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Abstract— It is desirable to limit the amount of communi-
cation and computation generated by each agent in a large
multi-agent system. Event- and self-triggered control strategies
have been recently proposed as alternatives to traditional time-
triggered periodic sampling for feedback control systems. In
this paper we consider self-triggered control applied to a
multi-agent system with an agreement objective. Each agent
computes its next update time instance at the previous time.
This formulation extends considerably our recent work on
event-based control, because in the self-triggered setting the
agents do not have to keep track of the state error that triggers
the actuation between consecutive update instants. Both a
centralized and a distributed self-triggered control architecture
are presented and shown to achieve the agreement objective.
The results are illustrated through simulated examples.

I. INTRODUCTION

Distributed control of networked multi-agent systems is
an important research field due to its role in a number of
applications, including multi-agent robotics [6], [16], [8],
[3], distributed estimation [20],[23] and formation control
[12],[5],[28], [2],[22].

Recent advances in communication technologies have fa-
cilitated multi-agent control over communication networks.
On the other hand, the need to increase the number of agents
leads to a demand for reduced computational and bandwidth
requirements per agent. In that respect, a future control
design may equip each agent with a small embedded micro-
processor, which will collect information from neighboring
nodes and trigger controller updates according to some rules.
The control update scheduling can be done in a time-driven
or an event-driven fashion. The first case involves the tradi-
tional approach of sampling at pre-specified time instances,
usually separated by a specific period. Since our goal is
allowing more agents into the system without increasing the
computational cost, an event-driven approach seems more
suitable. Stochastic event-driven strategies have appeared in
[21],[14]. Similar results on deterministic event-triggered
feedback control have appeared in [26],[24],[13],[15],[11].
A comparison of time-driven and event-driven control for
stochastic systems favoring the latter can be found in [4].

Motivated by the above discussion, in previous work [7]
a deterministic event-triggered strategy was provided for a
large class of cooperative control algorithms, namely those
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that can be reduced to a first order agreement problem [19].
In contrast to the event-triggered approach, we consider
in this paper a self-triggered solution to the multi-agent
agreement problem. In particular, each agent now computes
its next update time at the previous one, without having
to keep track of the state error measurement that triggers
the actuation between two consecutive update instants. The
approach is first presented in a centralized fashion, while
a distributed counterpart is presented next. Self-triggered
control is a natural extension of the event-triggered approach
and has been considered in [25],[1],[27],[17],[18].

The rest of this paper is organized as follows: Section
II presents some necessary background and discusses the
problem treated in the paper. The centralized case is dis-
cussed in Section III where we first review the event-
triggered formulation of [7] and proceed to present the self-
triggered approach of the current paper. Section IV presents
the distributed counterpart, first reviewing the results of [7]
and then presenting the distributed self-triggered framework.
Some examples are given in Section V while Section VI
includes a summary of the results of this paper and indicates
further research directions.

II. PRELIMINARIES

A. System Model

We consider N agents, with xi ∈ R denoting the state
of agent i. Note that the results of the paper are extendable
to arbitrary dimensions. We assume that the agents’ motion
obeys a single integrator model:

ẋi = ui, i ∈ N = {1, . . . , N}, (1)

where ui denotes the control input for each agent.
Each agent is assigned a subset Ni ⊂ N of the rest of

the team, called agent i’s communication set, that includes
the agents with which it can communicate. The undirected
communication graph G = {V,E} of the multi-agent team
consists of a set of vertices V = {1, ..., N} indexed by the
team members, and a set of edges, E = {(i, j) ∈ V ×
V |i ∈ Nj} containing pairs of vertices that correspond to
communicating agents.

B. Background and Problem Statement

The agreement control laws in [9], [19] were given by

ui = −
∑

j∈Ni

(xi − xj) , (2)

and the closed-loop equations of the nominal system (without
quantization) were ẋi = −

∑

j∈Ni

(xi − xj , ), i ∈ N , so
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that ẋ = −Lx, where x = [x1, . . . , xN ]T is the stack
vector of agents’ states and L is the Laplacian matrix of
the communication graph. For a review of the Laplacian
matrix and its properties, see the above references and [10].
For a connected graph, all agents’ states converge to a
common agreement point which coincides with the average
1
N

∑

i

xi(0) of the initial states.

We redefine the above control formulation to take into
account event-triggered strategies for the system (1). Both
centralized and distributed event-triggered cooperative con-
trol are treated.

1) Centralized Event-triggered Multi-agent Control: For
each i ∈ N , and t ≥ 0, introduce a (state) measurement error
ei(t). Denote the stack vector e(t) = [e1(t), . . . , eN (t)]T .
The discrete time instants where the events are triggered are
denoted by: t0, t1, . . .. To the sequence of events t0, t1, . . .
corresponds a sequence of control updates u(t0), u(t1), . . .
Between control updates the value of the input u is held
constant and equal to the last control update, i.e.,:

u(t) = u(ti),∀t ∈ [ti, ti+1), (3)

and thus the control law is piecewise constant between the
event times t0, t1, . . .. The centralized cooperative control
problem is stated as follows: “derive control laws of the form
(3) and event times t0, t1, . . . that drive system (1) to an
agreement point equal to their initial average.”

2) Distributed Event-triggered Multi-agent Control: In
the distributed case, there is a separate sequence of events
tk0 , tk1 , . . . defined for each agent k. A separate distributed
condition triggers the events for agent k ∈ N . The distributed
control law for k is updated both at its own event times
tk0 , tk1 , . . ., as well as at the last event times of its neighbors
tj0, t

j
1, . . . , j ∈ Nk. Thus it is of the form

uk(t) = uk(tki ,
⋃

j∈Nk

tj
i′(t)), (4)

where i′(t)
∆
= arg min

l∈N:t≥t
j
l

{

t − tjl

}

.

The distributed cooperative control problem can be stated
as follows: “derive control laws of the form (4), and event
times tk0 , tk1 , . . ., for each agent k ∈ N that drive system (1)
to an agreement point equal to their initial average.”

III. CENTRALIZED SELF-TRIGGERED CONTROL

We now present a self-triggered control design for the
agreement problem. The event-triggered formulation of [7]
is reviewed first and it is then modified to the self-triggered
design.

A. Review of Centralized Event-Triggered Control Design

The state measurement error is defined by

e(t) = x(ti) − x(t), i ∈ N , (5)

for t ∈ [ti, ti+1). The choice of ti will be given in the sequel.
The proposed control law in the centralized case is defined
as the event-triggered analog of the ideal control law:

u(t) = −Lx(ti), t ∈ [ti, ti+1) (6)

The closed loop system is then given by

ẋ(t) = −Lx(ti) = −L(x(t) + e(t)) (7)

Denote by x̄(t) = 1
N

∑

i

xi(t) the average of the agents’

states. It is shown in [7] that x̄(t) = x̄(0) =
1

N

∑

i

xi(0) ≡ x̄,

i.e., the average of the agents’ states remains constant and
equal to its initial value.

Thus in the event-triggered set up of [7], the event times
ti, i = 0, 1, . . . are defined recursively by

ti+1 = arg min
t
{t : ‖e(t)‖ = σ

‖Lx(t)‖
‖L‖ , t ≥ ti} (8)

with t0 = 0. This also implies that the condition

‖e‖ ≤ σ
‖Lx‖
‖L‖ , (9)

holds for all times and that the control is updated when this
condition is violated. The main result of [7] is summarized
in the following:

Theorem 1: Consider system ẋ = u with the control
law (6),(8) and assume that the communication graph G is
connected. Suppose that 0 < σ < 1. Then the state of all the
agents converge to their initial average, i.e., limt→∞ xi(t) =
x̄ = 1

N

∑

i

xi(0) for all i ∈ N .

B. Self-triggered Control

In the event-triggered formulation, it becomes apparent
that continuous monitoring of the measurement error norm
is required to check condition (8). In the context of self-
triggered control, this requirement is relaxed. In contrast, in
the self-triggered setup, the next time ti+1 at which control
law is updated is predetermined at the previous event time
ti and no state or error measurement is required in between
the control updates. Such a self-triggered control design is
presented in the following.

For t ∈ [ti, ti+1), (7) yields x(t) = −Lx(ti)(t−ti)+x(ti).
Thus (9) can be rewritten as ‖x(t) − x(ti)‖ ≤ σ ‖Lx(t)‖

‖L‖ , or

‖ − Lx(ti)(t − ti)‖ ≤ σ
‖ − L2x(ti)(t − ti) + Lx(ti)‖

‖L‖ ,

or, equivalently

‖Lx(ti)‖(t − ti) ≤
σ

‖L‖‖(−(t − ti)L + I)Lx(ti)‖.

An upper bound on the next execution time ti+1 is given by

‖Lx(ti)‖(t∗ − ti) =
σ

‖L‖‖(−(t∗ − ti)L + I)Lx(ti)‖.

Using the notation ξ = t∗ − ti, the latter is rewritten as

‖Lx(ti)‖2‖L‖2ξ2 = σ2(‖L2x(ti)‖2ξ2

+ ‖L2x(ti)‖2 − 2(Lx(ti))
T LLx(ti)ξ),

or equivalently,

(‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2)ξ2

+ 2σ2(Lx(ti))
T LLx(ti)ξ − σ2‖L2x(ti)‖2 = 0.
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Note that

(‖Lx(ti)‖2‖L‖2−σ2‖L2x(ti)‖2) > (1−σ2)‖Lx(ti)‖2‖L‖2,

so that (‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2) > 0 and

∆ =4σ4‖(Lx(ti))
T LLx(ti)‖2 + 4σ2‖L2x(ti)‖2

· (‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2) > 0.

An upper bound is then given by

t∗ = ti +
−2σ2(Lx(ti))T LLx(ti) +

√
∆

2(‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2)
. (10)

Note that as long as Lx(ti) += 0, i.e., agreement has not been
reached, t∗ − ti is strictly positive, i.e., the inter-execution
times are non-trivial. The preceding analysis, along with
Theorem 1, yield the following result:

Theorem 2: Consider system ẋ = u with the control
law (6) and assume that the communication graph G is
connected. Suppose that 0 < σ < 1. Assume that for each
i = 1, 2, . . . the next update time is chosen such that the
bound

ti+1 − ti <
−2σ2(Lx(ti))T LLx(ti) +

√
∆

2(‖Lx(ti)‖2‖L‖2 − σ2‖L2x(ti)‖2)
(11)

holds. Then for any initial condition in RN all agents
converge to their initial average, i.e.,

lim
t→∞

xi(t) = x̄ =
1

N

∑

i

xi(0), ∀i ∈ N .

IV. DISTRIBUTED SELF-TRIGGERED CONTROL

A. Review of Distributed Event-Triggered Control Design

In this section, we consider a distributed counterpart of the
event-triggered agreement problem. In particular, each agent
now updates its own control input at event times it decides
based on information from its neighboring agents. The event
times for each agent i ∈ N are denoted by ti0, t

i
1, . . .. We will

first review the event-triggered approach of [7] and proceed
to the self-triggered formulation in the sequel.

The measurement error for agent i is defined as

ei(t) = xi(t
i
k) − xi(t), t ∈ [tik, tik+1). (12)

The distributed control law for agent i is now given by:

ui(t) = −
∑

j∈Ni

(

xi(t
i
k) − xj(t

j
k′(t))

)

, (13)

where k′(t)
∆
= arg min

l∈N:t≥t
j
l

{

t − tjl

}

. Hence, each agent takes

into account the last update value of each of its neighbors
in its control law. The control law for i is updated both at
its own event times ti0, t

i
1, . . ., as well as at the event times

of its neighbors tj0, t
j
1, . . . , j ∈ Ni. It is shown in [7] that in

this case we also have ˙̄x = 0 for the agents’ initial average.

Denote now Lx ! z = [z1, . . . , zN ]T and consider V =
1
2xT Lx.. Then it is shown in [7] that

V̇ ≤−
∑

i

z2
i +

∑

i

a|Ni|z2
i

+
∑

i

1

2a
|Ni|e2

i +
∑

i

∑

j∈Ni

1

2a
e2
j ,

for a > 0.
Since the graph is symmetric, by interchanging the indices

of the last term we get

∑

i

∑

j∈Ni

1

2a
e2
j =

∑

i

∑

j∈Ni

1

2a
e2
i =

∑

i

1

2a
|Ni|e2

i ,

so that V̇ ≤ −
∑

i

(1 − a|Ni|)z2
i +

∑

i

1
a
|Ni|e2

i . Assume that

a satisfies 0 < a < 1
|Ni|

for all i ∈ N . Then, enforcing the
condition

e2
i ≤ σia(1 − a|Ni|)

|Ni|
z2
i , (14)

we get V̇ ≤
∑

i

(σi − 1)(1 − a|Ni|)z2
i , which is negative

definite for 0 < σi < 1.
Thus for each i, the event times are defined recursively by

tik+1 = arg min
t
{t : e2

i (t) =
σia(1 − a|Ni|)

|Ni|
z2
i (t), t ≥ tik},

(15)
with ti0 = 0 and where zi =

∑

j∈Ni

(xi − xj). The main result

of [7] is summarized in the following:
Theorem 3: Consider the system ẋ = u with the control

law (13), (15) and assume that the communication graph G
is connected. Suppose that 0 < σ < 1 and 0 < a < 1

|Ni|
.

Then the states of all agents converge to their initial average,
i.e., limt→∞ xi(t) = x̄ = 1

N

∑

i

xi(0) for all i ∈ N .

B. Distributed Self-Triggered Control

Similarly to the centralized case, continuous monitoring of
the measurement error norm is required to check condition
(15) in the distributed case. In the self-triggered setup,
the next time tik+1 at which control law is updated is
predetermined at the previous event time tik and no state
or error measurement is required in between the control
updates. Such a distributed self-triggered control design is
presented below.

Define

βi =
σia(1 − a|Ni|)

|Ni|
.

Then, (14) is rewritten as

|xi(t
i
k) − xi(t)|2 ≤ βiz

2
i (t).

Since
ẋi(t) = −

∑

j∈Ni

(

xi(t
i
k) − xj(t

j
k′)

)

,

we get

xi(t) = −
∑

j∈Ni

(xi(t
i
k) − xj(t

j
k′))(t − tik) + xi(t

i
k)
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for t ∈ [tik,min{tik+1,minj∈Ni
tjk′′}), where

k′′ ∆
= arg min

l∈N:ti
k
≤t

j
l

{

tjl − tik

}

and hence min{tik+1,minj∈Ni
tjk′′} is the next time when

the control ui is updated. Thus (14) is equivalent to

|
∑

j∈Ni

(xi(t
i
k) − xj(t

j
k′))(t − tik)|2 ≤ βiz

2
i (t). (16)

Recalling

zi(t) =
∑

j∈Ni

(xi(t) − xj(t)),

we also have

xj(t) = −
∑

l∈Nj

(xj(t
j
k′) − xl(t

l
k′′′))(t − tjk′) + xj(t

j
k′),

where

k′′′ = k′′′(t)
∆
= arg min

m∈N:t≥tl
m

{

t − tlm
}

.

Denote now
∑

j∈Ni

(xi(t
i
k) − xj(t

j
k′)) = ρi,

∑

l∈Nj

(xj(t
j
k′) − xl(t

l
k′′′)) = ρj ,

and
ξi = t∗ − tik.

We can compute

zi(t) =
∑

j∈Ni

(xi(t) − xj(t))

=
∑

j∈Ni

(−ρiξi + xi(t
i
k))

−
∑

j∈Ni

(−ρj(t − tjk′) + xj(t
j
k′))

= −|Ni|ρiξi + |Ni|xi(t
i
k)

+
∑

j∈Ni

(ρj(t − tik + tik − tjk′) − xj(t
j
k′)),

or equivalently,

zi(t) = (−|Ni|ρi+
∑

j∈Ni

ρj)ξi

+ρi +
∑

j∈Ni

(ρj(t
i
k − tjk′)).

Further denoting Pi = −|Ni|ρi +
∑

j∈Ni

ρj and Φi = ρi +
∑

j∈Ni

(ρj(tik − tjk′)), the condition (16) can be rewritten as

|ρiξi| ≤
√

βi|Piξi + Φi| and since ξi ≥ 0, the latter is
equivalent to

|ρi|ξi ≤
√

βi|Piξi + Φi|. (17)

Note that this inequality always holds for ξi = 0. Also note
that (16) may or may not hold for all ξi ≥ 0, and this can
be decided by agent i at time tik. Based on this observation,
the self-triggered policy for agent i at time tik is defined as
follows: if there is a ξi ≥ 0 such that |ρi|ξi =

√
βi|Piξi+Φi|

then the next update time tik+1 takes place at most ξi time
units after tik, i.e., tik+1 ≤ t∗ = tik + ξi. Of course if there is
an update in one of its neighbors, thus updating the control
law (13), then agent i re-checks the condition. Otherwise, if
the inequality |ρi|ξi ≤

√
βi|Piξi + Φi| holds for all ξi ≥ 0,

then agent i waits until the next update of the control law of
one of its neighbors to re-compute this condition. Note that
in [7], we showed that there is a strictly positive solution
ξi > 0 for at least one i at each time instant.

The self-triggered ruling for each agent i is thus summa-
rized as:

Definition 4: For each i = 1, 2, . . . the self-triggered
ruling defines the next update time as follows: if there is
a ξi ≥ 0 such that |ρi|ξi =

√
βi|Piξi + Φi|, then the next

update time tik+1 takes place at most ξi time units after tik,
i.e., tik+1 ≤ t∗ = tik + ξi. Agent i also checks this condition
whenever its control law is updated due an update of the
error of one of its neighbors. Otherwise, if the inequality
|ρi|ξi ≤

√
βi|Piξi + Φi| holds for all ξi ≥ 0, then agent i

waits until the next update of the control law of one of its
neighbors to re-check this condition.

The preceding analysis, along with Theorem 3, yield the
following result:

Theorem 5: Consider system ẋ = u with the control
law (13) and assume that the communication graph G is
connected. Suppose that 0 < a < 1

|Ni|
and 0 < σi < 1 for

all i ∈ N . Assume that for each i = 1, 2, . . . the next update
time is decided according to Definition 4.

Then, for any initial condition in RN , the states of all
agents converge to their initial average, i.e.,

lim
t→∞

xi(t) = x̄ =
1

N

∑

i

xi(0),

for all i ∈ N .

The previous analysis can also help us derive some con-
clusions about the inter-execution times of each agent.

Note that after simple calculation it is easily derived that
Φi = zi(tik). From (17), we know that the next event for
agent i occurs at a time t when the equation

|ρi|(t − tik) ≤
√

βi|Pi(t − tik) + zi(t
i
k)|

holds. Thus a zero inter-execution time for agent i can only
occur when |zi(tik)| = 0. By virtue of Theorem 5, the system
is asymptotically stabilized to the initial average. By the
Cauchy-Schwartz inequality, we have

||z||2 = ||Lx||2 = |
∑

i

∑

j∈Ni

(xi − xj)|2 ≤ 1

2
xT Lx = V

so that z asymptotically converges to zero. Unfortunately
there is no guarantee that no element of z will reach zero in
finite time (or be equal to zero initially), however, as shown
above, the inter-execution time can only be zero when zi = 0
for agent i, i.e., when agent i has already reached its control
objective.
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V. EXAMPLES

The results of the previous sections are illustrated through
computer simulations. In the following paragraphs, we con-
sider both the centralized and distributed formulations of
the self-triggered algorithms and compare the derived results
with the corresponding event-triggered formulation of [7].

As in [7], consider a network of four agents whose
Laplacian matrix is given by

L =









1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2









The four agents start from random initial conditions and
evolve under the control law (6) in the centralized case,
and the control law (13) in the distributed case. In the
centralized case, we have set σ = 0.65, and σ1 = σ2 = 0.55,
σ3 = σ4 = 0.75 and a = 0.2 for the distributed control
example. In both cases, we consider two different cases of
actuation updates: the event-triggered and the self-triggered
one.

Figure 1 shows the evolution of the error norm in the
centralized case. The top plot represents the event-triggered
and the bottom the self-triggered formulation. In the event-
triggered case, the control law is updated according to
Theorem 1 and in the self-triggered according to Theorem 2.
The solid line represents the evolution of the error ||e(t)||.
This stays in both plots below the specified state-dependent

threshold ||e||max = σ
‖Lx‖
‖L‖ which is represented by the

dotted line in the Figure.

The next simulation depicts how the framework is realized
in the distributed case for agent 1. In particular, the solid
line in Figure 2 shows the evolution of |e1(t)|. This stays
below the specified state-dependent threshold given by (14)

|e1|max =
√

σ1a(1−a|N1|)
|N1|

z1 which is represented by the

dotted line in the Figure. Once again, the top plot shows
the event-triggered case of Theorem 3 and the bottom plot
the self-triggered case of Theorem 5.

In both cases, it can be seen that the event-triggered
case requires less controller updates. On the other hand, the
seld triggered approach seems more robust, since the design
provides an upper bound on the interval in which the update
should be held.

VI. CONCLUSIONS

We presented a self-triggered control strategy for a multi-
agent system with single integrator agents. This approach
extends our results reported previously for event-triggered
multi-agent control to a self-triggered framework, where each
agent now computes its next update time at the previous one,
without having to keep track of the state error that triggers
the actuation between two consecutive update instants. The
approach was presented both from a centralized and a
distributed perspective.
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(a) Event-triggered case
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(b) Self-triggered case

Fig. 1. Four agents evolve under the centralized event-triggered (top plot)
and self-triggered (bottom plot) proposed framework.

Future work will involve extending the proposed approach
to more general dynamic models, as well as adding uncer-
tainty and time delays to the information exchange.
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