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Abstract— In this paper, we study the coordinated tracking
problem of multiple Lagrange systems with a time-varying
leader’s generalized coordinate derivative. Under a purely local
interaction constraint, i.e., the followers only have access to
their local neighbors’ information and the leader is a neighbor
of only a subset of the followers, a continuous coordinated
tracking algorithm with adaptive coupling gains is proposed.
Tracking errors between the followers and the leader are shown
to converge to zero. Then, we extend this result to the case
when the leader’s generalized coordinate derivative is constant.
Examples are given to validate the effectiveness of the proposed
continuous coordinated tracking algorithms.

I. INTRODUCTION

Coordination of multi-agent systems has been extensively

studied for the past two decades. One fundamental problem is

the coordinated tracking problem with a time-varying global

objective [2], [3]. The key idea behind coordinated tracking

problem is to control a group of followers to track a time-

varying global objective by using only local information. The

coordinated tracking problem was introduced and studied in

[4] and [5], where the followers were modeled as single

integrators. The tracking errors were shown to be bounded

in [4] and the neighbors’ control inputs were used in [5]. Re-

cently, [6] proposed a coordinated tracking algorithm using a

variable structure approach. Both the cases of multiple single

integrators and multiple double integrators were considered

and the tracking errors were shown to converge to zero using

the proposed coordinated tracking algorithms.

In this paper, instead of modeling the follower dynamics

as single integrators or double integrators, we study the

coordinated tracking problem of multiple Lagrange systems.

Here, a Lagrange system is used to represent a mechanical

system, including spacecraft formations, vehicles, robotic

manipulators, and mobile robots. Nonlinear contraction anal-

ysis was introduced in [7] to study the stability of coordinated

tracking of multiple Lagrange systems under varieties of

communication topologies. The author of [8] focused on the

leaderless consensus of multiple Lagrange systems, where

the generalized coordinate derivatives of the followers were

driven to zero. Passivity-based control was used in [9],

where time-varying delays, limited communication rates and

non-vanishing bounded disturbances were considered. The
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influence of communication delays was studied in [10] and

adaptive controllers were used to guarantee both leaderless

synchronization and leader-following coordinated tracking.

Finite-time coordinated tracking algorithms were proposed

in [11], [12], where the directed communication topology

was emphasized in [11] and the Lagrange dynamics were

used to represent the attitudes of rigid bodies in [12]. The

authors of [13] introduced a variable structure approach by

using both the one-hop and two-hop neighbors’ information

to achieve coordinated tracking. In addition, the containment

control with group dispersion and group cohesion behaviors

was reconstructed for multiple Lagrange systems in [14],

where the proposed algorithm was discontinuous in order

to dominate the external disturbances.

Compared with the existing literature, the contributions of

the current paper are twofold. First, the proposed zero-error

coordinated tracking algorithm is continuous, therefore free

of chattering phenomena. This extends the existing results

[11], [13], [14], where discontinuous control algorithms were

proposed that may result in implementation issues. To the

best of our knowledge, it is the first algorithm guaranteeing

both zero-error tracking and chattering-free input in solving

coordinated tracking problem of multiple Lagrange systems.

Second, in contrast to [12], where the eigenvalues of the

interaction Laplacian matrix and the upper bound of states of

the bounded time-varying leader are assumed to be available

to all the followers, the proposed algorithm in the current

paper is purely distributed in the sense that both the control

input and coupling gain depend only on local information.

The remainder of the paper is organized as follows. In

Section II, we formulate the problem of coordinated tracking

of multiple Lagrange systems and give some basic notations

and definitions. The main results are presented in Sections III

and III-A. Numerical studies are carried out in Section IV to

validate the theoretical results and a brief concluding remark

is given in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Suppose that there are n follower agents in the group,

labeled as agents 1 to n. In addition to the n followers, there

also exists a leader agent in the group, labeled as agent 0 with

the desired time-varying generalized coordinate q0 ∈ R
p and

the desired time-varying generalized coordinate derivative

q̇0 ∈ R
p. The objective of this paper is to design continuous

coordinated tracking algorithms for follows such that the

states of followers converge to those of the leader by using

only local interactions, i.e., the leader states q0 and q̇0 are
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Fig. 1. Information flow associated with the leader and the six followers

only available to a subset of the followers and the followers

only have access to their local neighbors’ information.

In this paper, the system dynamics of the followers can be

described by Lagrange equations

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, 2, · · · , n, (1)

where qi ∈ R
p is the vector of generalized coordinates,

Mi(qi) ∈ R
p×p is the p × p inertia (symmetric) matrix,

Ci(qi, q̇i)q̇i is the Coriolis and centrifugal terms, gi(qi) is

the vector of gravitational forces, and τi ∈ R
p is the control

force. Note that (1) can be used to describe rigid bodies,

robotic manipulators, and mobile robots. For example, we

can transform attitude kinematics and dynamics of rigid

bodies to their Lagrange expression using the relationship

given in [15]. In general, the dynamics of a Lagrange system

satisfies the following properties [16]:

1. Mi(qi) is positive definite.

2. Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric.

3. The left-hand side of the dynamics can be parameter-

ized, i.e., Mi(qi)y+Ci(qi, q̇i)x+ gi(qi) = Yi(qi, q̇i, x, y)θi,
∀x, y ∈ R

p, where Yi ∈ R
p×pθ is a regression matrix and

θi ∈ R
pθ is a constant vector identifying parameters of

Lagrange dynamics.

In the real applications, the actual parameter θi may be

not available. Instead, the nominal parameter θ̂i is available.

From Property 3, we know that the nominal dynamics

satisfies

M̂i(qi)q̈i + Ĉi(qi, q̇i)q̇i + ĝi(qi) = Yi(qi, q̇i, q̇i, q̈i)θ̂i,

where M̂i(qi), Ĉi(qi, q̇i), ĝi(qi), and θ̂i are nominal dynam-

ics terms. We also know that the actual dynamics satisfies

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = Yi(qi, q̇i, q̇i, q̈i)θi.

For later use, we define �θi = θ̂i − θi. Considering that

there are six followers (n = 6) in the group, Fig. 1 gives

an example of information flow among the leader and six

followers. Note that the leader’s states are only available to

followers ν3 and ν6 and the followers only have access to

their neighbors’ information.

B. Graph Theory

We use graphs to represent the communication topology

among agents. A directed graph Gn consists of a pair

(Vn, En), where Vn = {1, 2, . . . , n} is a finite, nonempty

set of nodes and En ⊆ Vn × Vn is a set of ordered pairs

of nodes. An edge (i, j) denotes that node j has access to

the information from node i. An undirected graph is defined

such that (j, i) ∈ En implies (i, j) ∈ En. A directed path in a

directed graph or an undirected path in an undirected graph

is a sequence of edges of the form (i, j), (j, k), . . . . The

neighbors of node i are defined as the set Ni := {j|(j, i) ∈
En}.

For a follower graph Gn, its adjacency matrix An =
[aij ] ∈ R

n×n is defined such that aij is positive if (j, i) ∈ En
and aij = 0 otherwise. Here we assume that aii = 0,

∀i = 1, 2, · · · , n. The Laplacian matrix Ln = [lij ] ∈
R

n×n associated with An is defined as lii =
∑

j �=i aij and

lij = −aij , where i �= j. Similarly, we define the follower

and leader graph Gn+1 := (Vn+1, En+1), where Vn+1 =
{0, 1, . . . , n}, En+1 ⊆ Vn+1 × Vn+1, and 0 denotes the

leader and 1, 2, . . . , n denote the followers. The adjacency

matrix An+1 = [aij ] ∈ R
(n+1)×(n+1) associated with Gn+1

is defined such that ai0 is positive if (0, i) ∈ En+1 and

ai0 = 0 otherwise, ∀i = 1, 2, · · · , n. Here we assume that

aii = 0, ∀i, and the leader has no parent, i.e.,, a0j = 0, j =
0, 1, · · · , n.

Assumption 1: The fixed undirected graph Gn is con-

nected and ai0 > 0 for at least one i, i = 1, 2, · · · , n.

Letting M = Ln + diag(a10, a20, · · · , an0) (Ln is the

Laplacian matrix associated with Gn), we recall the following

result.

Lemma 1: [17] Under Assumption 1, M is symmetric and

positive definite.

C. Nonsmooth Analysis

Consider the vector differential equation

ẋ = f(x, t), (2)

where f : Rp×R → R
p is measurable and essentially locally

bounded. A vector function x(t) is called a solution of (2)

on [t0, t1] if x(t) is absolutely continuous on [t0, t1] and

for almost all t ∈ [t0, t1], ẋ ∈ K[f ](x, t) (see [19] for

more details on the definition of K[f ](x, t)). Throughout

this paper, the solutions to the closed-loop systems are

understood in the Filippov sense.

For a locally Lipschitz function V : Rp × R → R, the

generalized gradient of V at (x, t) is defined by ∂V (x, t) =
co{lim∇V (x, t)|(xi, ti) → (x, t), (xi, ti) �∈ ΩV }, where ΩV

is the set of measure zero where the gradient of V is not

defined. The generalized time derivative of V with respect

to (2) is defined as
˙̃V :=

⋂
ζ∈∂V ζT

(
K[f ](x, t)

1

)
[18],

[19], where ζ ∈ ∂V (x(t), t).
Lemma 2: [20] Let (2) be essentially locally bounded and

0 ∈ K[f ](x, t) in a region R
p×[0,∞). Furthermore, suppose

that f(0, t) is uniformly bounded for all t ≥ 0. Let V :
R

p × [0,∞) → R be locally Lipschitz in t, and regular (see

[19] for the definition of “regular”) such that, ∀t ≥ 0,

W1(x) ≤ V (x, t) ≤ W2(x),

˙̃V (x, t) ≤ −W (x),

where W1(x) and W2(x) are continuous positive definite

functions and W (x) is a continuous positive semidefinite

function. Then all the solutions of (2) are bounded and satisfy

W (x(t)) → 0, as t → ∞.
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D. Additional Notation

Given a vector x = [x1, x1, · · · , xn]
T, we define

sgn(x) = [sgn(x1), sgn(x2), · · · , sgn(xn)]
T, and |x| =

[|x1|, |x2|, · · · , |xn|]T. In addition, diag(x) denotes the di-

agonal matrix of a vector x, λmin(P ) and λmax(P ) denote

respectively the minimum and maximum eigenvalues of the

matrix P .

III. ZERO-ERROR COORDINATED TRACKING USING

CONTINUOUS CONTROL

The objective here is to drive the states of the followers to

converge to those of the leader. Note here that the leader’s

information is available to only a portion of the followers

and we use nominal parameters of Lagrange dynamics. The

control protocol is proposed for each follower,

τi = Yi(qi, q̇i,q̇ri, q̈ri)θ̂i − αisi, i = 1, 2, · · · , n, (3)

where Yi is defined in Sections II-A and αi > 0 is an

arbitrary positive constant. In addition, the adaptive control

term, the virtual reference trajectory, the leader’s generalized

coordinate derivative estimator, and the sliding surface are,

respectively, given by

˙̂
θi = −κY T

i (qi, q̇i,q̇ri, q̈ri)si, (4)

q̇ri = v̂i − b

⎛⎝ n∑
j=0

aij(qi − qj)

⎞⎠ , (5)

˙̂vi(t) = −(k1 + 1)v̂i(t)−
∫ t

0

⎛⎝k2i(τ) n∑
j=0

aij(v̂i(τ)− v̂j(τ))

+βi(τ)sgn

⎛⎝ n∑
j=0

aij(v̂i(τ)− v̂j(τ))

⎞⎠⎞⎠ dτ, (6)

and

si = q̇i − q̇ri, (7)

where v̂0 = q̇0, aij is the (i, j)th entry of An+1 associated

with Gn+1 defined in Section II-B, b > 0, κ > 0, k1 > 0 are

arbitrary positive constants,

k2i(t) =
1

2

⎛⎝ n∑
j=0

aij(v̂i(t)− v̂j(t))

⎞⎠T⎛⎝ n∑
j=0

aij(v̂i(t)− v̂j(t))

⎞⎠
+

∫ t

0

⎛⎝ n∑
j=0

aij(v̂i(τ)− v̂j(τ))

⎞⎠T

×
⎛⎝ n∑

j=0

aij(v̂i(τ)− v̂j(τ))

⎞⎠dτ, (8)

and

βi(t) =

∥∥∥∥∥∥
n∑

j=0

aij(v̂i(t)− v̂j(t))

∥∥∥∥∥∥
1

+

∫ t

0

∥∥∥∥∥∥
n∑

j=0

aij(v̂i(τ)− v̂j(τ))

∥∥∥∥∥∥
1

dτ. (9)

Note that unlike the discontinuous algorithms given in [11],

[13], [14], we introduce a continuous distributed estimator

(6) to accurately obtain the leader’s generalized coordinate

derivative. The key idea here is to use a second-order

sliding mode scheme instead of using a first-order sliding

mode scheme. Before moving on, we need the following

assumption and lemmas.

Assumption 2: q0 is bounded up to its fourth derivative.

Lemma 3: [21] Let S be a symmetric matrix partitioned

as S =

[
S11 S12

ST
12 S22

]
, where S22 is square and nonsingular.

Then S > 0 if and only if S22 > 0 and S11−S12S
−1
22 ST

12 > 0.

Lemma 4: ([22], [23]) Define ξ(t) ∈ R
p as ξ = (μ +

μ̇)T(−βsgn(μ) + Nd), where μ(t) ∈ R
p, β is a positive

constant, and Nd(t) ∈ R
p is the bounded disturbance. Then

we have that
∫ t

0
ξ(τ)dτ ≤ B, if β > supt ‖Nd(t)‖∞ +

supt ‖Ṅd(t)‖∞, where B = β‖μ(0)‖1 − μT(0)Nd(0) > 0.

Theorem 1: Let Assumptions 1 and 2 hold. Under the

local continuous coordinated tracking algorithm (3), the

states of the followers governed by the Lagrange dynamics

(1) globally asymptotically converge to those of the leader,

i.e., qi(t) → q0(t) and q̇i(t) → q̇0(t), ∀qi(0) ∈ R
p,

∀i = 1, 2, · · · , n, as t → ∞.

Proof:
It follows from Property 3 in Section II-A that

Mi(qi)q̈ri + Ci(q̇i, qi)q̇ri + gi(qi) = Yi(qi, q̇i, q̇ri, q̈ri)θi.

We then further have that

Mi(qi)ṡi + Ci(q̇i, qi)si = Yi(qi, q̇i, q̇ri, q̈ri)�θi − αisi,

where �θi is given in Section II-A. It also follows from (6)

that

v̈i =− (k1 + 1)v̇i − k2i

⎛⎝ n∑
j=1

aij(vi − vj) + ai0vi

⎞⎠
− βisgn

⎛⎝ n∑
j=1

aij(vi − vj) + ai0vi

⎞⎠+Ndi,

where vi = v̂i− q̇0, Ndi = −(k1+1)q̈0−
...
q 0. It follows that

v̈i =− (k1 + 1)v̇i − k2i

⎛⎝ n∑
j=1

mijvj

⎞⎠
− βisgn

⎛⎝ n∑
j=1

mijvj

⎞⎠+Ndi, (10)

where mij denotes the (i, j)th entry of M defined in Section

II-B. Note that the right-hand side of (10) is discontinuous.
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Since the signum function is measurable and locally essen-

tially bounded, we can rewrite (10) in terms of differential

inclusions as

v̈i ∈a.e.
K

⎡⎣−(k1 + 1)v̇i − k2i

⎛⎝ n∑
j=1

mijvj

⎞⎠
−βisgn

⎛⎝ n∑
j=1

mijvj

⎞⎠+Ndi

⎤⎦ ,
where a.e. stands for “almost everywhere”.

Define ηi = vi + v̇i, v = [vT1 , v
T
2 , · · · , vTn ], and η =

[ηT1 , η
T
2 , · · · , ηTn ]. We construct a Lyapunov function candi-

date as:

V =
1

2

n∑
i=1

sTi Mi(qi)si +
1

2κ

n∑
i=1

(�θi)
T�θi

+
1

2
ηT(M⊗ Ip)η +

1

2
kvT(M2 ⊗ Ip)v

+
1

2

n∑
i=1

(k2i − k)2 +
1

2

n∑
i=1

(βi − β)2 + V0,

where V0 =
∑n

i=1 Bi − ∑n
i=1

∫ t

0

(∑n
j=1 mijηj(τ)

)T
×(

−βsgn
(∑n

j=0 aij(v̂i(τ)− v̂j(τ))
)
+Ndi(τ)

)
dτ , Bi =

β‖∑n
j=1 mijηj(0)‖1−

(∑n
j=1 mijηj(0)

)T
Ndi(0). In addi-

tion, we select β and k as two positive constants satisfying

that β > supt{(k1 + 1)‖q̈0(t)‖∞ + (k1 + 2)‖...
q 0(t)‖∞ +

‖....
q 0(t)‖∞} and k > k1

4λmin(M) . It follows from Lemma 4

that V0 > 0 when β > supt{(k1 + 1)‖q̈0(t)‖∞ + (k1 +
2)‖...

q 0(t)‖∞ + ‖....
q 0(t)‖∞}. It follows that the generalized

time derivative of V can be evaluated as

˙̃V =
⋂

ξ∈∂‖μ‖1

− ((M⊗ Ip)η)
T (−βξ +Nd

)
+K

[
n∑

i=1

sTi (Yi(qi, q̇i, q̇ri, q̈ri)�θi − αisi)

−
n∑

i=1

(�θi)
TY T

i (qi, q̇i, q̇ri, q̈ri)si

+
n∑

i=1

⎛⎝ n∑
j=1

mijηj

⎞⎠T⎛⎝−k2i

n∑
j=1

mijvj

−k1v̇i − k1vi + k1vi − βisgn

⎛⎝ n∑
j=1

mijvj

⎞⎠+Ndi

⎞⎠
+ kvT(M2 ⊗ Ip)(η − v) +

n∑
i=1

(k2i − k)

×
⎛⎝ n∑

j=1

mijvj

⎞⎠T⎛⎝ n∑
j=1

mijηj

⎞⎠+

n∑
i=1

(βi − β)

×
⎛⎝ n∑

j=1

mijηj

⎞⎠T

sgn

⎛⎝ n∑
j=1

mijvj

⎞⎠
⎤⎥⎦

where Nd = [NT
d1, N

T
d2, . . . , N

T
dn]

T, μ = (M ⊗ Ip)v,

∂|μk| =

⎧⎪⎨⎪⎩
{−1}, μk ∈ R

−

{1}, μk ∈ R
+

[−1, 1], μk = 0,

and μk is kth entry of μ.

We then have that

˙̃V = − k1η
T(M⊗ Ip)η + k1η

T(M⊗ Ip)v

− kvT(M2 ⊗ Ip)v −
n∑

i=1

αis
T
i si

=− [ η v
] [ k1M⊗ Ip −k1M⊗Ip

2

−k1M⊗Ip
2 kM2 ⊗ Ip

] [
η
v

]
−

n∑
i=1

αis
T
i si

=−W (η, v, s),

where s = [s1, s2, . . . , sn]
T. It follows from Lemma 3 that[

k1M⊗ Ip −k1M⊗Ip
2

−k1M⊗Ip
2 kM2 ⊗ Ip

]
> 0 when k > k1

4λmin(M) . This

implies that W (η, v, s) ≥ 0 and therefore V is bounded.

Thus, si, �θi, v, and η are bounded. Note that the sliding

surface si can be rewritten as q̇i = −b
∑n

j=1 mijqj+si+vi.
This can be further written in the matrix form

q̇ = −(bM⊗ Ip)q + s+ v. (11)

Since M is positive definite, we know that (11) is input-to-

state stable by considering s + v as the input. Therefore, it

follows that qi and q̇i, ∀i = 1, 2, . . . , n, are bounded based

on the facts that s and v are bounded. Then, we know that

qi and q̇i, q̇ri and q̈ri are bounded. This shows that ṡi and

η̇i are bounded. It follows that si(t), ηi(t), and vi(t), ∀i =
1, 2, . . . , n are uniformly continuous in t. This shows that

W (η(t), v(t), s(t)) is uniformly continuous in t. Therefore,

we know from Lemma 2 that W (η(t), v(t), s(t)) → 0, as

t → ∞. This shows that η(t) → 0, v(t) → 0, and si(t) → 0,

as t → ∞. Then, on the sliding surface si = 0, we have that

q̇i − q̇0 = −b
∑n

j=0 aij(qi − qj). Therefore we can easily

show that q̇i(t) → q̇0(t) and qi(t) → q0(t), ∀i = 1, 2, . . . , n
as t → ∞.

A. Special Case: Coordinated Tracking When the Leader’s
Generalized Coordinate Derivative is Constant

In this section, we consider a special case when q̇0 is

constant. Therefore, q̈0 = 0. The continuous control protocol

proposed in algorithm (3) is considered again. The adaptive

control term, the virtual reference trajectory, the sliding

surface are given in (4), (5), and (7). In addition, the leader’s

generalized coordinate derivative estimator is proposed as

˙̂vi =−
⎛⎝ n∑

j=1

aij(qi − qj) + ai0(qi − q0)

⎞⎠ , (12)

where aij is the (i, j)th entry of An+1 associated with Gn+1

defined in Section II-B.

Before moving on, we need the following assumption to

proceed.
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Assumption 3: Mi(qi), Ci(qi, q̇i), and gi(qi) are continu-

ously differentiable.

Theorem 2: Let Assumptions 1 and 3 hold. Under the

local continuous coordinated tracking algorithm (3)-(5), (7)

and (12), the states of the followers governed by the La-

grange dynamics (1) globally asymptotically converge to

those of the leader, i.e., qi(t) → q0(t) and q̇i(t) → q̇0(t),
∀qi(0) ∈ R

p, ∀i = 1, 2, . . . , n, as t → ∞.

Proof:
It follows from Property 3 of Lagrange dynamics in

Section II-A that Mi(qi)q̈ri + Ci(q̇i, qi)q̇ri + gi(qi) =
Yi(qi, q̇i, q̇ri, q̈ri)θi, i = 1, 2, . . . , n. We then further have

that

Mi(qi)ṡi + Ci(q̇i, qi)si = Yi(qi, q̇i,q̇ri, q̈ri)�θi − αisi,

i = 1, 2, . . . , n. (13)

We then construct a Lyapunov function candidate as V =
1
2

∑n
i=1 s

T
i Mi(qi)si +

∑n
i=1

1
2κi

(�θi)
T�θi.

Taking the derivative of V along (13), we have

that V̇ =
∑n

i=1 s
T
i (Yi(qi, q̇i, q̇ri, q̈ri)�θi − αisi) −∑n

i=1(�θi)
TY T

i (qi, q̇i, q̇ri, q̈ri)si = −∑n
i=1 αis

T
i si ≤ 0,

where we have used Property 2 of Lagrange dynamics in

Section II-A. It follows that V is bounded. We then know

that si and �θi, ∀i = 1, 2, . . . , n, are bounded from Property

1 of Lagrange dynamics in Section II-A. Therefore, it follows

that qi, q̇i, q̇ri, and q̈ri, ∀i = 1, 2, . . . , n, are bounded. This

shows that ṡi, ∀i = 1, 2, . . . , n, is bounded and thus V̈ is

bounded. It then follows from Barbalat’s lemma that V̇ → 0,

as t → ∞. Since ṡi is bounded, we also know that q̈i and
...
q ri are bounded. It then follows from (1) with (3)-(5), (7)

and (12) and Assumption 3 that Mi(qi)
...
q i + Ṁi(qi)q̈i +

Ci(q̇i, qi)q̈i+Ċi(q̇i, qi)q̇i+ġi(qi) = M̂i(qi)
...
q ir+

˙̂
M i(qi)q̈ir+

Ĉi(q̇i, qi)q̈ir +
˙̂
Ci(q̇i, qi)q̇ir + ˙̂gi(qi)− αiṡi.

Therefore, we know that
...
q i is bounded and thus s̈i is

bounded. It then follows from Barbalat’s lemma that ṡi(t) →
0, as t → ∞. Also note that q̈i = −b

(∑n
j=0 aij(q̇i − q̇j)

)
−(∑n

j=0 aij(qi − qj)
)
+ ṡi. This can be further written as

q̈i = −b
n∑

j=1

mij q̇j −
n∑

j=1

mijqj + ṡi, (14)

where qi = qi − q0, ∀i = 1, 2, . . . , n, and mij denotes the

(i, j)th entry of M defined in Section II-B. Considering the

closed-loop system q̈i = −∑n
j=1 mijqj−b

∑n
j=1 mij q̇j , we

construct the following Lyapunov function candidate as,

V2 =
1

2

n∑
i=1

q̇
T
i q̇i +

1

2
qT(M⊗ Ip)q,

where q = [qT1 , q
T
2 , . . . , q

T
n ]

T. Note that M is positive

definite from Lemma 1 if Assumption 1 is satisfied. It

is then trivial to show that qi = 0 and q̇i = 0, ∀i =
1, 2, . . . , n, are globally asymptotically equilibrium points

for q̈i = −∑n
j=1 mijqj − b

∑n
j=1 mij q̇j , i = 1, 2, . . . , n.

Combing the fact that ṡi(t) → 0, as t → ∞, we can show

that qi(t) → 0 and q̇i(t) → 0, ∀i = 1, 2, . . . , n, as t → ∞,

that is, qi(t) → q0(t) and q̇i(t) → q̇0(t), ∀qi(0) ∈ R
p,

∀i = 1, 2, . . . , n, as t → ∞.

IV. SIMULATION RESULTS

In this section, numerical simulation results are given to

validate the effectiveness of the theoretical results obtained in

this paper. We assume that there exist n = 6 followers. The

system dynamics of the followers are given by the Lagrange

dynamics of the two-link manipulators [13], [16], [24],[
M11,i M12,i

M21,i M22,i

] [
q̈ix
q̈iy

]
+

[
C11,i C12,i

C21,i C22,i

] [
q̇ix
q̇iy

]
+

[
g1,i
g2,i

]
=

[
τix
τiy

]
, i = 1, 2, . . . , 6,

where M11,i = θ1i + 2θ2i cos qiy , M12,i = M21,i = θ3i +
θ2i cos qiy , M22,i = θ3i, C11,i = −θ2i sin qiy q̇iy , C12,i =
−θ2i sin qiy(q̇ix + q̇iy), C21,i = θ2i sin qiy q̇ix, C22,i = 0,

g1,i = θ4ig cos qix+θ5ig cos(qix+qiy), g2,i = θ5ig cos(qix+
qiy) and g = 9.8. Also, θ1i = m1il

2
c1,i +m2i(l

2
1i + l2c2,i) +

J1i + J2i, θ2i = m2il1ilc2,i, θ3i = m2il
2
c2,i + J2i, θ4i =

m1ilc1,i +m2il1i, θ5i = m2il2i. We choose m1i = 1+ 0.3i,
m2i = 1.5+0.3i, lli = 0.2+0.06i, l2i = 0.3+0.06i, lc1,i =

0.1+0.03i, lc2,i = 0.15+0.03i, J1i =
m1il

2
li

12 , J2i =
m2il

2
2i

12 ,

i = 1, 2, . . . , 6.

According to property 3 of Lagrange dynamics given

in Section II-A, the dynamics of the followers can be

parameterized as Yi(qi, q̇i, q̇ri, q̈ri) = [ypq]i ∈ R
2×5, where

θi = [θ1i, θ2i, θi3, θi4, θi5]
T, y11 = q̈ri,x, y12 = (2q̈ri,x +

q̈ri,y) cos qiy − (q̇iy q̇ri,x + q̇ixq̇ri,y + q̇iy q̇ri,y) sin qiy , y13 =
q̈ri,y , y14 = g cos qix, y15 = g cos(qix + qiy), y21 = 0,

y22 = q̈ri,x cos qiy + q̇ixq̇ri,x sin qiy , y23 = q̈ri,x + q̈ri,y ,

y24 = 0, y25 = g cos(qix + qiy).
The initial states of the followers are given by qix(0) =

0.6i, qiy(0) = 0.4i − 1, q̇ix(0) = 0.05i − 0.2, q̇iy(0) =
−0.05i + 0.2, i = 1, 2, . . . , 6. The leader-follower commu-

nication topology is given in Fig. 1. The adjacency matrix

An of the generalized coordinate derivatives associated with

Gn is chosen to be An =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , and

a10 = 0, a20 = 0, a30 = 1, a40 = 0, a50 = 0, a60 = 1.

The initial estimations for θ1i, θ2i, θ3i, θ4i, and θ5i for each

follower i = 1, 2, . . . , 6, are given by θ̂1i(0) = 0, θ̂2i(0) = 0,

θ̂3i(0) = 0, θ̂4i(0) = 0, and θ̂5i(0) = 0.

For the case of coordinated tracking when the leader’s gen-

eralized coordinate derivative is time-varying (algorithm (3)),

the trajectories of the leader are given by q0x(t) = cos( π
15 t)

and q0y(t) = sin( π
15 t). The constant control parameters are

chosen by b = 1, κ = 2, k1 = 0.5, αi = 1, ∀i =
1, 2, . . . , 6. The initial states of k2i and βi for each follower

i = 1, 2, . . . , 6 are given by k2i(0) = 0 and βi(0) = 0. The

initial states of v̂i for each follower i = 1, 2, . . . , 6 are given

by v̂i(0) = ˙̂vi(0) = [0, 0]T. Under the feedback algorithm

(3), the generalized coordinates, the generalized coordinate

6716



0 5 10 15 20 25 30 35
−2

0

2

4

time(s)
q i

x
(r

a
d)

i=1
i=3
i=5
i=0

0 5 10 15 20 25 30 35
−5

0

5

time(s)

q̇ i
x
(r

a
d/

s
) i=1

i=3
i=5
i=0

0 5 10 15 20 25 30 35
−100

−50

0

50

time(s)

τ i
x

i=1
i=3
i=5

(a) The trajectories of the states and the control torques of the followers
and the leader

0 5 10 15 20 25 30 35
−2

−1

0

1

time(s)

q i
y
(r

a
d)

i=1
i=3
i=5
i=0

0 5 10 15 20 25 30 35
−5

0

5

time(s)

q̇ i
y
(r

a
d/

s
) i=1

i=3
i=5
i=0

0 5 10 15 20 25 30 35
−50

0

50

time(s)

τ i
y

i=1
i=3
i=5

(b) The trajectories of the states and the control torques of the followers
and the leader

Fig. 2. The states and the control torques of system (1) under algorithm
(3)

derivatives, and the control torques of the followers and the

leader are shown in Figs. 2(a) and 2(b). We see that the

coordinated tracking is achieved for a group of Lagrange

systems when the leader’s generalized coordinate derivative

is time-varying.

V. CONCLUDING REMARKS

In this paper, a continuous coordinated tracking algorithm

was proposed for a group of Lagrange systems. We showed

that the states of the followers were driven to converge

to those of the leader and the tracking errors between the

followers and the leader converge to zero. Then, we extended

the continuous coordinated tracking algorithm to the case

when the leader’s generalized coordinate derivative is con-

stant. Simulations were given to validate the effectiveness of

the proposed algorithms. Further direction includes the study

of switching communication topology for the coordinated

tracking problem of multiple Lagrange systems.
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