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Abstract— In this paper, we consider the distributed opti-
mization problem, whose objective is to minimize the global
objective function, which is the sum of local convex objec-
tive functions, by using local information exchange. To avoid
continuous communication among the agents, we propose a
distributed algorithm with a dynamic event-triggered commu-
nication mechanism. We show that the distributed algorithm
with the dynamic event-triggered communication scheme con-
verges to the global minimizer exponentially, if the underlying
communication graph is undirected and connected. Moreover,
we show that the event-triggered algorithm is free of Zeno
behavior. For a particular case, we also explicitly characterize
the lower bound for inter-event times. The theoretical results
are illustrated by numerical simulations.

I. INTRODUCTION

For a networked system of multiple agents, each of
which has a local private convex objective function, the
objective of the distributed optimization problem is to find
the global minimizer that minimizes the global objective
function, which is the sum of the objective functions of
all agents, in a distributed manner. Distributed optimization
has gained a growing interest over the last decade, due to
its wide applications in machine learning, power systems,
communication networks, and sensor networks [1].

To solve the distributed optimization problem, various
distributed algorithms have been proposed. These algorithms
can be generally divided into two categories depending on
whether they are discrete-time or continuous-time.

Most distributed optimization algorithms are discrete-time
and are based on the consensus and distributed (sub)gradient
descent (DGD) method, see, e.g., [2]–[7]. Although the
simple DGD algorithm and its variants are applicable to non-
smooth convex functions, the convergence speed is usually
rather slow due to the diminishing step-size. Thus, in order
to reduce the communication overheads, recent works focus
on speeding up the convergence process for more structured
local convex objective functions, such as smooth strongly
convex ones, see, e.g., [8]–[10]. The common approach in
these studies is to use some sort of historical information to
correct the error caused by the distributed gradient method
with a fixed step-size. On the other hand, to accelerate
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the convergence process, various continuous-time distributed
algorithms based on the proportional-plus integral control
strategy have also been developed, see, e.g., [11]–[16].

Note that all the aforementioned distributed algorithms
require continuous information exchange among the agents,
which may be impractical in physical applications. More-
over, distributed networks are usually resources-constrained
and communication is energy-consuming. In order to avoid
continuous communication and reduce communication over-
heads, the idea of event-triggered communication and control
has been proposed. The early works focus on the single
system [17]–[19] and have been extended to the multi-agent
system setting [20], [21]. Event-triggered communication
mechanisms for the consensus problem have been proposed
in [22]–[25]

However, for the distributed optimization problem, it is
more challenging since in addition to achieve consensus, it
also requires that the consensus state is an optimal solution.
There are a few works which propose distributed algorithms
with event-triggered communication mechanisms for solving
the distributed optimization over undirected graphs [26],
[27]. In particular, the authors of [26] develop an event-
triggered communication scheme which is free of Zeno
behavior [28], i.e., an infinite number of triggered events
in a finite period of time, and establish its convergence to
a neighborhood of the global minimizer. Motivated by the
zero-gradient-sum (ZGS) algorithm proposed in [12], the
authors of [27] propose a ZGS algorithm with a periodical
time-triggered communication mechanism.

Statement of Contributions: In this paper, we develop
a distributed ZGS algorithm with a novel class of event-
triggered communication mechanisms that use an additional
internal dynamic variable, which is why we named dynamic
event-triggered mechanism. We show that the ZGS algorithm
with the dynamic event-triggered communication scheme
exponentially converges to the global minimizer if the un-
derlying graph is undirected and connected. Moreover, we
show that the proposed event-triggered distributed algorithm
is free of Zeno behavior.

Compared to the time-triggered communication scheme
proposed in [27], our event-triggered mechanism is more
energy efficient. Compared to the distributed algorithm with
an event-triggered communication scheme proposed in [26],
which only converges to the neighborhood of the global
minimizer, our proposed algorithm with the dynamic event-
triggered mechanism converges to the global minimizer.

The remainder of the paper is organized as follows. In
Section II, some preliminaries are introduced. In Section
III, we first formulate the distributed optimization problem,
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and then motivate our study. In Section IV, we develop a
distributed optimization algorithm with a dynamic event-
triggered communication scheme, and establish its expo-
nential convergence to the global minimizer for undirected
connected graphs. Moreover, we show that the proposed dis-
tributed event-triggered algorithm is free of Zeno behavior.
For a particular case, we also explicitly characterize the
lower bound for the inter-event times. Section V presents
simulation examples. Finally, concluding remarks are offered
in Section VI.

II. PRELIMINARIES

In this section, we provide some basic concepts of graph
theory and convex analysis.

Let G = (V, E ,A) denote an undirected weighted graph
with the set of nodes (agents) V = {1, . . . , n}, the set of
edges E ⊆ V × V , and the weighted adjacency matrix A =
[aij ] ∈ RN×N , where aij > 0 if and only if (j, i) ∈ E , and
aij = 0 otherwise. In this paper, we also assume that there
is no self-loops, i.e., aii = 0 for all i ∈ V . The neighbor set
of agent i is defined as Ni = {j ∈ V | aij > 0}. A path from
node i1 to node ik is a sequence of nodes {i1, . . . , ik}, such
that (ij , ij+1) ∈ E for j = 1, . . . , k − 1 in the undirected
graph. An undirected graph is said to be connected if there
exists a path between any pair of distinct nodes.

For an undirected weighted graph G, the weighted Lapla-
cian matrix L = [Lij ] ∈ RN×N is defined as Lii =∑N
j=1 aij and Lij = −aij for j 6= i. It is well known that the

Laplacian matrix has the property that all the row sums are
zero. If the undirected weighted graph G is connected, then
the Laplacian matrix L has a simple eigenvalue at zero with
corresponding right eigenvector 1, and all other eigenvalues
are strictly positive.

A twice continuously differentiable function f : Rn → R
is locally strongly convex if for any convex and compact
set D ⊂ Rn, there exists a constant θ > 0 such that the
following equivalent conditions hold:

f(y)−f(x)−∇f(x)T(y−x) ≥ θ

2
‖y−x‖2, ∀x, y ∈ D (1)

(∇f(y)−∇f(x))T(y − x) ≥ θ‖y − x‖2, ∀x, y ∈ D (2)

∇2f(x) ≥ θIn, ∀x ∈ D (3)

where ∇f : Rn → Rn is the gradient of f , ∇2 : Rn →
Rn×n is the Hessian of f . The function f is strongly convex
if there exists a constant θ > 0 such that the above equivalent
conditions hold for D = Rn, in which case θ is called
the convexity parameter of f . For a twice continuously
differentiable function f : Rn → R, any convex set D ⊂ Rn,
and any constant Θ > 0, the following equivalent conditions
are equivalent:

f(y)−f(x)−∇f(x)T(y−x) ≤ Θ

2
‖y−x‖2, ∀x, y ∈ D (4)

(∇f(y)−∇f(x))T(y − x) ≤ Θ‖y − x‖2, ∀x, y ∈ D (5)

∇2f(x) ≤ ΘIn,∀x ∈ D. (6)

III. PROBLEM FORMULATION AND MOTIVATION

Consider a network of N agents, each of which has a local
private convex objective function fi : Rn → R. The global
objective function of the network is f(x) =

∑N
i=1 fi(x).

All the agents aim to cooperatively solve the following
optimization problem

min
x∈Rn

f(x) =

N∑
i=1

fi(x), (7)

in a distributed manner using only local communication,
which is described by an undirected weighted graph G =
(V, E ,A), where V = {1, 2, . . . , N} is the agent set, E ⊆
V×V is the edge set, and A = [aij ] ∈ RN×N is the weighted
adjacency matrix, where aij > 0 if and only if (j, i) ∈ E ,
and aij = 0 otherwise.

In the literature, various algorithms have been developed
to solve the optimization problem (7) in a distributed manner,
see, e.g., the recent survey papers [1] and references therein.
However, most existing distributed algorithms require contin-
uous information exchange among the agents, which results
in high energy consumption. Moreover, it is impractical in
physical applications and not desirable in the multi-agent
systems since each agent is usually equipped with a limited
energy resource.

The goal of this paper is to overcome these problems
by developing a distributed algorithm with event-triggered
communication schemes. For this purpose, we make the
following assumption about local objective functions.

Assumption 1. For each i ∈ V , the objective function fi :
Rn → R is twice continuously differentiable, strongly convex
with convexity parameter mi > 0, and has a locally Lipschitz
Hessian ∇2fi.

Under Assumption 1, it follows from [29] that the opti-
mization problem (7) has a unique global minimizer, which is
denoted by x∗ ∈ Rn. Moreover, the necessary and sufficient
optimality condition is ∇f(x∗) =

∑N
i=1∇fi(x∗) = 0.

IV. DISTRIBUTED ALGORITHM WITH A DYNAMIC EVENT
TRIGGERING MECHANISM

In this section, we first propose a distributed algorithm
with a dynamic event-triggered communication scheme and
analyze its convergence.

Consider the following distributed algorithm with an
event-triggered communication scheme:

ẋi(t) = γ
(
∇2fi(xi(t))

)−1 ∑
j∈Ni

aij

(
xj(t

j
kj(t)

)− xi(tik)
)
,

t ∈ [tik, t
i
k+1), (8a)

xi(0) = x∗i , i ∈ V, (8b)

where xi(t) ∈ Rn is agent i’s estimate of the unique
global minimizer x∗, γ > 0 is the gain parameter, x∗i is
the minimizer of the local objective function fi(x), and the
increasing sequence {tjk}∞k=1, ∀j ∈ V to be determined later
is the triggering times and tjkj(t) = max{tjk : tjk ≤ t}.
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We assume tj1 = 0, ∀j ∈ V . For ease of presentation, let
x̂j(t) = xj(t

j
kj(t)

), and ej(t) = x̂j(t)−xj(t) for any j ∈ V .

Remark 1. Note that the distributed algorithm (8) with-
out an event-triggered communication scheme is the zero-
gradient-sum (ZGS) algorithm proposed in [12]. However, in
order to avoid continuous communication, we equip the ZGS
algorithm with an event-triggered communication scheme.
Note that it follows from (8) that d

dt

∑
i∈V ∇fi(xi(t)) =∑

i∈V ∇2fi(xi(t))ẋi(t) = γ
∑
i∈V

∑
j∈Ni aij

(
x̂j(t) −

x̂i(t)
)

= 0 for undirected connected graphs. It then follows
from ∇fi(x∗i ) = 0 that∑

i∈V
∇fi(xi(t)) = 0, ∀t ≥ 0. (9)

Therefore, the zero-gradient-sum property is still satisfied for
the event-triggered algorithm (8).

In order to determine the triggering times for agent i ∈ V ,
we design a novel class of triggering mechanisms that use
an additional internal dynamic variable χi(t) satisfying the
following equation:

χ̇i(t) = −βiχi(t)− δi(Lii‖ei(t)‖2−
σi
2
q̂i(t)), i ∈ V, (10)

where χi(0) > 0, βi > 0, δi ∈ [0, 1], and σi ∈ (0, 1) are
design parameters, and

q̂i(t) = −1

2

∑
j∈Ni

Lij‖x̂j(t)− x̂i(t)‖2 ≥ 0. (11)

In the following theorem, we propose a dynamic event-
triggered law to determine the triggering times and establish
the exponential convergence of the event-triggered algorithm.

Theorem 1. Assume that Assumption 1 is satisfied, and that
the undirected graph G is connected. Given θi >

1−δi
βi

and
the first triggering time ti1 = 0, each agent i ∈ V determines
the triggering times {tik}∞k=2 by

tik+1 = min{t : θi(Lii‖ei(t)‖2 −
σi
2
q̂i(t)) ≥ χi(t), t ≥ tik},

k = 1, 2, . . . . (12)

with q̂i(t) and χi(t) defined in (11) and (10), respectively.
Then, the distributed algorithm (8) with the dynamic event-
triggered mechanism (12) solves the distributed optimization
problem (7) exponentially, i.e., xi(t)→ x∗ exponentially fast
as t→∞ for any i ∈ V .

Proof : We first note that it follows from the way we
determine the triggering times by (12) that

θi(Lii‖ei(t)‖2 −
σi
2
q̂i(t)) ≤ χi(t), ∀t ≥ 0. (13)

This together with (10) implies that

χ̇i(t) ≥ −βiχi(t)−
δi
θi
χi(t), ∀t ≥ 0.

Therefore,

χi(t) ≥ χi(0)e
−(βi+

δi
θi

)t
> 0, ∀t ≥ 0. (14)

Next, consider the following function

V (x(t)) =

N∑
i=1

(
fi(x

∗)−fi(xi(t))−∇fi(xi(t))T(x∗−xi(t))
)
,

(15)
where x(t) = [xT

1(t), . . . , xT
N (t)]T ∈ RNn.

Since Assumption 1 is satisfied, the first-order strong
convexity condition implies that

V (x) ≥
N∑
i=1

mi

2
‖x∗ − xi‖2, ∀x ∈ RNn. (16)

The Lie derivative of V (x(t)) along (8) is

V̇ (x(t))

=

N∑
i=1

(xi(t)− x∗)T∇2fi(xi(t))ẋi(t)

= −γ
N∑
i=1

(xi(t)− x∗)T

N∑
j=1

Lij
(
x̂j(t)− x̂i(t)

)
= −γ

N∑
i=1

xT
i(t)

N∑
j=1

Lij x̂j(t)

= −γ
N∑
i=1

(
x̂i(t)− ei(t)

)T
N∑
j=1

Lij x̂j(t)

∗
= −γ

N∑
i=1

q̂i(t) + γ

N∑
i=1

N∑
j=1

eT
i(t)Lij x̂j(t)

= −γ
N∑
i=1

q̂i(t) + γ

N∑
i=1

N∑
j=1,j 6=i

eT
i(t)Lij

(
x̂j(t)− x̂i(t)

)
≤ −γ

N∑
i=1

q̂i(t)− γ
N∑
i=1

N∑
j=1,j 6=i

Lij‖ei(t)‖2

− γ
N∑
i=1

N∑
j=1,j 6=i

1

4
Lij‖x̂j(t)− x̂i(t)‖2

= −γ
N∑
i=1

q̂i(t) + γ

N∑
i=1

Lii‖ei(t)‖2

− γ
N∑
i=1

N∑
j=1

1

4
Lij‖x̂j(t)− x̂i(t)‖2

∗
= −γ

2

N∑
i=1

q̂i(t) + γ

N∑
i=1

Lii‖ei(t)‖2, (17)

where the third equality holds due to the fact that L = LT and
L1 = 0, the equalities denoted by ∗

= hold since it follows
from (11) that

N∑
i=1

q̂i(t) =

N∑
i=1

N∑
j=1

x̂T
i(t)Lij x̂j(t) = x̂T(t)(L⊗ In)x̂(t),
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where x̂(t) = [x̂T
1(t), . . . , x̂T

N (t)]T ∈ RNn, and the inequality
holds since −aTb ≤ ‖a‖‖b‖ ≤ ‖a‖2 + 1

4‖b‖
2 for all a, b ∈

Rn.

Next, consider the following Lyapunov candidate

W (x(t), χ(t)) = V (x(t)) + γ

N∑
i=1

χi(t), (18)

where χ(t) = [χ1(t), . . . , χN (t)]T. The Lie derivative of
W (x(t), χ(t)) along (8) and (10) is

Ẇ (x(t), χ(t))

= V̇ (x(t)) + γ

N∑
i=1

χ̇i(t)

≤ γ
{
−

N∑
i=1

1

2
(1− σi)q̂i(t)−

N∑
i=1

βiχi(t)

+

N∑
i=1

(δi − 1)(
σi
2
q̂i(t)− Lii‖ei(t)‖2)

}
≤ γ

{
− 1

2
(1− σmax)x̂T(t)(L⊗ In)x̂(t)− kd

N∑
i=1

χi(t)
}
,

(19)

where σmax = maxi σi < 1, kd = mini{βi− 1−δi
θi
} > 0, the

first inequality holds due to (17), and the second inequality
holds due to (13).

Note that

xT(t)(L⊗ In)x(t)

=
(
x̂(t)− e(t)

)T
(L⊗ In)

(
x̂(t)− e(t)

)
≤2x̂T(t)(L⊗ In)x̂(t) + 2eT(t)(L⊗ In)e(t)

≤2x̂T(t)(L⊗ In)x̂(t) + 2‖L‖‖e(t)‖2

≤
(

2 +
‖L‖σmax

mini Lii

)
x̂T(t)(L⊗ In)x̂(t) +

2‖L‖
mini{θiLii}

N∑
i=1

χi(t)

≤kxx̂T(t)Lx̂(t) +
2‖L‖

mini{θiLii}

N∑
i=1

χi(t), (20)

where

kx = max

{
2 +
‖L‖σmax

mini Lii
,

2(1− σmax)‖L‖
kd mini{θiLii}

}
, (21)

the first inequality holds since the Laplacian matrix L is
positive semi-definite and that −aT(L ⊗ In)b ≤ 1

2a
T(L ⊗

In)a+ 1
2b

T(L⊗In)b for all a, b ∈ RNn, the second inequality
holds since aT(L ⊗ In)a ≤ ‖L‖‖a‖2 for all a ∈ RNn, and
the third inequality holds due to (13).

It then follows from (20) and (21) that

− 1

2
(1− σmax)x̂T(t)(L⊗ In)x̂(t)

≤− 1

2kx
(1− σmax)xT(t)(L⊗ In)x(t) +

kd
2

N∑
i=1

χi(t).

This together with (19) implies that

Ẇ (x(t), χ(t)) ≤γ
{
− 1

2kx
(1− σmax)xT(t)(L⊗ In)x(t)

− kd
2

N∑
i=1

χi(t)
}
. (22)

In order to establish the exponential convergence, we will
upper bound the right-hand side of (22) in terms of the
Lyapunov function W (x(t), χ(t)) defined in (18). To begin
with, we first define the set

Ci =
{
x ∈ Rn : fi(x

∗)− fi(x)−∇fi(x)T(x∗ − x)

≤W (x(0), χ(0))
}
,

where the initial condition x(0) = [x∗1
T, x∗2

T, . . . , x∗N
T]T ∈

RNn and χ(0) ∈ RN . Note that it follows from (15), (18)
and (22) that the set Ci is nonempty and invariant. Moreover
from Assumption 1, we know that Ci is compact.

Next define C = conv∪i∈VCi, where conv denotes the
convex hull. Note that the set C is compact and xi(t) ∈
C, ∀t ≥ 0, ∀i ∈ V . Then, again from Assumption 1, we
know that there exists a constant Θi ≥ mi such that

∇2fi(x) ≤ ΘiIn, ∀x ∈ C. (23)

Let η(t) = 1
N

∑
i∈V xi(t), then η(t) ∈ C since C is convex.

Since x∗ is the unique solution to the optimization problem
(7), we know that

∑
i∈V fi(x

∗) ≤
∑
i∈V fi(η(t)). Thus, it

follows from (9) and (15) that

V (x(t))

≤
∑
i∈V

fi(η(t))− fi(xi(t))−∇fi(xi(t))T(η(t)− xi(t)).

This together with (23), (4) and (6) implies that for all t ≥ 0,

V (x(t) ≤
∑
i∈V

Θi

2
‖η(t)− xi(t)‖2 = xT(t)(P ⊗ In)x(t),

where P = [Pij ] ∈ RN×N is a positive seim-definite matrix
given by

Pij =

{
( 1

2 −
1
N )Θi + 1

2N2

∑
`∈V Θ`, if i = j,

−Θi+Θj
2N + 1

2N2

∑
`∈V Θ`, otherwise.

(24)

It is straightforward to check that P1 = 0. Then, by using
a similar analysis as the proof of eq. (5) in [30], for an
undirected and connected graph, we have

P ≤ ρ(P )

λ2(L)
L, (25)

where λ2(L) is the second smallest eigenvalue of the Lapla-
cian matrix L, and ρ(P ) is the spectral radius of matrix P .
It then follows from (22) and (25) that

Ẇ (x(t), χ(t))

≤γ
{
− 1

2kx
(1− σmax)xT(t)(L⊗ In)x(t)− kd

2

N∑
i=1

χi(t)
}
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≤γ
{
− λ2(L)

2kxρ(P )
(1− σmax)V (x(t))− kd

2

N∑
i=1

χi(t)
}

≤− kWW (x(t), χ(t)),

where

kW = min
{ λ2(L)

2kxρ(P )
(1− σmax)γ,

kd
2

}
. (26)

Hence,

W (x(t), χ(t)) ≤W (x(0), χ(0))e−kW t, ∀t ≥ 0.

This together with (18), (16), and the fact that χi(t) > 0
given in (14), implies that

N∑
i=1

mi

2
‖xi(t)− x∗‖2 ≤W (x(t), χ(t))− γ

N∑
i=1

χi(t)

≤ e−kW tW (x(0), χ(0)).

Therefore,

‖x(t)− 1N ⊗ x∗‖ ≤ ce−
kW
2 t, (27)

where

c =

√
2

m
W (x(0), χ(0)), (28)

where m = mini∈V{mi}. This implies that the algorithm (8)
with the dynamic event-triggering mechanism (12) exponen-
tially converges to the global minimizer with the rate at least
equal to kW

2 .
If the parameter θi goes to ∞ in the dynamic triggering

law (12), then it would become the following static triggering
law:

tik+1 = min{t : Lii‖ei(t)‖2 −
σi
2
q̂i(t) ≥ 0, t ≥ tik},

k = 1, 2, . . . . (29)

The following corollary shows that the algorithm (8) with
the static triggering law (29) also exponentially converges to
the global minimizer. The proof is very similar to that of
Theorem 1 and thus omitted.

Corollary 1. Under the same assumptions as Theorem 1,
the distributed algorithm (8) with the static event-triggered
mechanism (29) solves the distributed optimization problem
(7) exponentially, i.e., xi(t)→ x∗ exponentially fast as t→
∞ for any i ∈ V .

The main purpose of using event-triggered communication
mechanisms is to reduce the overall need of continuous
communication among agents, so it is essential to exclude
Zeno behavior. However, as stated in [25], Zeno behavior
may not be excluded under the static triggering law (29). On
the other hand, Zeno behavior is excluded under the dynamic
triggering law (12) as shown in the next theorem.

Theorem 2. Under the same assumptions as Theorem 1, the
distributed algorithm (8) with the dynamic event triggering
law (12) does not exhibit Zeno behavior.

Proof : The proof is based on a contradiction argument that

1 2

34

3.4

2.11.1

1

4.3

Fig. 1. Network of four agents.

is similar to the proof of [25, Theorem 3.1]. Due to the space
limitation, we have omitted the detailed proof.

Theorem 2 shows that the algorithm (8) with the dynamic
triggering law (12) is free of Zeno behavior by a contradic-
tion argument. However, the inter-event times are not clear.
The next theorem explicitly characterizes the lower-bound
for the inter-event times for a particular case. Due to the
space limitation, we have omitted the proof.

Theorem 3. Assume that all the assumptions of Theorem 1
are satisfied. In addition, if χi(0) > 0, δi = 0, σi ∈ (0, 1

1+σ )
where σ is any positive constant, for all i ∈ V , and β1 =
β2 = · · · = βN = β with 0 < β ≤ kW , then for any i ∈ V ,
there exists a positive constant τi such that tik+1 − tik ≥ τi
for all k = 1, 2, . . . .

V. SIMULATIONS

In this section, we illustrate and validate the proposed
distributed algorithm (8) with the dynamic event-triggered
communication mechanism (12) by considering a numeri-
cal example, which is adopted from [27] for comparison
purpose. In particular, we consider an undirected network
with N = 4 agents whose communication topology is given
by Fig. 1. Note that the undirected graph is connected.
The objective functions are fi(x) = 1

2 (x − yi)
2, where

[y1, y2, y3, y4]T = [1.12, 2.04, 2.98, 3.82]T. For this case, the
minimizer for fi(x) is x∗i = yi.

The simulation results for the algorithm (8) under the
dynamic triggered mechanism (12) with γ = 1, χi(0) = 10,
βi = 1, δi = 1, σi = 0.5, and θi = 1 for all i ∈ V ,
are given in Fig. 2. The evolution of the states of the four
agents is plotted in Fig. 2a, where we see that all agents
converge to the global minimizer x∗ = 2.49, which agrees
with [27]. This confirms the result of Theorem 1. Moreover,
the corresponding triggering times for each agent are plotted
in Fig. 2b, which clearly shows that the dynamic event-
triggered scheme (12) has less triggering times compared to
the periodical time-triggered mechanism proposed in [27].

VI. CONCLUSIONS

In this paper, we studied the distributed optimization
problem where the local objective functions are twice con-
tinuously differentiable, strongly convex, and have locally
Lipschitz Hessians. To avoid continuous communication
among the agents, we proposed a distributed algorithm
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Fig. 2. Simulation Results

with a dynamic event-triggered communication mechanism.
We showed that the proposed distributed event-triggered
algorithm exponentially converges to the global minimizer
if the undirected graph is connected. Moreover, we showed
that the proposed distributed event-triggered algorithm is free
of Zeno behavior. For a particular case, we also explicitly
characterized the lower bound for the inter-event times. The
future direction is to extend the proposed event-triggered
algorithm to directed graphs.
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[3] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[4] M. Zhu and S. Martı́nez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Transactions on Automatic
Control, vol. 57, no. 1, pp. 151–164, 2012.

[5] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed
dual averaging for convex optimization,” in Proceedings of the IEEE
Conference on Decision and Control, 2012, pp. 5453–5458.

[6] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Transactions on Automatic Control,
vol. 60, no. 3, pp. 601–615, 2015.

[7] T. Yang, J. Lu, D. Wu, J. Wu, G. Shi, Z. Meng, and K. H. Johansson,
“A distributed algorithm for economic dispatch over time-varying
directed networks with delays,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 6, pp. 5095–5106, 2017.

[8] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[9] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
2017, to appear.

[10] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in Proceedings of the IEEE Conference on Decision and
Control, 2015, pp. 2055–2060.

[11] J. Wang and N. Elia, “Control approach to distributed optimization,”
in Proceedings of the Annual Allerton Conference on Communication,
Control, and Computing, 2010, pp. 557–561.

[12] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed
convex optimization: The continuous-time case,” IEEE Transactions
on Automatic Control, vol. 57, no. 9, pp. 2348–2354, 2012.

[13] B. Gharesifard and J. Cortés, “Distributed continuous-time convex
optimization on weight-balanced digraphs,” IEEE Transactions on
Automatic Control, vol. 59, no. 3, pp. 781–786, 2014.

[14] X. Zeng, P. Yi, and Y. Hong, “Distributed continuous-time algo-
rithm for constrained convex optimizations via nonsmooth analysis
approach,” IEEE Transactions on Automatic Control, vol. 62, no. 10,
pp. 5227–5233, 2017.

[15] Y. Xie and Z. Lin, “Global optimal consensus of multi-agent systems
with bounded controls,” Systems & Control Letters, vol. 102, pp. 104–
111, 2017.

[16] Z. Li, Z. Ding, J. Sun, and Z. Li, “Distributed adaptive convex
optimization on directed graphs via continuous-time algorithms,” IEEE
Transactions on Automatic Control, vol. 63, no. 5, pp. 1434–1441,
2017.

[17] K. J. Aström and B. M. Bernhardsson, “Comparison of riemann and
lebesgue sampling for first order stochastic systems,” in Proceedings of
the IEEE Conference on Decision and Control, 2002, pp. 2011–2016.

[18] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[19] A. Girard, “Dynamic triggering mechanisms for event-triggered con-
trol,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp.
1992–1997, 2015.

[20] X. Wang and M. D. Lemmon, “Event-triggering in distributed net-
worked control systems,” IEEE Transactions on Automatic Control,
vol. 56, no. 3, pp. 586–601, 2011.

[21] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduc-
tion to event-triggered and self-triggered control,” in Proceedings of
the IEEE Conference on Decision and Control, 2012, pp. 3270–3285.

[22] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[23] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49,
no. 1, pp. 245–252, 2013.

[24] X. Meng, L. Xie, Y. C. Soh, C. Nowzari, and G. J. Pappas, “Periodic
event-triggered average consensus over directed graphs,” in Proceed-
ings of the IEEE Conference on Decision and Control, 2015, pp. 2055–
2060.

[25] X. Yi, “Resource-constrained multi-agent control systems: Dynamic
event-triggering, input saturation, and connectivity preservation,” Li-
centiate Thesis, Royal Institute of Technology, Sweden, 2017.

[26] S. S. Kia, J. Cortés, and S. Martı́nez, “Distributed convex optimiza-
tion via continuous-time coordination algorithms with discrete-time
communication,” Automatica, vol. 55, pp. 254–264, 2015.

[27] W. Chen and W. Ren, “Event-triggered zero-gradient-sum distributed
consensus optimization over directed networks,” Automatica, vol. 65,
pp. 90–97, 2016.

[28] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, “On the
regularization of zeno hybrid automata,” Systems & Control Letters,
vol. 38, no. 3, pp. 141 – 150, 1999.

[29] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

[30] X. Yi, W. Lu, and T. Chen, “Pull-based distributed event-triggered
consensus for multiagent systems with directed topologies,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 28, no. 1,
pp. 71–79, 2017.

974


