⊗(i−1) ⊗H0 ⊗ I⊗(n−i), where H0 is a Hermitian oper-
ator over H.

Lemma 7: Let H0 be a Hermitian operator over H. If either
H = H⊗n

0 or H = H⊕n
0 holds, then [H,Uπ] = 0 for all π ∈ P.

Remark 9: If H = H⊕n
0 , then there holds eıHt/� =

eıH0t/� ⊗ · · · ⊗ eıH0t/� and e−ıHt/� = e−ıH0t/� ⊗ · · · ⊗
e−ıH0t/�. Consequently, it can be further deduced that

ρk∗ (t) =Tr⊗j �=kHj

(
e−ıHt/�ρ∗e

ıHt/�
)

= e−ıH0t/�
(
Tr⊗n−1

j=1
Hj

(ρ∗)
)
eıH0t/�. (19)

from the definition of the partial trace [7].

C. Discussions

It is worth noticing that the quantum synchronization results
established in Theorem 6, is exactly the quantum analogues of
the classical studies on the synchronization of coupled oscilla-
tors [36]–[38]. Fundamental results have been derived for the
classical notion of synchronization for the following dynamics
[36]–[38]:

d

dt
xi(t) = Axi(t) +

N∑
j=1

Wij (xj(t)− xi(t)) , i = 1, . . . , N

(20)

where xi ∈ R
m, A ∈ R

m×m, Wij ≥ 0. Here xi(t) represents
the state of the i’th oscillator, A is the inherent mode of the
dynamics of the oscillators, and an interaction graph is induced
by [Wij ]. Note that it is critical that all of the oscillators share an
identical inherent dynamics for synchronization of the system
(20). Therefore, it becomes clear that the condition H = H⊕n

0

plays the same role in imposing identical inherent dynamics for
the qubits. The system (3) becomes the quantum equivalence of
the system (20) when such a condition holds, and the behavior
of the system trajectories in the two systems are indeed consis-
tent [36]. On the other hand, for the case with H = H⊗n

0 , the
tensor product of Hamiltonians introduces internal interactions
among the qubits. Synchronization of the qubits’ reduced states
is still reached since these internal interactions cooperate with
the (external) swapping interactions in such a way that H is
invariant under permutations. It is however difficult to write
down the explicit trajectory of each qubit’s reduced state as
a function of H0 in this case, and the synchronization orbit
is certainly no longer the one determined by H0 for the most
choices of H0.

Fig. 3. An illustration of the quantum synchronization: The orbits of the three
qubits asymptotically converge to the same trajectory for the proposed master
equation.

Remark 10: Note that when the nodes’ inherent self-
dynamics are not identical in the classical synchronization
dynamics (20), it is well-known in the literature that it will
be extremely difficult and often impossible to achieve synchro-
nization for the system (20) [38]. Now that it becomes clear
from above discussion that the condition that either H = H⊗n

0

or H = H⊕n
0 in the quantum master equation plays the same

role in enforcing identical inherent self-dynamics, quantum
synchronization will in general be difficult to reach without
such conditions.

D. Numerical Example

In this subsection, we present a simple numerical example to
illustrate the above quantum synchronization result.

We consider three qubits indexed in V = {1, 2, 3}. Their
interaction graph is fixed as the complete graph, i.e., E =
{{1, 2}, {2, 3}, {1, 3}}. Let α12 = α13 = α23 = 1. The initial
network state is chosen to be

ρ0=
1

2
|100〉〈100|+1

2
|100〉〈101|+1

2
|101〉〈101|+1

2
|101〉〈100|.

The network Hamiltonian is chosen to be H = σz ⊗ σz ⊗ σz ,
where

σz =

(
1 0
0 −1

)
(21)

is one of the Pauli matrices.
We first plot the evolution of the reduced states of the three

qubits on one Bloch sphere. Clearly their orbits asymptotically
tend to the same trajectory determined by the Hamiltonian σz

(cf., Fig. 3).
Next, recall that the trace distance between two density

operator ρ1, ρ2 over the same Hilbert space, denoted by
‖ρ1 − ρ2‖Tr, is defined as

‖ρ1 − ρ2‖Tr =
1

2
Tr
√

(ρ1 − ρ2)†(ρ1 − ρ2).
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Fig. 4. An illustration of the quantum synchronization: Exponential conver-
gence to the synchronization orbit. Note that two of the three qubits’ distance
functions exactly agree with each other so there are only two curves distinguish-
able in this plot.

We then plot the trace distances between the reduced states and
the synchronization orbit

Dk(t) :=
∥∥∥ρk(t)− Tr⊗2

j=1
Hj

(
e−ıHt/�ρ∗e

ıHt/�
)∥∥∥

Tr

for k = 1, 2, 3, as a function of t, where ρ∗ = (1/3!)∑
π∈P3

Uπρ0U
†
π is the quantum average with P3 denoting the

permutation group with order three. Clearly they all converge
to zero with an exponential rate (cf., Fig. 4).

VI. CONCLUSION

We have investigated consensus and synchronization prob-
lems for a quantum network with n qubits. The state evolution
of the quantum network equipped with continuous-time swap-
ping operators, is described by a Lindblad master equation.
These swapping operators also introduce an underlying interac-
tion graph. A graphical method bridging the proposed quantum
consensus scheme and classical consensus dynamics was pre-
sented, by studying an induced graph (with 22n nodes) of the
quantum interaction graph (with n qubits). We provided several
fundamental relations between a quantum graph and its induced
classical graph. Two necessary and sufficient conditions for
exponential and asymptotic quantum consensus were obtained,
respectively, for switching quantum interaction graphs. We also
presented quantum synchronization conditions, in the sense that
the reduced states of all qubits tend to a common trajectory. We
showed that this is exactly the quantum analogue of classical
synchronization of coupled oscillators.

The consensus and synchronization problems for the quan-
tum network considered in this paper can be taken as a special
class of stabilization problems in quantum control [30]–[35]
where the control actions are realized by swapping operators.
We believe the results presented in the current paper add
some novel understandings regarding the control and state
manipulation of quantum networks in a distributed manner.
The graphical approach proposed may serve as a systematic
and useful tool for analyzing distributed quantum dynamics.
In future, it is also worth investigating new algorithms for

other consensus/synchronization states in quantum networks
and developing control methods for stabilizing the states of
quantum networks.

APPENDIX A
PROOF OF LEMMA 2

The following equalities hold:

ker(LG) =

⎧⎨⎩vec(z) :
∑

{j,k}∈E

(
UjkzU

†
jk − z

)
= 0

⎫⎬⎭
a)
=
{
vec(z) : UjkzU

†
jk = z, {j, k} ∈ E

}
b)
=
{
vec(z) : UπzU

†
π = z, π ∈ P

}
c)
= {vec(z) : P∗(z) = z} . (22)

Here a) is based on Lemma 5.2 in [29]; b) holds from the fact
that G is a connected graph so that the swapping permutations
along the edges among qubits consist of a generating set of
the group P (cf. [15, Proposition 8 and Lemma 1]). Regarding
equality c), on one hand it is straightforward to see that{

vec(z) : UπzU
†
π = z, π ∈ P

}
⊆ {vec(z) : P∗(z) = z} .

On the other hand, if P∗(z) = z, then

UπzU
†
π = Uπ (P∗(z))U

†
π = P∗(z) = z

since πP = P for any π ∈ P. Thus we also have

{vec(z) : P∗(z) = z} ⊆
{
vec(z) : UπzU

†
π = z, π ∈ P

}
.

This proves the desired lemma. �

APPENDIX B
PROOF OF LEMMA 4

Since the two operators

ρ →UπρU
†
π

ρ →Fπ(ρ)

are both linear, we just need to verify the equality for each
element in the basis B.

The following holds:(
Uπ|q1 . . . qn〉〈p1 . . . pn|U †

π

)
|ξ〉

= 〈p1 . . . pn|U †
π|ξ〉Uπ|q1 . . . qn〉

=
(
〈pπ(1) . . . pπ(n)|ξ〉

)
|qπ(1) . . . qπ(n)〉

=
(
|qπ(1) . . . qπ(n)〉〈pπ(1) . . . pπ(n)|

)
|ξ〉

= Fπ (|q1 . . . qn〉〈p1 . . . pn|) |ξ〉 (23)

for any |ξ〉 ∈ H⊗n. This proves the desired lemma. �
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APPENDIX C
PROOF OF THEOREM 2

(i) The number of connected components of G has been de-
rived in Lemma 3. The fact that the sizes of G’s connected
components do not depend on the form of G, as long as
G is connected, can be simply deduced from Lemma 5.

(ii) The conclusion holds directly from the proof of Lemma 5.
(iii) First of all note that the following four nodes |0 . . . 0〉

〈0 . . . 0|, |0 . . . 0〉〈1 . . . 1|, |1 . . . 1〉〈0 . . . 0|, |1 . . . 1〉〈1 . . . 1|
are always isolated in G since both |0 . . . 0〉 and |1 . . . 1〉
are invariant under any permutation π ∈ P. Furthermore,
it is easy to see that for a node

|q1 . . . qn〉〈p1 . . . pn| ∈ V

to be isolated, it must be the case that both |q1 . . . qn〉 and
|p1 . . . pn〉 are invariant under any permutation π ∈ P.
This proves that the four isolated nodes presented above
are the only four isolated nodes in G.

Finally, we establish the upper and lower bounds to the
number of nodes in the largest component. The following claim
holds.

Claim: |{|qπ(1) . . . qπ(n)〉, π∈P}| = Cr
n with r=

∑n
k=1 qk.

For any |q1 . . . qn〉 and |p1 . . . pn〉 with
∑n

k=1 qk=
∑n

k=1 pk,
we can always find a permutation π� ∈ P such that |q1 . . . qn〉=
|pπ�(1) . . . pπ�(n)〉. As a result, {|qπ(1) . . . qπ(n)〉, π∈P} has Cr

n

elements. This proves the claim.
From Lemma 5, as long as either |q1 . . . qn〉 �= |qπ(1) . . .

qπ(n)〉 or |p1 . . . pn〉 �= |pπ(1) . . . pπ(n)〉 holds, π will generate
a reachable node for |q1 . . . qn〉〈p1 . . . pn|. Then the upper and
lower bounds for the size of the largest component in G follows
immediately.

The proof is now complete. �

APPENDIX D
PROOF OF THEOREM 3

The argument is based on a combinatorics analysis on the
choice of nodes under the basis B. We present the detailed
proof for Cases (i) and (iii). The remaining two cases can be
proved via the same techniques, and whose details are therefore
omitted.

(i) Let n = 2m with some positive integer m ≥ 1 and take
a node v ∈ V . Without loss of generality, we assume v
takes the form∣∣∣∣∣∣0 . . . 0︸ ︷︷ ︸

2χ

1 . . . 1︸ ︷︷ ︸
2m−2χ

〉
〈p1 . . . p2m|

where pj ∈ {0, 1} and 0 ≤ χ ≤ m. It is clear that a
quantum link {j, k} ∈ E (i.e., operator πjk) generates a
neighbor of node v only for the following three cases:
a) j ≤ χ and k ≥ χ+ 1, or k ≤ χ and j ≥ χ+ 1;
b) j ≤ χ and k ≤ χ with pj �= pk;
c) j ≥ χ+ 1 and k ≥ χ+ 1 with pj �= pk.

Consequently, direct combinatorial calculations lead to

deg(v) ≤χ2 + (m− χ)2 + 2χ(2m− 2χ)

= −2χ2 + 2mχ+m2

≤ 3m2

2
. (24)

Moreover, the upper bound 3m2/2 is reached when G =
Kn, m is even (i.e., n mod 4 = 0), and v is of the form
with χ = m/2∣∣∣∣∣∣0 . . . 0︸ ︷︷ ︸

2χ

1 . . . 1︸ ︷︷ ︸
2m−2χ

〉〈
0 . . . 0︸ ︷︷ ︸

χ

1 . . . 1︸ ︷︷ ︸
χ

0 . . . 0︸ ︷︷ ︸
m−χ

1 . . . 1︸ ︷︷ ︸
m−χ

∣∣∣∣∣∣ .
This proves (i).

(ii) Again let n = 2m with some positive integer m ≥ 1. We
study the case when v takes the form∣∣∣∣∣∣0 . . . 0︸ ︷︷ ︸

2χ+1

1 . . . 1︸ ︷︷ ︸
2m−2χ−1

〉
〈p1 . . . p2m|

where pj ∈ {0, 1} and 2χ+ 1 ≤ 2m. Via similar analy-
sis we have

deg(v) ≤χ(χ+ 1) + (m− χ)(m− χ− 1)

+ (2χ+ 1)(2m− 2χ− 1)

= −2χ2 + 2(m− 1)χ+m2 +m− 1

≤ 3m2 − 1

2
. (25)

The upper bound (3m2 − 1)/2 is reached when G = Kn,
m is odd (i.e., n mod 4 = 2), and v is of the form with
χ = (m− 1)/2∣∣∣∣∣∣0 . . . 0︸ ︷︷ ︸

2χ+1

1 . . . 1︸ ︷︷ ︸
2m−2χ−1

〉〈
0 . . . 0︸ ︷︷ ︸

χ

1 . . . 1︸ ︷︷ ︸
χ+1

0 . . . 0︸ ︷︷ ︸
m−χ

1 . . . 1︸ ︷︷ ︸
m−χ−1

∣∣∣∣∣∣ .
This proves (iii). �

APPENDIX E
PROOF OF THEOREM 4

(i) Let |q1 . . . qn〉〈p1 . . . pn| and |q′1 . . . q′n〉〈p′1 . . . p′n| be two
nodes in V belonging to a common component, where
qi, pi, q

′
i, q

′
i take values from {0,1}. From Lemma 5, we

know that we can find a permutation π∗ ∈ P such that

|q′1 . . . q′n〉 〈p′1 . . . p′n| =
∣∣qπ∗(1) . . . qπ∗(n)

〉 〈
pπ∗(1) . . . pπ∗(n)

∣∣ .
(26)

Now suppose πjk generates a link to node |q1 . . . qn〉
〈p1 . . . pn| in the induced graph, i.e., |q1 . . . qn〉〈p1 . . .
pn| �= |qπjk(1) . . . qπjk(n)〉〈pπjk(1) . . .pπjk(n)|. We define
a swapping permutation π� by

π� = ππ∗(j)π∗(k).
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In other words, π� flips the state of qubits π∗(j) and
π∗(k). This gives us

|q′1 . . . q′n〉 〈p′1 . . . p′n|
=
∣∣qπ∗(1) . . . qπ∗(n)

〉 〈
pπ∗(1) . . . pπ∗(n)

∣∣
�=
∣∣qπ�π∗(1) . . . qπ�π∗(n)

〉 〈
pπ�π∗(1) . . . pπ�π∗(n)

∣∣
=
∣∣∣q′π�(1) . . . q

′
π�(n)

〉〈
p′π�(1) . . . p

′
π�(n)

∣∣∣ . (27)

Consequently, π�, as an edge in G since G = Kn, also
generates a link to node |q′1 . . . q′n〉〈p′1 . . . p′n| in the
induced graph. Noting that the positions of |q1 . . . qn〉
〈p1 . . . pn| and |q′1 . . . q′n〉〈p′1 . . . p′n| are symmetric in the
above argument, we have constructed a bijection between
the adjacent nodes of |q1 . . . qn〉〈p1 . . . pn| and those of
|q′1 . . . q′n〉〈p′1 . . . p′n|. This proves the desired conclusion.

(ii) From the proof of Theorem 2 we know that

R|p1...pn〉〈p1...pn|=

{
|p′1 . . . p′n〉 〈p′1 . . . p′n| :

n∑
k=1

p′k=
n∑

k=1

pk

}
.

(28)

For two nodes v= |p1 . . . pn〉〈p1 . . . pn| and v′= |p′1 . . . p′n〉
〈p′1 . . . p′n| in the same component of the diagonal in-
duced graph, we introduce

H(v, v′) =
n∑

k=1

|pk − p′k| .

Proof of Condition a): let v = |p1 . . . pn〉〈p1 . . . pn| and
v′ = |p′1 . . . p′n〉〈p′1 . . . p′n| be two adjacent nodes in the
diagonal induced graph. As a result, we have H(v, v′)=2
and

∑n
k=1 p

′
k =

∑n
k=1 pk = L for some integer L ≤ n.

The following claim holds.
Claim: There are n− 2 common neighbors for v and v′.
Since H(v, v′) = 2, without loss of generality, we write

v= |01p3 . . . pn〉〈01p3 . . . pn| and v′= |10p3 . . . pn〉〈01p3 . . . pn|.
If p3 = 0, then it is straightforward to see that

|001p4 . . . pn〉〈001p4 . . . pn|

is a common neighbor of v and v′. Similarly if p3 = 1, a
common neighbor of v and v′ is given as

|110p4 . . . pn〉〈001p4 . . . pn|.

Continuing the argument to p4, . . . , pn we can find n− 2 com-
mon neighbors for v and v′. Apart from these n− 2 common
neighbors, either v or v′ however has only two more neighbors
as themselves. This proves the claim.

Proof of Condition b): let v = |p1 . . . pn〉〈p1 . . . pn| and v′ =
|p′1 . . . p′n〉〈p′1 . . . p′n| be two non-adjacent nodes in the same
component. This means that H(v, v′) > 2. From (28) we know
that H(v, v′) must be an even number. Thus, H(v, v′) ≥ 4. On
the other hand, let v	 := |p	1 . . . p	n〉〈p	1 . . . p	n| be a common
neighbor of v and v′. Then H(v, v	) = 2 and H(v′, v	) = 2,
which yields H(v, v′) ≤ 4. Consequently, we can easily con-
clude that v and v′ have exactly one common neighbor if
H(v, v′)=4, and they have no common neighbor ifH(v, v′)>4.

The proof is now complete. �

APPENDIX F
PROOF OF THEOREM 5

The proof is based on the graphical approach developed in
Section IV. Under vectorization, the system (4) is equivalent to
the following vector form:

d

dt
vec (ρ(t)) = −L (σ(t))vec (ρ(t)) (29)

where by definition

L (σ(t)) :=
∑

{j,k}∈Eσ(t)

αjk(I2n ⊗ I2n − Ujk ⊗ Ujk).

We denote the induced graph of the quantum interaction
graph Gσ(t) = (V,Eσ(t)), as Gσ(t) = (V, Eσ(t)). The following
lemmas hold.

Lemma 8: Let T > 0 be a constant. Then G([t, t+ T )) has
m� = dim({vec(z) : P∗(z) = z}) connected components if
G([t, t+ T )) is connected.

Proof: Noticing the fact that G([t, t+ T )) is the induced
graph of G([t, t+ T )) following Definition 4, the desired
lemma holds directly from Lemma 3. �

Lemma 9: Suppose G([0,∞)) is connected. Then the system
(29) defines m� classical consensus processes over m� disjoint
subsets of nodes in V .

Proof: We will show it using Lemma 8. If G([0,∞)) is
connected, then G([0,∞)) has m� connected components. This
means that for any two nodes belonging to different connected
components of G([0,∞)), there is never an edge between them
for the system (29). This implies the desired conclusion. �

We now denote the m� disjoint subsets of nodes in V , each
defining the node set of one component of G([0,∞)) when
G([0,∞)) is connected, as V1, . . . ,Vm� . Correspondingly, we
denote by

Go
σ(t) =

(
Vo, Eo

σ(t)

)
, o = 1, . . . ,m�

the subgraph that is associated with Vo in the graph Gσ(t). We
give another technical lemma.

Lemma 10: Suppose G([0,∞)) is connected. Then

(i) The system (4) reaches global (exponential, or asymp-
totic) quantum consensus if and only if the system (29)
reaches classical global (exponential or asymptotic) con-
sensus over all node subsets Vo, o = 1, . . . ,m�.

(ii) Let T > 0 be a constant. Then Go([t, t+ T )) :=
(Vo,

⋃
t∈[t,t+T ) Eo

σ(t)) is connected for all o = 1, . . . ,m�

if and only if G([t, t+ T )) is connected.

Proof:

(i) First of all we fix the initial time as t0 = 0 and the initial
value for ρ(0), and show the equivalence between quan-
tum consensus and classical consensus. The fact that clas-
sical consensus is reached for the system (29) means that

lim
t→∞

xi(t) =

∑
j∈Vo

xj(0)

|Vo|
, i ∈ Vo, o = 1, . . . ,m�
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where again we use the notation X(t) = (x1(t) . . .
x4n(t))

T := vec(ρ(t)), since each L(σ(t)) is always
symmetric. This in turn implies that

lim
t→∞

‖X(t)‖LG
= 0

for an arbitrary connected G. Thus, quantum consensus
is equivalent to classical consensus for this fixed initial
condition.

Next, it is clear that ρ(0) taking value from all le-
gitimate density operators makes Xo(0) = (xk(0) : k ∈
Vo)

T possibly take value from a unit ball in R
|Vo|. This

implies that global quantum consensus for the system (4)
is equivalent to global consensus for the system (29).

Finally, the convergence rate equivalence (exponen-
tial, or asymptotic), is obvious since m� defines a finite
number.

(ii) Noticing the definition of connected component and
Lemma 8, the desired conclusion follows immediately. �

It is straightforward to see that G([0,∞)) must be connected
so that quantum consensus convergence becomes possible for
the n-qubit network. Based on Theorem 4.1 in [13], global
exponential consensus is achieved for the component Vo if
and only if there exists T > 0 such that Go([t, t+ T )) is
connected for all t. Theorem 5.2 in [13] showed that global
asymptotic consensus is achieved for the component Vo if and
only if Go([t,∞)) is connected for all t. As a result, utilizing
Lemma 10 on the equivalence between quantum consensus
and classical consensus, Theorem 5 immediately holds. This
concludes the proof. �

APPENDIX G
PROOF OF LEMMA 7

We only prove the lemma for case (i) and the other case
follows from a similar argument. Take π ∈ P. The following
holds:

[H0 ⊗ · · · ⊗H0]Uπ (|q1 . . . qn〉)

=
∣∣H0qπ(1)

〉
⊗ · · · ⊗

∣∣H0qπ(n)
〉

= Uπ (|H0q1〉 ⊗ · · · ⊗ |H0qn〉)

= Uπ[H0 ⊗ · · · ⊗H0] (|q1 . . . qn〉) (30)

for all |q1 . . . qn〉∈H⊗n. This immediately implies [H,Uπ]=0
and the desired conclusion thus holds. �
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