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Abstract: In this paper a novel consensus based distributed recursive algorithm is proposed for
real time change detection using sensor networks. Convergence of the algorithm to the optimal
centralized solution defined by a weighted sum of the results of local signal processing is proved in
the cases of constant and time varying forgetting factors of the underlying recursions, assuming
correlated data and different local values of the parameter changes. Simulation results illustrate
characteristic properties of the algorithms.

1. INTRODUCTION

A great deal of attention has been paid recently to signal
processing using distributed sensors, having in mind the
low cost and increased computational capabilities of sen-
sors, as well as the availability of high speed networks con-
necting the sensors (e.g., Varshney [1996], Vishwanathan
and Varshney [1997]). One of the typical tasks of sensor
networks, which are in the focus of many researchers,
is distributed detection (e.g., Chamberland and Veer-
avalli [2003], Vishwanathan and Varshney [1997], Speran-
zon et al. [2006]). In the classical multi-sensor detection
schemes the local sensors send all their data to other sen-
sors, and ultimately to a fusion center. This topology has
been found to be too restrictive in many applications. Dis-
tributed signal processing has, in principle, many advan-
tages, consisting of the increased reliability, reduced com-
munication bandwidth requirements and reduced overall
cost. However, distribution of functions may result in a
certain loss of performance with respect to the optimal
centralized system. In the case of detection of changes in
the monitored environment, it is often desirable to have
a possibility to test the decision variables in real time at
any node in the network, and not only at predefined fusion
nodes (e.g., Braca et al. [2008, 2010], Chamberland and
Veeravalli [2003]).

Consensus techniques have been studied for many years,
starting from the early 80’s, when important results were
obtained in the areas of distributed asynchronous itera-
tions in parallel computation and distributed optimization
(Tsitsiklis et al. [1986], Olfati-Saber et al. [2007], Fax and
Murray [2004], Jadbabaie et al. [2003], Moreau [2005],
Ren and Beard [2005], etc.). There have been some recent
attempts to apply consensus techniques to the distrib-
uted detection problem, Franco et al. [2006]. However,
the underlying assumption is that the dynamic agreement
process starts after all data have been collected, implying
inapplicability to real time change detection problems.
In Stanković et al. [2009b,a, 2007] algorithms for distrib-
uted state and parameter estimation have been proposed

by combining local overlapping decentralized estimation
schemes with a dynamic consensus algorithm. Analogous
algorithms for distributed detection based on “running
consensus” have been proposed and discussed in Braca
et al. [2008, 2010], on the basis of Boyd et al. [2006].

In this paper an algorithm is proposed for distrib-
uted change detection while monitoring the environment
through a wireless sensor network. It is assumed that
all the nodes in the network can generate local decision
variables by recursive schemes belonging to the geometric
moving average control charts (Basseville and Nikiforov
[1993]). By applying a dynamic consensus scheme with
preselected asymmetric communication gains, one obtains
an algorithm which asymptotically provides nearly equal
behavior of all the nodes, i.e., any node can be selected for
testing the decision variable w.r.t. a pre-specified thresh-
old. It is proved that the mean-square error between the
optimal centralized decision variable obtained as a general
weighted sum of the results of the local signal processing
results and the ones generated by the proposed algorithm
is of the order of magnitude of O((1 − α)2) , where α
is the forgetting factor of the algorithm. The network
gains used by the recursive algorithms can be selected by
linear programming, starting from the selected weights of
local decision variables. The proposed algorithm follows
methodologically Stanković et al. [2009a, 2010] and repre-
sents a generalization of the algorithm in Braca et al. [2008,
2010] in which symmetric matrix gains connected to simple
averaging have been considered. In the case of time varying
forgetting factors tending to zero when t tends to infinity,
it is proved that the algorithm converges to the optimal
centralized scheme in the mean-square sense under general
conditions by using stochastic approximation arguments.
Some simulation results are given as an illustration of the
characteristic properties of the proposed algorithm.

The outline of the paper is as follows. In Section 2 a
distributed change detection scheme based on a consen-
sus algorithm is proposed. In Section 3 the convergence
analysis is given assuming constant forgetting factors of



the local recursive schemes, while in Section 4 these results
are extended to the case of time varying forgetting factors.
Section 5 deals with some illustrative simulation results.

2. DISTRIBUTED CHANGE DETECTION
ALGORITHM

Consider a sensor network containing n nodes, where
each node collects locally available measurements and
generates at each discrete time instant t a scalar quantity
xi(t), i = 1, . . . , n, directly, or as a result of local signal
processing. We shall consider in the sequel {xi(t)} as
mutually independent stationary random sequences with
means E{xi(t)} = mi and covariances ri(τ) = E{(xi(t)−
mi)(xi(t+ τ)−mi)}. We shall assume that the network is
aimed at change detection purposes.

In order to explain clearly the main line of thought and to
make connection with the arguments usual for the domain
of hypotheses testing, we shall start the presentation by
assuming the following simple model:

x = m + ε, (1)
where x = [x1, . . . , xn]T , m = [m1, . . . , mn]T and ε =
[ε1, . . . , εn]T , with ε ∼ N (0, Σ), where Σ = diag{σ2

1 ,
. . . , σ2

n}. Assuming that m = θ0 = 0 in the case of no
change and that m = θ1 = [θ1

1, . . . , θ
1
n]T , where θ1

i > 0
for some i in the case of change, we can calculate the
log likelihood ratio for the data set containing x(t), t =
1, . . . , N , and obtain

L(N) =
N∑

t=1

log
pθ1(x(t))
pθ0(x(t))

(2)

= θ1T Σ−1
N∑

t=1

(x(t)− 1
2
θ1)

(Ding [2008], Basseville and Nikiforov [1993]). Starting
from (2), one can apply the general methodology for con-
structing on-line change detection algorithms belonging to
the geometric moving average control charts (Basseville
and Nikiforov [1993]) and obtain the global decision func-
tion for the whole network, generated recursively by

sc(t+1) = αsc(t)+(1−α)
n∑

i=1

wixi(t+1), sc(0) = 0 (3)

where 0 < α < 1 is a forgetting factor and wi = kθ1
i σ−2

i ,
with k = (

∑n
i=1 θ1

i σ−2
i )−1, are the components of the

vector wT = kθ1T Σ−1 (Basseville and Nikiforov [1993]).

The global change detection procedure is based on testing
the decision function sc(t) with respect to an appropriately
chosen threshold λc > 0, so that a change is detected
when |sc(t)| > λc (according to Ding [2008], Basseville
and Nikiforov [1993], one can take, for example, in the
case of model (1), λc = 1

2kθ1T Σ−1θ1). It is important to
notice that the algorithm (3) requires a fusion center. It
is also important to emphasize that the algorithm (3) can
be considered as a representative of a large class of change
detection procedures, without claiming optimality in any
sense: the weights wi ≥ 0 in (3), satisfying

∑n
i=1 wi = 1,

can result from any a priori selection criterion.

The aim of this paper is to propose a consensus based
distributed change detection algorithm which does not

require a fusion center and in which the output of any
preselected node can be used as a representative of the
whole network and be tested w.r.t. a pre-specified common
threshold. The basic assumption for this algorithm is that
the nodes of the network are connected in accordance with
an n×n matrix C = [cij ] satisfying cij ≥ 0, i 6= j and cii >
0, i, j = 1, . . . , n, which formally represents the weighted
adjacency matrix for the underlying graph representing
the network, and that C is row stochastic (Horn and
Johnson [1985]). We propose in this paper the following
algorithm for generating the vector decision function of
the network, denoted as s(t) = [s1(t), . . . , sn(t)]T :

s(t + 1) = αCs(t) + (1− α)Cx(t + 1), s(0) = 0. (4)
The algorithm is, in general, derived from the consensus
based state and parameter estimation algorithms proposed
in Stanković et al. [2009b,a, 2007]; it is also similar to
the detection algorithm based on time averaging proposed
in Braca et al. [2008, 2010]. Notice that the consensus
matrix C performs “convexification” of the neighboring
states for each node and enforces in such a way (under
appropriate conditions) consensus between all the nodes in
the network. In such a way, after achieving the condition
that si(t) ≈ sj(t), i, j = 1, . . . , n, change detection can be
done by testing si(t) for any preselected i with respect to
a given common threshold λc, provided (4) gives a good
approximation of sc(t) generated by (3).

It is to be noticed that x(t) in (4) can take a more
general form than the simple model (1). Therefore, both
algorithms (3) and (4) can be treated as general represen-
tatives of recursive detection procedures with exponential
forgetting, in which x(t) is a random vector with general
properties.

The error vector between the vector s(t) and the state of
the optimal centralized scheme will be defined as

e(t) = s(t)− 1sc(t), (5)
where 1 = [1 · · · 1]T . Iterating (4) and (3) back to the zero
initial conditions, we get

s(t) = (1− α)
t−1∑

i=0

αiCi+1x(t− i) (6)

and

sc(t) = (1− α)
t−1∑

i=0

αiwT x(t− i), (7)

wherefrom we obtain

e(t) = (1− α)
t−1∑

i=0

αi[Ci+1 − 1wT ]x(t− i) (8)

(compare with Braca et al. [2008, 2010], where the special
case when w = 1

n is treated, in conjunction with symmetric
time varying consensus matrices).

3. CONVERGENCE ANALYSIS

We shall analyze properties of the proposed algorithm (4)
starting from the following assumptions:

A1) C has the eigenvalue 1 with algebraic multiplicity 1;

A2) limi→∞ Ci = 1wT .

The first assumption is related to the topology of the
underlying multi-agent network, while the second defines



the connection between the matrix C in (4) and the
optimal weights in the centralized scheme (3). Namely,
in general, under A1), the graph associated with C has
a spanning tree and Ci converges when i tends to infinity
to a nonnegative row stochastic matrix with equal rows,
e.g. Ren and Beard [2005], Olfati-Saber et al. [2007].
Knowing w from the general problem setting based on
the centralized detection strategy, we can construct C
satisfying A2) by solving for C the linear equation known
from the theory of stationary Markov chains (Kumar and
Varaiya [1986])

wT C = wT , (9)
under the constraints that: 1) preselected elements of C
are equal to zero (indication that there can be no commu-
nication between the corresponding nodes) and 2) matrix
C is row stochastic, satisfying the given assumptions.

Using A2) one obtains that sc(t) = wT s(t), and, therefore,
that e(t) = (I − 1wT )s(t); also,

e(t) = (1− α)
t−1∑

i=0

αiC̃i+1x(t− i), (10)

where C̃ = C − 1wT , having in mind that, under A2),
we have (C − 1wT )i = Ci − 1wT and Ci − 1wT = (I −
1wT )(Ci − 1wT ).

We first realize that s(t) as an estimator of 1sc(t) is, in
general, biased, since from (10) we have

me(t) = E{e(t)} = (1− α)
t−1∑

i=0

αiC̃i+1m, (11)

where m = E{x(t)} = [m1, . . . , mn]T . Obviously,
E{e(t)} = 0 only when mi = mj , i, j = 1, . . . , n, having
in mind that C̃m = 0 for m = µ′1, where µ′ is a given
scalar (compare with Braca et al. [2008], where it has been
adopted that m = 0).

The bias is, obviously, smaller when α is closer to one.
Namely, one can directly conclude that in the steady state
we have

lim
t→∞

E{s(t)} = (1− α)(I − αC)−1Cm, (12)

and, consequently,
lim

t→∞
E{s(t)} ≈[(1− α)(I + αC + . . . + ανCν)C+

+ αν+11wT ]m (13)
for some ν large enough. For α close to 1, the first
term in the brackets is obviously small, and can be
neglected, and the second term is approximately equal to
limt→∞E{sc(t)}.
The focus of the analysis is placed on the error covariance
matrix Q(t) = E{e(t)e(t)T } − me(t)me(t)T . Using (10)
and (11) one readily obtains

Q(t) = (1− α)2Φ(t)T R̃(t)Φ(t), (14)

where Φ(t) = [αt−1C̃t
...αt−2C̃t−1

... · · · ...α0C̃]T , R̃(t) =
R(t) − mXmT

X , R(t) = E{X(t)X(t)T }, X(t) = [x(1)T

· · ·x(t)T ]T and mX = E{X(t)}. Furthermore, R̃(t) =
[Rij ], i, j = 1, . . . t, where Rij are constant n × n block
matrices defined as

Rij = diag{r1(i− j), . . . , rn(i− j)}, (15)
according to the adopted assumptions.

Theorem 1. Let assumptions A1) and A2) hold, together
with:

A3) maxi

∑t
τ=0 |ri(τ)| ≤ K; 0 < K < ∞.

Then,
maxi,jQij(t) ≤ O((1− α)2),

where Qij(t) are the elements of Q(t) in (14).

Proof : Consider an arbitrary deterministic n-vector y and
analyze the following n-dimensional quadratic form

yT Q(t)y = (1− α)2yT Φ(t)T R̃(t)Φ(t)y (16)

Having in mind the structure of R̃(t), we have

λmax(R̃(t)) ≤ ‖R̃(t)‖∞ ≤ K < ∞
by assumption A3) (‖A‖∞ = maxi

∑
j |aij |, where A =

[aij ] is a given matrix).

Coming back to (16), we realize that the expression
yT Φ(t)T Φ(t)y is in the form of a sum of terms containing
yT C̃iC̃iT y, i = 0, . . . , t− 1. By assumptions A1) and A2),
it follows that C and 1wT have the same eigenvectors.
Therefore, C has the same eigenvalues as C̃, except for
the eigenvalue 1 of C which is replaced by the eigenvalue
0 of C̃. Having in mind that cii > 0, i = 1, . . . , n, if follows
that the modules of all the eigenvalues of C̃ are strictly
less than 1 (Ren and Beard [2005]).

Consider the recursion P (t+1) = C̃P (t)C̃T with P (0) = I;
obviously, P (t) = C̃tC̃tT for all t. Let vec{P (t)} be an n2-
vector obtained by concatenating the column vectors of
P (t). Then, we have, for t = 0, 1, . . .

vec{P (t + 1)} = (C̃ ⊗ C̃) vec{P (t)},
where ”⊗” denotes the Kronecker’s product. According
to A1) and A2), we have directly that |λ(C̃ ⊗ C̃)|max =
λM < 1, having in mind that the eigenvalues of C̃ ⊗ C̃ are
equal to the cross products of the eigenvalues of C̃ (Horn
and Johnson [1985]); therefore, ‖P (t)‖ ≤ kP λt

M for some
matrix norm, where kP is an appropriate constant.

Therefore, we have

yT C̃iC̃iT y ≤ kP λi
M‖y‖2,

so that we obtain

yT Φ(t)T R̃(t)Φ(t)y ≤ ‖y‖2k′K
∞∑

i=0

αiλi+1
M ≤

≤ K1 < ∞, (17)
where 0 < k′ < ∞ and K1 does not depend on α. Notice
that the term yT C̃C̃T y can be directly maximized by
λmax(C̃C̃T )‖y‖2; however, there is no a priori guarantee
that λmax(C̃C̃T ) < 1.

Consequently, by choosing y = ei, where ei denotes the n-
vector of zeros with only the i-th entry equal to one, one
obtains that

Qii(t) ≤ K1(1− α)2,
i = 1, . . . , n. Furthermore, |Qij(t)| ≤ maxiQii(t), having
in mind elementary properties of positive semidefinite
matrices. Thus, the result. Q.E.D.

The meaning of the obtained result becomes clearer after
realizing that for α close to 1 the mean square error
between the states of the proposed distributed detection



algorithm and the state of the centralized one is much
smaller than the mean square value of the state of the
centralized system. Namely, it follows from (7) and (17)
that

var{sc(t)} = E{sc(t)2} − E{sc(t)}2 ≤ (18)

≤ K(1− α)2
∞∑

i=0

α2i ≤ O(1− α)

having in mind that E{sc(t)} = (1−α)
∑t−1

i=0 αiwT m and∑∞
i=0 α2i = 1

1−α2 . On the other hand, one obtains, using
the above arguments, that ‖me(t)‖ ≤ O(1 − α), so that
the overall mean square error of the state of the i-th node
satisfies Qii(t) + me(t)2i ≤ O((1− α)2).

4. DISTRIBUTED DETECTION BASED ON TIME
AVERAGING

The recursive algorithms (3) and (4) with the constant
positive coefficient α represent essentially tracking algo-
rithms with exponential forgetting, able to cope with
change detection phenomena (Basseville and Nikiforov
[1993]). The same form of the algorithms can be used
also in the case when detection has to be based on time
averaging on infinite intervals. However, in this case we
shall assume that α is a function of time tending to 1
when t tends to infinity, requiring that the error between
the states of the algorithms (3) and (4) converges to zero
in the mean-square sense (in the above case, only upper
bounds in the form of functions of the parameter α can be
considered). However, the algorithms are then not directly
suitable for change detection purposes. Notice that, in
general, both algorithms (3) and (4) can be considered,
after assuming time varying forgetting factor, as stochastic
approximation algorithms, e.g. Chen [2002] . Stochastic
approximation algorithms with consensus, representing a
generalization of (4) to the regression problem, have been
analyzed in Stanković et al. [2007, 2010] starting from the
basic results presented in Tsitsiklis et al. [1986].

Theorem 2. Let in (3) and (4) the forgetting factor be in
the form α(t + 1) = 1− γ(t + 1), and let the assumptions
A1), A2) and A3) be satisfied, together with:

A4) γ(t) is a non-increasing sequence satisfying γ(t) > 0,
limt→∞ γ(t) = 0;

∑∞
t=1 γ(t) = ∞.

Then,
‖Q(t)‖ = o(1)

(o(1) stands for a sequence tending to zero as t tends to
infinity).

Proof: Starting from (4) and (6) one obtains (8). Conse-
quently, in the case of time varying gains one obtains

e(t) =
t−1∑

i=0

π(t, t + 1− i)C̃i+1γ(t− i)x(t− i), (19)

where π(i, j) = 1 for i < j and π(i, j) = α(i) · · ·α(j) for
i ≥ j.

Following the above line of thought, we calculate Q(t) =
E{e(t)e(t)T } − me(t)me(t)T and obtain, similarly as in
(16), the following expression

yT Q(t)y = yT Ψ(t)T R̃(t)Ψ(t)y, (20)

where

Ψ(t) = [π(t, 2)C̃tγ(1)
...π(t, 3)C̃t−1γ(2)

... · · ·

· · · ...π(t, t− 1)C̃γ(t)].
Proceeding like in the proof of Theorem 1, we obtain

yT Q(t)y ≤ ‖y‖2k′K
t−1∑

i=0

π(t, t + 1− i)2λi+1
M γ(t− i)2. (21)

Now it is possible to apply the Kronecker’s lemma (e.g.
Chen [2002]), and to conclude immediately that

lim
t→∞

t∑

i=0

π(t, t + 1− i)2λi+1
M γ(t− i)2 = 0,

wherefrom the result. Q.E.D.

The result of Theorem 2 can be applied, obviously, to the
special case when γ(t) = 1

t , treated in Braca et al. [2008,
2010] under the assumption that the consensus matrix is
symmetric and that the sequences {xi(t)}, i = 1, . . . , n,
are mutually independent and iid. Formally speaking, the
difference between the algorithm (4) with α(t + 1) = 1 −

1
t+1 and the algorithm analyzed in Braca et al. [2008]
lies also in the fact that we apply the “convexification”
operator not only to the previous detector state, but
also to the measurement term, leading to an additional
smoothing effect. It is even more important that the
essential generalization allowing nonsymmetric matrices C
enables obtaining convergence to the centralized change
detector based on a general weighting of the available
signals.

Corollary 1. Under the assumptions of Theorem 2 and with
γ(t) = 1

t we have

‖Q(t)‖ = O(t−2), (22)
while var{sc(t)} = O(t−1).

Proof: In this special case, we have from (19)

e(t) =
1
t

t−1∑

i=0

C̃i+1x(t− i), (23)

and the result (22) immediately follows after applying the
methodology of Theorems 1 and 2. Notice that var{sc(t)}
can be easily calculated in this case similarly as in Braca
et al. [2008] using

sc(t) =
1
t

t−1∑

i=0

wT x(t− i), (24)

as well as E{sc(t)} = wT m. Q.E.D.

5. SIMULATION RESULTS

Example 1. - Properties of the Distributed Change Detec-
tion Algorithm. Let us consider a sensor network with
n = 10 nodes, where the means mi and variances σ2

i
are randomly taken from the intervals [0, 1] and [0.5, 1.5],
respectively (mi = 0 in the case of no change). Communi-
cation (consensus) gains are obtained by solving the linear
programming problem (9) under the constraints that C is
row stochastic and possesses a predefined structure (places
of zeros). The moment of change is chosen to be t = 200.
The proposed algorithm effectively achieves a very similar



behavior of all of the nodes, with local decision functions
getting closer to the global decision function as α → 1.
In Fig. 1 the global decision function is given by dashed
lines (mean ± one standard deviation), together with the
decision function of one randomly selected node (solid
lines). The obtained change detector quality is obvious.
In addition, it can be seen that the proposed algorithm
achieves better performance when compared to the special
case algorithm with the weight vector w = 1

n , and in which
at each discrete time instant two randomly selected nodes
exchange their data, leading to a symmetric consensus
matrix, as in Braca et al. [2008] (Fig. 2).
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Fig. 1. Decision functions: for one node (solid lines) and
global (dashed lines), for asymmetric consensus ma-
trix C
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Fig. 2. Decision functions: for one node (solid lines) and
global (dashed lines), for symmetric consensus matrix
C

Example 2. - Convergence Analysis of the Distributed
Change Detection Algorithm. The same sensor network
from the previous example is considered. The values of
|E{e(t)}| and Qii(t) are estimated for different values of
α for t = 1000 using 1000 Monte Carlo runs. As can
be seen in Fig. 3 and Fig. 4, |E{e(t)}| ∼ (1 − α) and

Qii(t) ∼ (1 − α)2, which confirms the above convergence
analysis.
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Fig. 3. Average errors as functions of α
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Fig. 4. Estimated error variances as functions of α

Example 3. - Convergence Analysis of the Distributed
Detection Algorithm Based on Time Averaging. Consider
the sensor network from previous examples. Estimates of
Qii(t) are calculated for t = 1, . . . , 50 using 10000 Monte
Carlo runs. Fig. 5 shows that Qii(t) ∼ t−2, as claimed
above.

6. CONCLUSION AND DISCUSSION

In this paper a consensus based distributed recursive algo-
rithm based on geometric moving average control charts is
proposed for change detection while monitoring environ-
ment by sensor networks. Convergence of the algorithm
to the optimal centralized solution is studied assuming
temporally correlated data and different local environ-
ment. The analysis encompasses constant and time varying
forgetting factors in the algorithm. Simulation results give
an illustration of the presented theoretical results.

An immediate continuation of the research presented in
this paper can be oriented towards two important subjects.
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The first subject is related to the generalization of the
presented results to the case of stochastic time varying
consensus matrices in (4), allowing randomized ”gossip”
algorithms, in which communications between the nodes
are unidirectional (not obligatorily bidirectional as in
Braca et al. [2008]). Such a case requires an additional care
from the point of view of both the asymptotic behavior of
the consensus matrix and the convergence to the optimal
centralized solution.

The second subject could be related to the application of
the proposed consensus based methodology to the recur-
sive algorithms based on the Generalized Likelihood Ra-
tio, which corresponds to the case of unknown parameter
jumps (Basseville and Nikiforov [1993], Ding [2008]).

In general, further work can be oriented towards efficient
applications of the proposed methodology to complex
problems of decentralized overlapping fault detection and
isolation in large scale systems.
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