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Abstract— We study the consensus problem of discrete-time
systems under persistent flow and non-reciprocal interactions
between agents. An arc describing the interaction strength
between two agents is said to be persistent if its weight function
has an infinite l1 norm. We discuss two balance conditions
on the interactions between agents which generalize the arc-
balance and cut-balance conditions in the literature respectively.
The proposed conditions require that such a balance should be
satisfied over each time window of a fixed length instead of at
each time instant. We prove that in both cases global consensus
is reached if and only if the persistent graph, which consists of
all the persistent arcs, contains a directed spanning tree. The
convergence rates are also provided in terms of the number of
node interactions that have taken place.

I. INTRODUCTION

A. Background

In distributed coordination of multi-agent systems, a great
deal of attention has been paid to consensus-seeking systems.
The study of this type of systems is motivated by opinion
forming in social networks [1], [2], flocking behaviors in
animal groups [3], [4], data fusion in engineered systems
[5] and so on. Ample results on the convergence and con-
vergence rate of the consensus system have been reported.
Typical conditions involve the connectivity of the network
topology and the interaction strengths between agents for
both continuous-time [6]–[12] and discrete-time systems [7],
[8], [11], [13]–[17].

In the literature, several types of balance conditions on the
interaction weights are considered, among which the cut-
balance condition [9], [10] and the arc-balance condition
[11] are typical ones. The cut-balance condition requires that
at each time instant, if a group of agents in the network
influences the remaining ones then it is also influenced by the
remaining ones bounded by a constant proportional amount.
This type of conditions characterizes a reciprocal interaction
relationship among the agents, which covers the symmetric
interaction and type-symmetric interaction as special cases
[10]. The convergence of the system with the balanced
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asymmetry property, a stronger notion than the cut-balance
condition, is proved under the absolute infinite flow property
[18] for deterministic iterations [12].

The arc-balance condition requires that in the persistent
graph the weight of each arc is bounded by a proportional
amount of the weight of any other arc at each time instant.
Under this condition, it was proved that the multi-agent sys-
tem reaches consensus under the condition that the persistent
graph contains a directed spanning tree [11]. This persistent
graph property behaves as forms of network Borel-Cantelli
lemmas for consensus algorithms over random graphs [19].
If the persistent graph is strongly connected, the arc balance
assumption is a special case of the cut-balance condition
imposed on the persistent graph, while in the general case,
these two conditions do not cover each other.

B. The Algorithm

Consider a network with the node set V = {1, . . . , N},
N ≥ 2. Each node i holds a state xi(t) ∈ R. The initial
time is t0 ≥ 0. The evolution of xi(t) is given by

xi(t+ 1) =

N∑
j=1

aij(t)xj(t), (1)

where aij(t) ≥ 0 stands for the influence of node j on node
i at time t and aii(t) represents the self-confidence of each
node. If aij(t) > 0 at time t, then it is considered as the
weight of arc (j, i) of the graph G(t) = (V, E(t)), where
E(t) ⊆ V × V .

For the time-varying arc weights aij(t), we impose the
following condition as our standing assumption throughout
the paper.

Assumption 1: For all i, j ∈ V and t ≥ 0, (i) aij(t) ≥ 0;
(ii)
∑N
j=1 aij(t) = 1; (iii) There exists a constant 0 < η < 1

such that aii(t) ≥ η.
Denote x(t) = [x1(t), . . . , xN (t)]T and A(t) =

[aij(t)]N×N . We know that A(t) is a stochastic matrix from
Assumption 1. System (1) can be rewritten as

x(t+ 1) = A(t)x(t). (2)

We continue to introduce the following definition [11].
Definition 1: An arc (j, i) is called a persistent arc if

∞∑
t=0

aij(t) =∞. (3)

The set of all persistent arcs is denoted as Ep and we call
the digraph Gp = (V, Ep) the persistent graph.

The weight function of each arc in the persistent graph has
an infinite l1 norm as can be seen from (3). The notions of



persistent arcs and persistent graph have also been considered
in [9], [10], [12], [20] for studying the consensus problem of
discrete-time and continuous-time systems. In [12] the per-
sistent graph Gp is called an unbounded interactions graph.
We will show in the next section that the connectivity of
the persistent graph is fundamental for deciding consensus,
while those edges whose time-varying interaction weights
summing up to a finite number is not critical. The consensus
problem considered in this paper is defined as follows.

Definition 2: Global consensus is achieved for the con-
sidered network if for any initial time t0 ≥ 0, and for
any initial value x(t0), there exists x∗ ∈ R such that
limt→∞ xi(t) = x∗ for all i ∈ V .

In addition, we not only derive conditions under which
global consensus can be reached, but also characterize the
convergence speed in terms of how much interaction among
the nodes has happened in the network.

C. Generalized Balance Conditions
A central aim of this paper is to derive conditions under

which the convergence to consensus of system (1) can
be guaranteed by imposing merely the connectivity of the
persistent graph. In this case some balance conditions among
the arc weights become essential [10], [11]. We introduce the
following two balance conditions.

Assumption 2: (Balance Condition I) There exist an in-
teger L ≥ 1 and a constant K ≥ 1 such that for any
(j, i), (l, k) ∈ Ep, we have

s+L−1∑
t=s

akl(t) ≤ K
s+L−1∑
t=s

aij(t) (4)

for all s ≥ 0.
Assumption 3: (Balance Condition II) There exist an inte-

ger L ≥ 1 and a constant K ≥ 1 such that for any nonempty
proper subset S of V , we have

s+L−1∑
t=s

∑
i 6∈S,j∈S

aij(t) ≤ K
s+L−1∑
t=s

∑
i∈S,j 6∈S

aij(t) (5)

for all s ≥ 0.
Remark 1: The Balance Condition I is a generalized ver-

sion of the arc-balance condition introduced in [11] where
L = 1. The Balance Condition II is a generalized version of
the cut-balance condition introduced in [10] where L = 1.
These conditions require either the balance between the
weights of different persistent arcs or the balance between the
amount of interactions between one group and its remaining
part over each time window of a fixed length. When Assump-
tion 2 or Assumption 3 holds for L = 1, (4) or (5) imposes
a restriction on such a balance condition which should be
satisfied instantaneously. A relatively large L gives more
flexibility on the interaction weights and allows possible non-
instantaneous reciprocal interactions between agents. �

D. Main results
In this subsection, we first give some basic observations of

the state evolution of system (1) and then present the main
results.

Let H(t)
.
= maxi∈V{xi(t)}, h(t)

.
= mini∈V{xi(t)} be

the maximum and minimum state value at time t, respec-
tively. Denote Ψ

(
t
) .

= H(t) − h(t) which serves as a
metric of consensus. Note that Ψ

(
t
)

measures the maximum
difference among the states of the nodes.

Apparently reaching a consensus of system (1) implies
that limt→∞Ψ

(
t
)

= 0. In fact the contrary is also true.
It is straightforward to see that H(t) is non-increasing,
h(t) is non-decreasing and thus Ψ(t) is non-increasing.
Therefore, for any initial time t0 ≥ 0 and any initial value
x(t0), there exist H∗, h∗ ∈ R such that limt→∞H(t) =
H∗; limt→∞ h(t) = h∗. If limt→∞Ψ

(
t
)

= 0, we obtain
H∗ = h∗, which implies that limt→∞ xi(t) = H∗ for all
i ∈ V .

Let dae represent the smallest integer that is no less than
a, and bac represent the largest integer that is no greater
than a. We present the following two main results, for the
two types of balance conditions, respectively.

Theorem 1: Assume that Assumptions 1 and 2 hold.
(i) Global consensus is achieved for system (1) if and only
if the persistent graph Gp has a directed spanning tree.
(ii) If the persistent graph Gp has a directed spanning tree,
then for any initial time t0 ≥ 0, ε > 0, and ε > 0, we have

Ψ(t) ≤ εΨ(t0), for all t ≥ Tε + t∗, (6)

where Tε ≥ t0 such that
∑∞
t=Tε

aij(t) ≤ ε for all (j, i) ∈
E \ Ep,

t∗
.
= inf

{
t ≥ 1 :

t−1∑
k=0

N∑
j=1,j 6=i,(j,i)∈Ep

aij(Tε + k) ≥ ω1d0(δ + 1)

}
, (7)

δ > L(N − 1)(1 − η) is a constant, d0 is the

diameter of Gp, ω1
.
=

⌈
log ε−1

log(1− 1
2Q

2d0Rd0)
−1

⌉
with R

.
= K−1

[
δ

N−1 − L(1− η)
]
, Q

.
=

e−
(N−1)(K(1−η+δ)+L(1−η)+ε) ln η

η−1 .
Theorem 2: Assume that Assumptions 1 and 3 hold.

(i) Global consensus is achieved for system (1) if and only
if the persistent graph Gp has a directed spanning tree.
(ii) If the persistent graph Gp has a directed spanning tree,
then for any initial time t0 ≥ 0 and ε > 0, we have

Ψ(t) ≤ εΨ(t0), for all t ≥ k∗L+ t0, (8)

where

k∗
.
= inf

{
t ≥ 1 : min

|S(0)|=···=|S(t−1)|

W

t−1∑
k=0

∑
i6∈S(k+1)
j∈S(k)

L−1∑
u=0

aij(kL+ u+ t0) ≥ ω2

⌊
N

2

⌋
(ηL + 1)

}
,

(9)



with W = ηL

(N−1)L , ω2 =

 log ε−1

log

(
1−K∗−b

N
2
c/(8N2)b

N
2
c
)−1

,

K∗ = max
{

(N−1)K
ηL−1 , N−1

ηL

}
, S(k), k ≥ 0, being nonempty

proper subsets of V with the same cardinality, and |S(k)|
being the cardinality of S(k).

For both cases, the conclusions (ii) establish the conver-
gence rates of system (1) to consensus in terms of the interac-
tions between agents having taken place. In the following two
sections, we prove these two theorems. Finally we conclude
this paper with a few remarks and future directions.

II. PROOF OF THEOREM 1

In this section, we first establish two key technical lemmas,
and then present the proof of Theorem 1.

A. Key Lemmas

First we present two lemmas. The first one is a pure
algebraic inequality and the second lemma follows from
a similar analysis in [11], and thus we omit their detailed
proofs.

Lemma 1: Let bk, k = 1, . . . ,m be a sequence of real
numbers of length m satisfying bk ∈ [η, 1], m ≥ 0, where
0 < η < 1 is a given constant. Then we have

∏m
k=1 bk ≥

e−
ζ ln η
η−1 if

∑m
k=1(1− bk) ≤ ζ.

Lemma 2: For system (1), suppose Assumption 1 holds
and xi(s) ≤ µh(s) + (1 − µ)H(s) for some s ≥ t0 and
0 ≤ µ < 1. Then we have

xi(s+ τ) ≤µ
T−1∏
k=0

aii(s+ k) · h(s)

+
(

1− µ
T−1∏
k=0

aii(s+ k)
)
·H(s) (10)

for all τ ≤ T and T = 0, 1, . . . .

B. Proof of Theorem 1 (i)

(Sufficiency) We introduce Ai(t) =
∑N
j=1,j 6=i,(j,i)∈Ep aij(t)

for each node i ∈ V and t ≥ 0. According to the definition
of the persistent graph, for any initial time t0 and any ε > 0,
there exists an integer Tε ≥ t0 such that

∑∞
t=Tε

aij(t) ≤ ε
for all (j, i) ∈ E \ Ep.

We divide the rest of the proof into three steps.
Step 1. Take T0 = Tε and δ > L(N − 1)(1 − η), where
η is the constant in Assumption 1 and L is the integer in
Assumption 2. Let i0 be a root of the persistent graph Gp
and (i0, i1) ∈ Ep. Such an i1 exists since Gp contains a
directed spanning tree. Define

t1
.
= inf

{
t ≥ 1 :

∑t−1
k=0 Ai1(T0 + k) ≥ δ

}
.

Let s be the integer satisfying that (s−1)L ≤ t1 < sL. With
Assumption 1, we have that

∑t1−1
k=0 Ai1(T0 +k) ≤ 1−η+δ.

Since ai1i1(T0 + k) = 1 −
∑N
j=1,j 6=i1 ai1j(T0 + k) and

based on Assumption 1, we have

(i) ai1i1(T0 + k) ∈ [η, 1] for all k = 0, . . . , t1 − 1;

(ii)

t1−1∑
k=0

(
1− ai1i1(T0 + k)

)
=

t1−1∑
k=0

Ai1(T0 + k)

+

t1−1∑
k=0

N∑
j=1,j 6=i1,(j,i1)6∈Ep

ai1j(T0 + k)

≤ 1− η + δ + ε(N − 1).

Therefore, we conclude from Lemma 1 that
t1−1∏
k=0

ai1i1(T0 + k) ≥ e−
(1−η+δ+ε(N−1)) ln η

η−1
.
= S. (11)

It is clear from the definition of Ai(t) and the fact (s −
1)L ≤ t1 < sL that

(s−1)L−1∑
k=0

ai1ir (T0 + k) ≤
t1−1∑
k=0

Ai1(T0 + k) ≤ 1− η + δ,

for all (ir, i1) ∈ Ep. From Assumption 2 and t1 < sL, one
has that for any (j, i) ∈ Ep,

t1−1∑
k=0

aij(T0 + k)

≤ K
(s−1)L−1∑

k=0

ai1ir (T0 + k) +

sL−1∑
(s−1)L

aij(T0 + k)

≤ K(1− η + δ) + L(1− η).

For any i 6= i1, it is true that
t1−1∑
k=0

(
1− aii(T0 + k)

)
=

t1−1∑
k=0

A∗i (T0 + k) +

t1−1∑
k=0

N∑
j=1,j 6=i,(j,i) 6∈Ep

aij(t)

≤ (N − 1)(K(1− η + δ) + L(1− η) + ε).

Thus in view of Lemma 1, we have that
t1−1∏
k=0

aii(T0 + k) ≥ e−
(N−1)(K(1−η+δ)+L(1−η)+ε) ln η

η−1 = Q

(12)

for i 6= i1. Note that Q < S.
Assume that xi0(T0) ≤ 1

2h(T0) + 1
2H(T0). In this step,

we establish an upper bound for xi0(T0 + τ), τ = 0, . . . , t1.
Based on Lemma 2, we obtain

xi0(T0 + τ) ≤1

2

t1−1∏
k=0

ai0i0(T0 + k) · h(T0)

+
(

1− 1

2

t1−1∏
k=0

ai0i0(T0 + k)
)
·H(T0) (13)

for all τ = 0, . . . , t1. Then (12) and (13) further imply

xi0(T0 + τ) ≤ Q

2
h(T0) +

(
1− Q

2

)
H(T0). (14)



for all τ = 0, . . . , t1.
Step 2. In this step, we establish a bound for xi1(T0 + t1).
Since

∑t1−1
k=0 Ai1(T0 + k) ≥ δ, there must exist a node ir

such that (ir, i1) ∈ Ep and
∑t1−1
k=0 ai1ir (T0 + k) ≥ δ

N−1 .

Combining with t1 < sL and
∑sL

(s−1)L ai1ir (T0+k) ≤ L(1−
η), simple calculation shows that

(s−1)L−1∑
k=0

ai1ir (T0 + k) ≥ δ

N − 1
− L(1− η).

From Assumption 2, for any arc (i, j) ∈ Ep, one has that

t1−1∑
k=0

aij(T0 + k) ≥ K−1
(s−1)L−1∑

k=0

ai1ir (T0 + k)

≥ K−1
[

δ

N − 1
− L(1− η)

]
= R. (15)

The above inequality also holds for the arc (i0, i1) since
(i0, i1) ∈ Ep.

First according to (14), we have

xi1(T0 + 1) =

N∑
j=1

ai1j(T0)xj(T0)

≤ ai1i0(T0)xi0(T0) +
(
1− ai1i0(T0)

)
H(T0)

=
Q

2
ai1i0(T0)h(T0) +

(
1− Q

2
ai1i0(T0)

)
H(T0).

Then for T0 + 2, we have

xi1(T0 + 2) =

N∑
j=1

ai1j(T0 + 1)xj(T0 + 1)

≤ ai1i0(T0 + 1)xi0(T0 + 1) + ai1i1(T0 + 1)xi1(T0 + 1)

+
(
1− ai1i0(T0 + 1)− ai1i1(T0 + 1)

)
H(T0 + 1)

=
Q

2

[
ai1i0(T0 + 1) + ai1i1(T0 + 1)ai1i0(T0)

]
h(T0)

+

[
1− Q

2

[
ai1i0(T0 + 1) + ai1i0(T0 + 1)ai1i0(T0)

]]
H(T0).

By induction it is straightforward to find that

xi1(T0 + t1) ≤ 1

2
SQRh(T0) +

(
1− 1

2
SQR

)
H(T0).

(16)

Step 3. Let V0 = {i0} and V1 = {i : (i0, i) ∈ Ep}. It is
obvious from (16) and in view of (12) that for any i ∈ V1,

xi(T0 + t1) ≤ 1

2
Q2Rh(T0) +

(
1− 1

2
Q2R

)
H(T0).

Let V2 be a subset of V\(V0 ∪ V1) and consist of all the
nodes each of which has a neighbor in V0 ∪ V1 in Gp. We
continue to define

t2
.
= inf

{
t ≥ t1 + 1 :

t−1∑
k=t1

Ai1(T0 + k) ≥ δ
}
.

Following similar calculations in the above two steps, for
any i2 ∈ V2, we have

xi2(T0 + t2) ≤ 1

2
Q4R2h(T0) +

(
1− 1

2
Q4R2

)
H(T0).

(17)

Continuing this process, V3, . . . ,Vd0 can be defined simi-
larly with d0 being the diameter of Gp and a time sequence
t1, . . . , td0 can be defined as

tr
.
= inf

{
t ≥ tr−1 + 1 :

t−1∑
k=tr−1

Ai1(T0 + k) ≥ δ
}

(18)

for r = 1, . . . , d0, with t0 = 0. It is easy to see that the
root i0 can be selected such that ∪d0i=0Vi = V . The bound
for xi(T0 + td0) can be established as

xi(T0 + td0) ≤1

2
Q2d0Rd0h(T0) +

(
1− 1

2
Q2d0Rd0

)
H(T0),

(19)

for all i = 1, . . . , N . A bound for Ψ(T0+td0) is thus derived

Ψ(T0 + td0) ≤
(

1− 1

2
Q2d0Rd0

)
Ψ(T0).

When xi0(T0) > 1
2h(T0) + 1

2H(T0), one can establish a
lower bound for xi(T0 + td0) by a symmetric argument and
derive the same inequality for Ψ(T0 + td0) as above.

Repeating the above estimate, one can find an infinite
increasing time sequence t1, . . . , td0 , td0+1, . . . , t2d0 , . . . , de-
fined by (18) and we have

Ψ(T0 + trd0) ≤
(

1− 1

2
Q2d0Rd0

)r
Ψ(T0), (20)

for r = 1, 2, . . . . It implies that the sequence Ψ(T0 +
trd0), r = 1, 2, . . . , converges to 0 as r goes to infinity.
Therefore, Ψ(t) converges to 0 as t goes to infinity as well.

(Necessity) The proof of the necessity part is similar to
that of Theorem 3.1 in [11] and is thus omitted here.

C. Proof of Theorem 1 (ii)

Note that from the definition of tr in (18) and the definition
of Ai1 , one knows that for any r ≥ 1,

∑tr−1
k=tr−1

Ai1(Tε +

k) ≤ 1 + δ. It follows that
∑tω1

−1
k=0 Ai1(Tε+k) ≤ ω1d0(1 +

δ). By the definition of t∗ in (7), t∗ ≥ tω1
d0. For t ≥ Tε+t∗,

applying (20) we have

Ψ(t) ≤ Ψ(Tε + t∗) ≤ Ψ(Tε + tω1d0) ≤ εΨ(Tε).

III. PROOF OF THEOREM 2

In this section, we establish the convergence statement in
Theorem 2 (i) and the contraction rate of Ψ(t) claimed in
Theorem 2 (ii).

A. Proof of Theorem 2 (i)

Consider system (1) with the initial time t0. Let y(t) =
x(tL+ t0) and B(t) = A((t+ 1)L− 1 + t0) · · ·A(tL+ 1 +
t0)A(tL+ t0). Then the dynamics of y-system are given by

y(t+ 1) = B(t)y(t), t ≥ 0. (21)

Letting Φ(t)
.
= maxi∈V yi(t) − mini∈V yi(t), one has that

Φ(t) = Ψ(tL+t0). One can conclude that limt→∞Ψ(t) = 0
if and only if limt→∞Φ(t) = 0 since Ψ(t) is a nonincreasing
function of t. Hence we establish the global consensus of
system (1) by studying the property of the y-system (21).



We first establish that the system matrix B(t) in (21)
satisfies the cut-balance condition [10] under Assumption 3,
whose proof is omitted due to space limitation.

Lemma 3: If Assumptions 1 and 3 hold, then each matrix
B(t), t ≥ 0, has positive diagonals lower bounded by ηL

and satisfies the cut-balance condition∑
i 6∈S,j∈S

bij(t) ≤M∗
∑

i∈S,j 6∈S

bij(t) (22)

for any nonempty proper subset S of V with M∗ = (N −
1)Kη−L+1. Let G′p = (V, E ′p) be a directed graph where
(j, i) ∈ E ′p if and only if

∑∞
t=0 bij(t) = ∞. The persistent

graph Gp contains a directed spanning tree if and only if G′p
contains a directed spanning tree.

Proof of Theorem 2 (i): Lemma 3 shows that the y-system
(21) satisfies the assumptions of Theorem 5 in [20]. One
concludes that G′p defined in Lemma 3 contains a directed
spanning tree if and only if global consensus of system (21)
is reached. Combining with Lemma 3, the conclusion of
Theorem 2 (i) immediately follows.

B. Proof of Theorem 2 (ii)

In this subsection, we provide a contraction rate of Φ(t)
and hence a corresponding contraction rate of Ψ(t) can be
obtained. Note that system (21) satisfies the cut-balanced
condition (22). Instead of considering the cut-balance condi-
tion, we consider the following balanced asymmetric condi-
tion.

Assumption 4: (Balanced Asymmetry) [12] There exists
a constant M ≥ 1 such that for any two nonempty proper
subsets S1, S2 of V with the same cardinality, the matrices
B(t), t ≥ 0, satisfy that∑

i 6∈S1,j∈S2

bij(t) ≤M
∑

i∈S1,j 6∈S2

bij(t). (23)

Remark 2: As pointed out in Remark 1 in [12], the
balanced asymmetry condition is stronger than the cut-
balance condition (22). But since B(t) in (21) has positive
diagonal elements lower bounded by a positive constant ηL

and satisfies (22), then it satisfies the balanced asymmetry
condition with M = max{M∗, N−1ηL

}. �
The following notion of absolute infinite flow property

[12], [21] is needed which has a close relationship with the
connectivity of persistent graphs.

Definition 3: The sequence of matrices B(t), t ≥ 0
is said to have the absolute infinite flow property if the
following holds

∞∑
t=0

( ∑
i6∈S(t+1)
j∈S(t)

bij(t) +
∑

i∈S(t+1)
j 6∈S(t)

bij(t)
)

=∞ (24)

for every sequence S(t), t ≥ 0, of nonempty proper subsets
of V with the same cardinality.

Since the persistent graph Gp contains a directed spanning
tree, the persistent graph G′p contains a directed spanning
tree as well by Lemma 3. Then we can show that the
matrix sequence B(t), t ≥ 0, has the absolute infinite flow
property. In addition, B(t), t ≥ 0, satisfies the balanced

asymmetry condition by Remark 2. We can define an infi-
nite time sequence t0, t1, t2, . . . based on the infinite flow
property. Let t00 = t0 and define a finite time sequence
t0p, t

1
p, . . . , t

bN2 c
p , p ≥ 0. tq+1

p is defined by

tq+1
p

.
= inf

{
t ≥ tqp + 1 :

min
|S(tqp)|=···=|S(t−1)|

t−1∑
k=tqp

∑
i6∈S(k+1)
j∈S(k)

bij(k) ≥ 1

}
. (25)

We derive an infinite time sequence t0, t1, t2, . . . .
Proposition 1: If Assumption 1 and 3 hold and the per-

sistent graph Gp contains a directed spanning tree, then for
system (21),

Φ(tp+1) ≤
(

1−M−bN2 c/(8N2)
bN2 c

)
Φ(tp), (26)

where M = max{M∗, N−1ηL
} with M∗ given in Lemma 3.

To show Proposition 1, we need to introduce an equivalent
order-preserving system. For t ≥ 0, let σt be a permutation
of V such that for i < j, either yσt(i)(t) < yσt(j)(t) or
yσt(i)(t) = yσt(j)(t) and σt(i) < σt(j) holds. Define zi(t)

.
=

yσt(i)(t), t ≥ 0. From the definition of the permutation σt,
one knows that for all t ≥ 0, if i < j, then zi(t) ≤ zj(t).
Hence z(t) = [z1(t), . . . , zN (t)]T is a sorted state vector. It
is easy to see that Φ(t) = maxi∈V yi(t) − mini∈V yi(t) =
zN (t) − z1(t). Define cij(t)

.
= bσt+1(i),σt(j)(t). Obviously∑N

j=1 cij(t) = 1 for all i ∈ V , t ≥ 0. One can easily show
that

zi(t+ 1) =

N∑
j=1

cij(t)zj(t), (27)

In addition, one can show that C(t) = [cij(t)]N×N , t ≥
0, have the balanced asymmetry property with the same
constant M in (23) since B(t), t ≥ 0, satisfy Assumption
4.

With these notations, one can prove Proposition 1 by
checking zN (t) − z1(t) using similar ideas to the proof of
Proposition 2 in [9]. The detailed proof is omitted due to
space limitation.

Now we are in a position to prove Theorem 2 (ii).
Proof of Theorem 2 (ii): For system (1) and any given

initial time t0 ≥ 0, let k00 = k0 = 0 and define a finite time
sequence k0p, k

1
p, . . . , k

bN2 c
p , p ≥ 0. kq+1

p is defined by

kq+1
p

.
= inf

{
t ≥ kqp + 1 :

min
|S(k)|=···=|S(t−1)|

W

t−1∑
k=k

q
p

∑
i6∈S(k+1)
j∈S(k)

L−1∑
u=0

aij(kL+ u+ t0) ≥ 1
}
,

(28)

where W = ηL

(N−1)L is a constant. Let kp+1 = k
bN2 c
p

and k0p+1 = kp+1. We derive an infinite time sequence
k0, k1, k2, . . . . Under Assumptions 1 and 3, it can be shown
that when the persistent graph Gp contains a directed span-
ning tree, the time sequence k0, k1, k2, . . . is well-defined.



We first show that if the persistent graph Gp contains a
directed spanning tree, then

Ψ(kp+1L+ t0) ≤
(

1−K∗−b
N
2 c/(8N2)

bN2 c
)

Ψ(kpL+ t0),

(29)
where K∗ = max{ (N−1)K

ηL−1 , N−1
ηL
}.

Consider system (21) derived based on system (1). Some
calculations can verify that kq+1

p defined in (28) satisfies∑kq+1
p −1
k=kqp

∑
i6∈S(k+1)
j∈S(k)

bij(k) ≥ 1. Noting that Φ(t) = Ψ(tL+

t0) and M∗ = (N−1)Kη−L+1, applying (26) in Proposition
1 immediately gives (29).

Next we prove (8). It can be shown that for any sequence
S(k), k ≥ 0, of nonempty proper subsets of V with the
same cardinality, it always holds that

W

kω2−1∑
k=0

∑
i6∈S(k+1)
j∈S(k)

L−1∑
u=0

aij(kL+u+ t0) ≤ ω2

⌊
N

2

⌋
(ηL + 1).

By the definition of (9), k∗ ≥ kω2 . Applying (29), one has
that if t ≥ k∗L+ t0, then

Ψ(t) ≤ Ψ(k∗L+ t0) ≤ Ψ(kω2
L+ t0) ≤ εΨ(t0).

This proves the desired contraction rate. �

IV. CONCLUSIONS

In this paper, we have generalized the cut-balance and arc-
balance conditions in the literature so as to allow for non-
instantaneous reciprocal interactions between agents. The
assumption on the existence of a lower bound on the nonzero
weights aij of the arcs has been relaxed. It has been shown
that global consensus is reached if and only if the persistent
graph contains a directed spanning tree. The estimate of the
convergence rate of the discrete-time system has been given
which is not established for the cut-balance case in [20].
Future work may consider multi-agent systems consisting
of agents interacting with each other through attractive and
repulsive couplings [22]–[28].
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