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Abstract— This paper investigates the problem of event-
triggered pinning control for the synchronization of networks of
nonlinear dynamical agents onto a desired reference trajectory.
The pinned agents are those that have access to the reference
trajectory. We consider both static and switching topologies.
We prove that the system is well posed and identify conditions
under which the network achieves exponential convergence.
A lower bound for the rate of convergence is also derived.
Numerical examples demonstrating the effectiveness of the
results are provided.

I. INTRODUCTION

Multi-agent systems have attracted a large amount of
research in the past few decades - see for example [1] -
because they provide a suitable model for a remarkably
wide spectrum of phenomena spanning the fields of biology,
social sciences, physics, economics and engineering - see for
example [2].

Pinning control is one of the possible inflections of the
problem of multi-agent coordination. In the pinning control
problem it is required that a set of interconnected dynamical
systems synchronize onto a reference trajectory. A small
fraction of the agents can be selected to receive a direct
feedback from the reference. Such agents are called pins
or pinned agents. The remaining agents are influenced only
by their connections in the network. As opposed to more
traditional consensus problems, the reference trajectory is
supposed to be a solution of the uncoupled node dynamics, a-
priori known and corresponding to a control objective. When
the dynamics of the agents and of the controllers are given,
selection of the pins is left as the crucial element of the
control design.

Research on pinning control usually focuses on finding
sufficient conditions for convergence relating to the agents’
dynamics and the connections’ topology - see for example
[3]–[8] - or on criteria for optimal selection of the agents to
control - see for example [9], [10] - or on designing adaptive
control laws - see for example [11], [12].
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In many realistic scenarios a set of dynamical systems
are required to synchronize over a network with a time-
varying topology - see for example [13], [14]. In most cases,
variations in the network topology are due to communication
failures between two or more agents, which can be regarded
as instantaneous with respect to the agents’ dynamics. A
large number of existing papers investigate pinning control
for time-varying networks - see for example [15]–[18].

Pinning control algorithms have been traditionally de-
signed in a continuous-time fashion. However, continuous-
time distributed control laws are typically cumbersome or
even not possible to be implemented for large-scale net-
works, mainly because in several scenarios the systems are
supposed to communicate over a wireless medium, which
represents a shared resource with limited capacity. In general,
time-triggered control is not a viable solution to this issue,
since it would require synchronization of the sampling in-
stants among all the agents and also their simultaneous trans-
mission of information over the communication medium.
Conversely, since the appearance of pioneering studies on the
subject - such as [19], [20] - event-triggered approaches have
been successfully developed for network synchronization
problems - see [21]–[25] among the others.

The main contribution of this paper is to address the
problem of multi-agent coordination with a network model
that includes at the same time nonlinear dynamics of the in-
dividual agents, pinning control, event-triggered signals and
time-varying topologies. Considering both static and time-
varying networks of identical nonlinear dynamical systems,
we design a model-based, distributed and event-triggered
pinning control law which drives the states of such systems
onto an a-priori specified common reference trajectory. We
derive a set of sufficient conditions under which accumula-
tion points in the sequences of events are excluded - which
also implies absence of Zeno behavior [26] - and the agents
achieve exponential convergence to the reference trajectory.

II. PRELIMINARIES

For x ∈ Rn we denote x[N ] = [x>, . . . , x>]> ∈ RnN . In
denotes the n-by-n identity matrix.

Definition 2.1: A function f : x ∈ Rn → Rn is said to
be globally Lipschitz with Lipschitz Constant Lf if ∀x, y ∈
Rn, ||f(x)− f(y)|| ≤ Lf ||x− y||.

Operator ⊗ between two matrices denotes their Kronecker
product. On this operator, and also for the following lemma,
see for example [27].
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Lemma 2.1: For any two square matrices A ∈
Rna×na with eigenvalues λ

(1)
a , . . . , λ

(na)
a and eigenvec-

tors v
(1)
a , . . . , v

(na)
a , and B ∈ Rnb×nb with eigenvalues

λ
(1)
b , . . . , λ

(nb)
b and eigenvectors v(1)b , . . . , v

(nb)
b the eigenval-

ues of A⊗B are given by λ(i)a λ
(j)
b and its eigenvectors are

given by v(i)a ⊗ v(j)b with i = 1, . . . , na and j = 1, . . . , nb.
A graph G = {V, E} is defined by a set V = {1, . . . , N}

of nodes and a set E ⊆ V × V of edges. A graph is called
undirected if (i, j) ∈ E ⇐⇒ (j, i) ∈ E .

In an undirected graph two nodes i and j are said to
be neighbors or adjacent if (i, j) ∈ E . The number di of
neighbors of node i is also called the degree of node i. A
path from node i to node j is a sequence of nodes starting in
i and ending in j such that every two consecutive nodes are
adjacent. A graph is said to be connected if there exists a path
between any two of its nodes. If a graph is not connected
then the node set V can be partitioned into subsets Vi such
that, denoting by Ei the restriction of E to Vi, each of the
graphs Gi := {Vi, Ei} is connected. Such subsets are called
the components of the original graph. The matrix

{A}ij =

{
1 if (i, j) ∈ E
0 otherwise

is called adjacency matrix of the graph. Furthermore, the
matrix

{L}ij =

{∑N
k=1 aik if i = j

−aij if i 6= j

is called the Laplacian matrix of the graph. The Laplacian
of any given undirected graph is symmetric with zero line
sum, and therefore the vector 1[N ] is an eigenvector with null
eigenvalue. It is also a known property of graph theory - see
for example [1] - that the Laplacian is positive semidefinite,
and it has as many null eigenvalues as many components
there are in the graph.

Following [6], we associate a pin set P ⊆ V to graph G.
If a node belongs to the pin set we say that it is pinned, or a
pin. We say that the graph is pinned itself if every component
contains at least one pinned node. We define

{P}ij =

{
1 if i = j and i ∈ P
0 otherwise

as the pinning matrix of the graph. For any two positive
scalars c, ρ we say that the matrix

La = cL+ ρP

is an augmented Laplacian of the graph. Since it is a sum of
two positive semidefinite matrices, an augmented Laplacian
is itself positive semidefinite. We call its smallest eigenvalue
λ ≥ 0 augmented connectivity of the graph.

Lemma 2.2: The augmented connectivity of a graph is
strictly positive if and only if the graph is pinned.

III. PROBLEM STATEMENT

We consider a network of N interconnected agents with
identical dynamics described by

ẋi = f(xi) + ui, xi ∈ Rn for i = 1, . . . , N. (1)

It is desired that the agents converge to a reference trajectory
s such that

ṡ = f(s), s ∈ Rn.

We introduce the tracking errors ei = s − xi and the
mismatches eij = xj − xi = ei − ej . We also in-
troduce the stack vectors x = [x>1 , . . . , x

>
N ]>, e =

[e>1 , . . . , e
>
N ]>, u = [u>1 , . . . , u

>
N ]> and s[N ] = [s>, . . . , s>]

all belonging to RNn. Moreover, we denote F (x) =
[f(x1)>, . . . , f(xN )>]> ∈ RNn. For convenience we denote
η = ||e||. The control objective is to achieve convergence of
the agents’ states to the reference, in the sense that

lim
t→+∞

η(t) = 0.

We describe the topology of the connections in the net-
work by a graph G, where each node represents an agent,
each edge (i, j) represents a feedback from agent j to agent
i and the pin set represents the agents that directly receive a
feedback from the reference. Similarly to what done in [25],
we adopt the following event-triggered control law:

ui(t) =c

N∑
j=1

aijeij(t
(i)
ki

) + ρpiiei(t
(i)
ki

), t ∈ [t
(i)
ki
, t

(i)
ki+1),

(2)

where aij and pii are elements of the incidence and the
pinning matrix respectively and c, ρ are two positive scalars.
Note that the control input ui remains constant in the interval
[t
(i)
ki
, t

(i)
ki+1). Time instants t(i)ki in which signal ui is updated

are called events related to agent i. For convenience we
introduce the signals

ẽij(t) =eij(t
(i)
ki

)− eij(t) for t ∈ [t
(i)
ki
, t

(i)
ki+1),

ẽi(t) =ei(t
(i)
ki

)− ei(t) for t ∈ [t
(i)
ki
, t

(i)
ki+1),

so that at all times the control signals can be written as

ui = c

N∑
j=1

aij(eij + ẽij) + ρpii(ei + ẽi).

In order to determine sequences {t(i)ki }
+∞
ki=0 we introduce the

threshold function:

ς(t) = ς0e
−λςt. (3)

Sequence {t(i)ki }
+∞
ki=0 is defined recursively as follows:

t
(i)
ki+1 = min{t > t

(i)
ki

:

aij ||ẽij(t)|| ≥ ς(t) for some j ∈ V or
pii||ẽi(t)|| ≥ ς(t)}.

(4)

Therefore, an event for agent i occurs anytime aij ||ẽij(t)||
or pii||ẽi(t)|| exceeds the current value of the threshold ς(t).
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Assumption 3.1: Function f is globally Lipschitz with
Lipschitz constant Lf .

Assumption 3.2: Denoting α = λ− Lf , it holds that 0 <
λς < α.

Remark 3.1: In order to satisfy Assumption 3.2, it is
necessary, but not sufficient, that the graph underlying the
network is pinned according to Lemma 2.2. However, if
the graph is pinned, Assumption 3.2 can always be satisfied
using sufficiently large c and ρ.

IV. CONVERGENCE ON STATIC TOPOLOGIES

In this section we prove that the proposed algorithm
achieves convergence of the agents’ states to the reference
trajectory. In order to do this, first we show that there is a
lower bound on the inter-event time t(i)ki+1 − t

(i)
ki

for all the
event sequences, then we prove that the norm of the error
stack η(t) converges exponentially to zero.

Theorem 4.1: Let us consider a network (1) controlled
with law (2)–(4). Then under Assumptions 3.1 and 3.2
there exists a positive inter-event time for all the sequences
{t(i)ki }

+∞
ki=0 and the norm of the error stack η(t) converges

exponentially to zero.
Proof: Let us consider the closed-loop dynamics of the

error signals:

ėi = ṡ− ẋi = f(s)− f(xi)− ui

= f(s)− f(xi)− c
N∑
j=1

aij(eij + ẽij)− ρpii(ei + ẽi).

If we denote with l>i and p>i the i-th row of the Laplacian
and the pinning matrix respectively, we can rewrite the last
expression as

ėi =f(s)− f(xi)− [(cl>i + ρp>i )⊗ In]e

− c
N∑
j=1

aij ẽij − ρpiiẽi.
(5)

If we denote the last two addends with ξi we can rewrite

ėi = f(s)− f(xi)− [(cl>i + ρp>i )⊗ In]e− ξi.

Denoting ξ = [ξ>1 , . . . , ξ
>
N ]>, we can group the previous

equations for i = 1, . . . , N in

ė = F (s[N ])− F (x)− (La ⊗ In)e− ξ.

where La = cL + ρP is an augmented Laplacian of the
graph. Note that thanks to the triggering condition we have
||ẽij ||, ||ẽi|| < ς , therefore ||ξi|| ≤ (cdi + ρpii)ς and
consequently ||ξ|| ≤ ∆ς , where ∆ is a positive constant
whose expression depends on the augmented Laplacian. Now
we can calculate

e>ė = e>[F (s[N ])− F (x)]− e>(La ⊗ In)e− e>ξ.

Accounting for Assumption 3.1, Lemma 2.1, and the upper
bound on ||ξ||, we can bound the previous expression with

e>ė ≤ Lfη2 − λη2 + η∆ς.

Now we can observe that

η̇ =
d

dt
||e|| = e>ė

||e||
≤ (Lf − λ)η + ∆ς.

Under Assumption 3.2 we have α = λ−Lf > 0, so we can
write η̇ ≤ −αη + ∆ς , which can be integrated in [0, t] as
follows:

η(t) ≤ e−αtη(0) + ∆

∫ t

0

e−α(t−τ)ς(τ)dτ.

Substituting ς(τ) with its expression it is possible to solve
the integral and obtain

η(t) ≤ e−αtη(0) +
∆ς0
α− λς

(e−λςt − e−αt).

Remembering that by Assumption 3.2 we have 0 < λς < α
we can rewrite

η(t) ≤
(
η(0) +

∆ς0
α− λς

)
e−λςt = kης(t). (6)

where kη is a positive constant. Now we can observe that

ẽi = −
∫ t

t
(i)
ki

ėi(σ)dσ =⇒ ||ẽi|| ≤
∫ t

t
(i)
ki

||ėi(σ)||dσ. (7)

Accounting for (5) we can easily write

||ėi|| ≤ Lf ||ei||+ (c||l>i ||+ ρ||p>i ||)||e||+ ||ξi||
≤ Lf ||e||+ (c

√
2di + ρpii)||e||+ (cdi + ρpii)ς.

From (6) this implies also

||ėi|| ≤ ωiς,

where ωi is a positive constant of expression ωi = (Lf +
c
√

2di + ρpii)kη + cdi + ρpii. Using (7) and remembering
that ς(t) is nonincreasing we can also write

||ẽi|| ≤ ωi
∫ t

t
(i)
ki

ς(τ)dτ ≤ ωiς(t(i)ki )(t− t(i)ki ).

This means that in order to have ||ẽi|| ≥ ς we need that

ωiς(t
(i)
ki

)(t− t(i)ki ) ≥ ς(t) = ς(t
(i)
ki

)e
−λς(t−t(i)ki ),

that is,

ωi(t− t(i)ki ) ≥ e−λς(t−t
(i)
ki

)
.

The above inequality has a lower-bounded solution, therefore
we have proven that there exists a lower bound on the time
needed to have ||ẽi|| ≥ ς after t(i)ki . In the same way it is
possible to prove that there exists a lower bound on the time
needed to have ||ẽij || ≥ ς after t(i)ki , but considering

ẽij = −
∫ t

t
(i)
ki

ėij(σ)dσ =

∫ t

t
(i)
ki

ėi(σ)− ėj(σ)dσ

and

||ẽij || ≤
∫ t

t
(i)
ki

||ėi(σ)||+ ||ėj(σ)||dσ.
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If we now look at (6), we can conclude that the error stack
norm η(t) converges exponentially to zero.

Remark 4.1: Note that the existence of a constant lower-
bound for the inter-event times t

(i)
ki+1 − t

(i)
ki

is a stronger
property than absence of Zeno behavior [26].

V. CONVERGENCE ON SWITCHING TOPOLOGIES

This section extends the presented results to time-varying
topologies. In particular, consider here a special class of
time-varying topologies, the switching graphs.

Definition 5.1: A graph is said to be switching with a
dwell time τd > 0 if
• the node set is constant;
• the edge set and the pin set may be modified at discrete

time instants, but two consecutive variations regarding
the same edge or the same pin node are separated at
least by a time interval τd.

Variations in the edge set and the pin set are called switch-
ings.

Assumption 5.1: The underlying graph of network (1) is
switching with dwell time τd > 0.

When the network is built on a switching graph, sequences
t
(i)
ki

must be defined differently in order to take into account
the possible changes in the topology of interactions and
control. Specifically, the control signal ui must be updated
every time a switching involving the i-th agent occurs.
Therefore we define sequence {t(i)ki }

+∞
ki=0 as follows:

t
(i)
ki+1 = min{t > t

(i)
ki

:

aij(t)||ẽij(t)|| ≥ ς(t) for some j ∈ V or

aij(t) 6= aij(t
(i)
ki

) for some j ∈ V or

pii(t)||ẽi(t)|| ≥ ς or

pii(t) 6= pii(t
(i)
ki

)},

(8)

and the control law is given by (2)–(3), (8).
Assumption 5.2: There exist two positive constants T , ψ

such that, denoting α = cλ−Lf , for any time instant t ≥ 0
it holds that

0 < λς < ψ ≤ 1

T

∫ t+T

t

α(τ)dτ. (9)

Note that in order to satisfy Assumption 5.2 it is not nec-
essary that the underlying graph is always pinned. However,
it has to be pinned sufficiently often for (9) to hold in every
interval [t, t+ T ].

Theorem 5.1: Let us consider a network (1) controlled
with law (2)-(3), (8). Then under assumptions 3.1, 5.1 and
5.2 sequences {t(i)ki }

+∞
ki=0 do not present accumulation points

and the norm of the error stack η(t) converges exponentially
to zero.

Proof: Assumption 5.1 excludes that sequences
{t(i)ki }

+∞
ki=0 present accumulation points of events gener-

ated by switchings. Still we have to prove that there are
no accumulation points of events generated by conditions
aij(t)||ẽij(t)|| ≥ ς(t) or pii(t)||ẽi(t)|| ≥ ς(t). Reasoning as
in the static case, we can still write η̇ ≤ −α(t)η + ∆(t)ς ,
with now α and ∆ being time-varying. Since the network has

only a finite number of possible configurations, there exist
upper and lower bounds for both α and ∆. Integration of the
previous inequality over a time interval [t, t+ T ] yields

η(t+ T ) ≤e−
∫ t+T
t

α(τ)dτη(t)

+ ∆M

∫ t+T

t

e−
∫ t+T
τ

α(σ)dσς(τ)dτ,

where ∆M is an upper bound for ∆. Under Assumption 5.2
we can write∫ t+T

τ

α(σ)dσ =

∫ t+T

t

α(σ)dσ −
∫ τ

t

α(σ)dσ

≥ ψT − αM (τ − t),

where αM is an upper bound for α. Therefore we can bound
η(t+ T ) with

η(t+ T ) ≤e−ψT η(t)

+ ∆Me
−ψT

∫ t+T

t

eαM (τ−t)ς(τ)dτ.

Substituting ς(τ) with its expression (3) we obtain

η(t+ T ) ≤e−ψT η(t)

+
∆Me

−ψT (e(αM−λς)T − 1)

αM − λς
ς(t).

For t = kT the previous expression has the form of the
dynamics of a scalar discrete-time system that we rewrite as

η((k + 1)T ) ≤ aη(kT ) + bς(kT ),

with a and b positive constants. The above expression can
be explicitly written as

η(kT ) ≤ akη(0) + b

k−1∑
h=0

ς(hT )ak−1−h.

Substituting the expressions of a and ς(kT ) we obtain

η(kT ) ≤ e−ψkT η(0) + be−ψ(k−1)T
k−1∑
h=0

e(ψ−λς)hT

≤ e−ψkT η(0) + be−ψ(k−1)T
e(ψ−λς)kT − 1

e(ψ−λς)T − 1

≤ e−ψkT η(0) + b
eψT

e(ψ−λς)T − 1
e−λςkT .

Taking into account that λς < ψ we finally obtain

η(kT ) ≤
(
η(0) + b

eψT

e(ψ−λς)T − 1

)
e−λςkT = k

′

ης(kT ),

(10)
where k

′

η is a positive constant. Observing that α = λ−Lf
is lower bounded by −Lf , we can write

η̇ ≤ Lfη + ∆M ς,
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which integrated over an interval [kT, t] with kT ≤ t <
(k + 1)T becomes

η(t) ≤eLf (t−kT )η(kT ) + ∆M ς0

∫ t

kT

eLf (t−τ)e−λςτdτ

≤eLf (t−kT )η(kT )

+ ∆M ς0e
Lf t

e−(Lf+λς)kT − e−(Lf+λς)t

Lf + λς

≤eLfT
(
η(kT ) +

∆M

Lf + λς
ς(kT )

)
.

Taking into account (10), the previous inequality yields

η(t) ≤ k
′′

η ς(kT ),

where k
′′

η ς(kT ) is yet another known positive constant. Now
since kT ≤ t < (k + 1)T we have ς(kT ) = eλςT ς((k +
1)T ) ≤ eλςT ς(t), which leads to

η(t) ≤ k
′′

η e
λςT ς(t). (11)

Since such reasoning is valid for all k = 0, 1, . . ., inequality
(11) is valid at all times t ≥ 0. Now, focusing on ||ėi|| and
reasoning as we did in the static case, we can write

||ėi|| ≤ Lf ||e||+ (c
√

2(N − 1) + ρ)||e||+ (cN + ρ)ς. (12)

Note that in this case, despite the fact that di and pii are time-
varying, it holds that di ≤ N − 1 and pii ≤ 1. Accounting
for (11), inequality (12) implies that there exists a constant
ω such that ||ėi|| ≤ ως . Reasoning exactly like in the static
case we obtain a lower bound on the time needed to get
||ẽij || ≥ ς for some j ∈ V or ||ẽi|| ≥ ς after t(i)ki .

If we now look at (11), we can conclude that the error
stack norm η(t) converges exponentially to zero.

Remark 5.1: Since events can be generated by switchings,
which are exogenous with respect to the agents’ dynamics,
two consecutive updates of signal ui, one caused by a
switching and one caused by ||ẽi|| or some ||ẽij || meeting
the threshold function, may be arbitrarily close in time. For
this reason, although we proved that no accumulation points
exist, in order to cope with switching topologies, our control
algorithm has to rely on fast actuators. However, note that
absence of accumulation points in sequences {t(i)ki }

+∞
ki=0 is

still a stronger property than absence of Zeno behavior [26].

VI. NUMERICAL EXAMPLES

To illustrate the effectiveness of the proposed control
algorithm, we apply it to a simulated network. We consider
a set of N = 10 identical Chua oscillators. The individual
dynamics of each oscillator are described by

f(x) =

a(x2 − x1 − φ(x1))
x1 − x2 + x3
−bx2

 ,
where φ(y) = m1y+ 1

2 (m0−m1)(|y+ 1|− |y−1|) ∀y ∈
R. Choosing a = b = 1, m0 = −1.5, m1 = −0.5, the
oscillators are globally Lipschitz with Lf ' 3.75 - see [25].

The oscillators are connected over a network with 25 edges
- out of a maximum of 45 possible edges - a coupling gain

Fig. 1. Trend of the first state variable for all the agents (solid) and the
reference (dashed) during the described simulation.

Fig. 2. Number of events occurred for each agent in the network during
the described simulation.

c = 8 and a control gain ρ = 25. Our simulation is set on a
time interval [0, 6]s. At the beginning of the experiment the
three nodes with highest degrees are pinned, which yields
λ ' 5.29. At t = 0.75s one pin is removed, which causes
λ ' 3.36. At t = 0.90s the two remaining pins are removed
as well, which causes λ = 0. At t = 1.0s the original pinning
scheme is restored and the cycle repeats itself every second.
It is easy to see that Assumption 5.1 holds with τd = 1s. If
we set T = 1s, we can calculate

ψ =
1

T

∫ T

t

α(τ)dτ

' 5.29 · .75 + 3.36 · .15− 3.75 ' .72.

For the threshold function, we pick ς0 = 3.0 and λς =
0.70, so that Assumption 5.2 holds. For all the oscillators,
the initial state values are chosen in the interval [−1.0, 1.0].
The simulation is run with with a time step of 1.0ms.
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Fig. 3. Trend of the sum of the events occurred in the network during the
simulation with λς = 0.70 (blue) and during the simulation with λς = 7.0
(green).

Figure 1 shows the trend of the first state variable of all
the agents and the reference, during the experiment while
Figure 2 shows the total number of events for each agent. It
is possible to observe that all the agents update their control
signal less than 200 times during the experiment, so less than
34 times per second on average.

In order to show the importance of selecting an appropriate
threshold function, we repeat the same simulation using λς =
7.0. Note that with this choice of parameters Assumption 5.2
is not met. Figure 3 shows the trend of the sum of the events
occurred for all the agents in the network, both for the case
λ = 0.70 (blue curve) and for the case λ = 7.0 (green
curve). For the first case it is possible to see how the total
number of events grows linearly with respect to time with
a constant slope, thus indicating that, as expected, we do
not have an accumulation of events for any t. Conversely, in
the second case the total amount of events sensibly deviates
from the previous curve. The increase of slope for increasing
t indicates a continuous increment in the number of events.
This is consistent with the fact that, violating Assumption
5.2, the threshold (3) is shrinking faster than the network
dynamics.

VII. CONCLUSIONS

In this paper we presented a novel model-based distributed
algorithm for event-triggered pinning control of a network of
nonlinear dynamical systems. The concepts of pinned graph
and augmented connectivity have been introduced. Conver-
gence of the proposed algorithm has been proven under
opportune hypotheses for both static and switching networks.
A numerical example has been presented to validate the
theoretical results.

REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and
cooperation in networked multi-agent systems. Proceedings of the
IEEE, 95(1):215–233, 2007.

[2] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, and C. Zhou.
Synchronization in complex networks. Physics Reports, 469(3):93–
153, 2008.

[3] X. F. Wang and G. Chen. Pinning control of scale-free dynamical
networks. Physica A: Statistical Mechanics and its Applications,
310(3):521–531, 2002.

[4] L. Y. Xiang, Z. X. Liu, Z. Q. Chen, F. Chen, and Z. Z. Yuan.
Pinning control of complex dynamical networks with general topology.
Physica A: Statistical Mechanics and its Applications, 379(1):298–
306, 2007.

[5] F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen. Control-
lability of complex networks via pinning. Physical Review E, 75(4),
2007.

[6] M. Porfiri and M. Di Bernardo. Criteria for global pinning-
controllability of complex networks. Automatica, 44(12):3100–3106,
2008.

[7] W. Wu, W. Zhou, and T. Chen. Cluster synchronization of linearly
coupled complex networks under pinning control. Circuits and Systems
I: Regular Papers, IEEE Transactions on, 56(4):829–839, 2009.

[8] Y. Y. Liu, J. J. Slotine, and A. L. Barabási. Controllability of complex
networks. Nature, 473(7346):167–173, 2011.

[9] X. Li, X. Wang, and G. Chen. Pinning a complex dynamical network
to its equilibrium. Circuits and Systems I: Regular Papers, IEEE
Transactions on, 51(10):2074–2087, 2004.

[10] W. Lu, X. Li, and Z. Rong. Global stabilization of complex networks
with digraph topologies via a local pinning algorithm. Automatica,
46(1):116–121, 2010.

[11] T. Chen, X. Liu, and W. Lu. Pinning complex networks by a single
controller. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 54(6):1317–1326, 2007.
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