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Abstract— This paper deals with the consensus problem
under communication network inducing delays. It is well-known
that introducing a delay leads in general to a reduction of
the performance or to instability due to the fact that time-
delay systems are infinite dimensional. For instance, the set of
initial conditions of a time-delay system is not a vector but
a function taken in an interval. Therefore, investigating the
effect of time-delays in the consensus problem is an important
issue. In the present paper, we assume that each agent receives
instantaneously its own state information but receives the state
information from its neighbors after a constant delay. Two
stability criteria are provided based on the frequency approach
and on Lyapunov-Krasovskii techniques given in terms of LMI.
An analytic expression of the consensus equilibrium which
depends on the delay and on the initial conditions taken in
an interval is derived. The efficiency of the method is tested
for different network communication schemes.

I. INTRODUCTION

Algorithms for consensus of multi-agent systems is a field

that has gained increasing attention in the last few years,

due to its applications in multi-robot systems [11], averag-

ing in communication networks [17] and formation control

[1]. Several results have appeared in recent literature that

consider systems with different motion models, symmetry

of communication and network interactions. A recent review

of the vast literature in the field can be found in [11].

In this paper we examine a particular case of the con-

sensus problem when the information exchange between the

communicating agents has inherit time-delays. In particular,

each agent is assumed to have access to the information of

its own state with no delays, but can only consider delayed

information of the states of its neighbors. The purpose of this

paper is to study the stability of such a system with respect to

the value of the delay and then to determine the equilibrium

point of the consensus problem. The delays of the proposed

controller model various phenomena of networked systems

such as transmission delays on the transfer of data between

each agent and its neighbors, packet losses in wireless com-

munication networks and inaccurate sensor measurements.

Moreover, delays can result from sampling. As shown in

[2], a sampled signal can be seen as a delayed signal with

a particular delay τ(t) = t − tk, which is discontinuous

and whose derivative is equal to 1 almost every time. As

it is not clear that all the agents have synchronized clocks,
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the assumption that these sampling delays are known is not

satisfied in a general case.

A similar model to the one treated in the current paper

was used in [7], [8]. The author uses a nonsmooth Lyapunov

approach and treats the case of time-varying graphs with

time-delays. However, that paper treated the time-delayed

model as a simple extension of the non-delayed case, not

considering the effect that initial conditions have in the

resulting consensus equilibrium. In this paper, we provide

an analytic expression of the resulting consensus point and

relate it to the initial conditions of the time-delayed model.

We should also note that the model used in the paper is

different than the one used in [10] that assumes that each

agent has the same delay in its own information and the

information of its neighbors. Thus, the stability analysis and

results of the current paper refer to a different model, and

are thus different than the corresponding ones in [10]. In

particular, we provide stability conditions using Lyapunov-

Krasovskii techniques which are given in terms of LMI. The

communication topology is asymmetric and the symmetric

case is treated as a special case of the main theory. Results on

stability of discrete-time consensus algorithms with commu-

nication delays have already appeared in [16]. The difference

in the current paper is that continuous-time models of agent

dynamics are considered.

The rest of the paper is organized as follows: Section II

includes the necessary background on consensus and time-

delay systems and presents the problem treated in this paper.

The stability analysis of the closed-loop system is given in

Section III which includes both the cases of asymmetric and

symmetric communication topologies. Section IV includes

illustrating simulation examples while Section V summarizes

the results of the paper and indicates current research efforts.

Notation: Throughout the paper, the superscript ‘T ’ stands

for matrix transposition, Rn denote the n-dimensional Eu-

clidean space, Rn×m is the set of n×m real matrices. The

notation P > 0 for P ∈ Rn×n means that P is a symmetric

and positive definite matrix. I represents the identity matrix.

Finally, for any matrix M , the notation (M)i denotes the ith

row of the matrix M.

II. PROBLEM STATEMENT

A. Consensus Problems

We first review the original non delayed consensus prob-

lem for N ∈ N agents with fixed but non necessarily

symmetric communication links. The open-loop dynamics

are given by:

ẋi(t) = ui(t), i ∈ {1, . . . , N}. (1)
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The consensus control law with no time delays in [10] is

given by

ui(t) =
∑

j∈Ni

aij(xj(t) − xi(t)), i ∈ {1, . . . , N}. (2)

where Ni represents the set of agents which are connected

to agent i and is called agent i’s communication set. The

gains aij are positive scalar. Note that the communication is

not necessarily symmetric, which means aij 6= aji.

The closed-loop system is written in stack vector form as

ẋ = −Lx (3)

where x = [x1, . . . , xN ]T is the stack vector of all agents’

states and L is the Laplacian matrix [3] of the communication

graph G of the network, which is defined based on the

communication sets Ni.

A brief background on the construction of the Laplacian

matrix is given in the sequel. For the graph G with N vertices

and edge set given by E = {(i, j) : j ∈ Ni} the adjacency

matrix A = A(G) = (aij) is the N × N matrix given by

aij = 1, if (i, j) ∈ E and aij = 0, otherwise. If there is

an edge connecting two vertices i, j, i.e. (i, j) ∈ E, then

i, j are called adjacent. If there is a path between any two

vertices of the graph G, then G is called strongly connected

in the case of directed, and simply connected in the case of

undirected graphs. The degree di of vertex i is defined as the

number of its neighboring vertices, i.e. di = #j : (i, j) ∈ E.

Let ∆ be the N ×N diagonal matrix of di’s. The Laplacian

of G is the matrix L = ∆−A. For an undirected graph the

Laplacian matrix is symmetric positive semidefinite. When

the directed graph is strongly connected, the Laplacian has

a single zero eigenvalue and the corresponding eigenvector

is the vector of ones,
−→
1 . This result was established in [10].

For the case of undirected graphs, a necessary and sufficient

condition for zero to be a simple eigenvalue of the Laplacian

matrix, is that the undirected graph is connected.

The main result of [10] states that a sufficient condition

for the system (3) to reach consensus is that the underlying

communication graph G is strongly connected.

B. Time-delay systems

The tools from time-delay systems used in the sequel are

reviewed in the next paragraphs. Consider the linear system

with constant delay:
{

ẋ(t) = A0x(t) + Aτx(t − τ),
x(θ) = φ(θ), ∀θ ∈ [−τ, 0],

(4)

where x ∈ Rn is the state variable and A0 and Aτ are

constant matrices with appropriate dimension. The function

φ corresponds to the set of initial conditions considered over

the interval [−τ, 0]. Several conditions have been provided

the stability of the system (4) [4], [9],[12]. In this paper, we

will focuss on the following lemma:

Lemma 1: ([9], Corollary 5.5, pp222) The system (4) is

asymptotically stable for all delays τ ∈ [0, τ̄ ] if:

• 1+λk(Aτ )1−esτ̄

s 6= 0, for all s ∈ C+ and k = 1, .., N ,

and

• there exist symmetric and positive-definite matrices P, S
such that the following matrix is negative-definite:

[

M11 (A0 + Aτ )T PAτ

(Aτ )T P (A0 + Aτ ) −τ̄S.

]

(5)

where M11 = (A0 + Aτ )T P + P (A0 + Aτ ) + τ̄S.

Proof: The proof is based on the Lyapunov functional:

V (x) = (xT (t) +
∫ t

t−τ
xT (θ)dθAτT )P

(x(t) + Aτ
∫ t

t−τ
x(θ)dθ) +

∫ 0

−τ

∫ 0

−τ
x(ξ)T Sx(ξ)dξ.

Remark 1: Lemma 1 is delay-dependent, i.e., the delay

τ̄ appears in it and provides sufficient but not necessary

condition for asymptotic stability. Based on the conditions

of Lemma 1, it is possible to maximize the upper bound τ̄
such that the system is still stable.

C. Problem statement

In this paper the following problem in addressed. From

the point of view of agent i, the value of xi is provided by

embedded sensors. Then the state xi is available at every

time t without any delay. However the data coming from

the other agents j ∈ Ni are received by agent i after

a time-delay caused by the various reasons given in the

introduction. Consider further as an approximation that all

the communication delays are constant and equal to τ which

can be assimilated as an average delay. We then derive the

control law (6):

ẋi(t) =
∑

j∈Ni
aij(xj(t − τ) − xi(t)) i ∈ {1, . . . , N},

(6)

and moreover assume that there exists a constant and positive

scalar µ such that:
∑

j∈Ni

aij = µ, i ∈ {1, . . . , N}.

Define now the vector x(t) = [x1(t), .., xN (t)]T . Then (6)

can be written as:

ẋ(t) = −µIx(t) + Ax(t − τ), (7)

where A is the adjacency matrix of the communication graph.

Remark 2: An extension to the multiple delays case would

consider the following system:

ẋi(t) =
∑

j∈Ni
aij(xj(t − τij) − xi(t)) i ∈ {1, . . . , N}.

(8)

Remark 3: The reader can notice the similarity of (7) and

(4). We can thus use results on stability of the time-delay

system (4) to study the stability of the consensus delay

system (7).

Remark 4: In contrast to (8), the following delayed ver-

sion of the consensus algorithm is considered in [10]

ẋi(t) =
∑

j∈Ni
aij(xj(t − τij) − xi(t − τij)),

where i ∈ {1, . . . , N} and τij > 0 are constant delays. Thus

the analysis of that paper is different than that of the paper in

hand. The model used in the current paper is more realistic
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for cases such as the one described above, where each

agent has access to its own state through embedded sensors,

and delays are only present in the interagent information

exchange.

By the Leibnitz formula, we have x(t − τ) = x(t) −
∫ t

t−τ
ẋ(s)ds, for all differentiable functions x. System (7)

can be rewritten as:

ẋ(t) = (−µI + A)x(t) − A

∫ t

t−τ

ẋ(s)ds. (9)

Note that the matrix −µI+A corresponds to the Laplacian

matrix. This representation is a way to understand how the

delay affects the consensus problem.

D. Definition of an appropriate model

Knowing that the vector
−→
1 is an eigenvector associated

to the eigenvalue 0 of the Laplacian matrix, it is possible to

find a change of coordinates such that x = Wz and:

U(−µI + A)W =

[

B ~0
~0T 0

]

, (10)

where U =

[

U1

U2

]

= W−1 and U2 = (U)N . In the case of

a symmetric matrix A, the rest of the Laplacian eigenvalues

are all positive. We denote them by 0 < λ2 ≤ . . . ≤ λN . It

thus means that B is a diagonal matrix with −λi.

The following lemma provides an appropriate way to

rewrite (9) based on the properties of the matrix L.

Lemma 2: The system (9) can be rewritten in the follow-

ing way:

ż1(t) = −µIz1(t) + (B + µI)z1(t − τ), (11a)

ż2(t) = −µz2(t) + µz2(t − τ), (11b)

where z1 ∈ RN−1, z2 ∈ R and the matrix B in given in

(10).

Proof: Consider system (9)
[

ż1(t)
ż2(t)

]

=

[

B ~0
~0T 0

] [

z1(t)
z2(t)

]

−

[

A′
1

A′
2

]
∫ t

t−τ

ż(s)ds,

where

[

A′
1

A′
2

]

= UAW and A′
2 = (UAW )N . The system

can be split into two equations where the vector z1 contains

the N − 1 first components of z and z2 is equal to the last

component of z. Then we have:

ż1(t) = Bz1(t) − A′
1

∫ t

t−τ
ż(s)ds,

ż2(t) = A′
2

∫ t

t−τ
ż(s)ds.

(12)

The stability of this time delay system has to be examined

with respect to the values of the delay τ . However this is not

an easy task since the integral terms depends on z and not on

z1 and z2 in the first and the second equation respectively.

From (10), simple manipulations leads to:
[

A′
1

A′
2

]

= UAW =

[

B + µI ~0
~0T µ

]

.

System (12) can now be written as:

ż1(t) = Bz1(t) − (B + µI)
∫ t

t−τ
ż1(s)ds,

ż2(t) = −µ
∫ t

t−τ
ż2(s)ds,

or in the time delay representation (11).

The consensus problem has now been rewritten in an

appropriate form to develop stability criteria.

Remark 5: Note that the variable z2 is defined by

z2(t) = U2x(t).

In the case of a symmetric network, the matrix W is an

orthogonal matrix which means U = WT . Then if the last

column of W is α
−→
1 , then U2 = 1/(αN)

−→
1 , which means

that z2 corresponds to the average of the position of all

agents. This does not hold for an asymmetric communication

network.

III. STABILITY ANALYSIS

This section focuses on the stability of the consensus

problem (11). We first check the convergence of the sec-

ond subsystem of (11b). An expression of the consensus

equilibrium will be given. Then two approaches using a

frequency approach, for the symmetric case, and a time

domain approach for the symmetric and non symmetric cases

will be provided.

A. Consensus equilibrium

Lemma 3: The system (11b) is stable for any delay τ and

converges to

z2eq = lim
s→0

s
z2(0) + µe−τs

∫ 0

−τ
z2(u)e−usdu

s + µ(1 − e−τs)
. (13)

Proof: Consider the second sub-system (11b). It can

easily and more efficiently analyzed using a frequency ap-

proach. The Laplace transform of system (11b) is:

sZ2(s) − z2(0) = −µZ2(s) + µe−τsZ2(s)

+µ
∫ 0

−τ
z2(u)e−(u+τ)sds.

Thus we have:

Z2(s) =
z2(0) + µ

∫ 0

−τ
z2(u)e−(u+τ)sds

s + µ(1 − e−τs)
.

The stability of (11b) is determined by the roots of the

equation:

s + µ(1 − e−τs) = 0.

Consider s = α+jβ with α, β ∈ R. Then the last equation

yields:

α + µ − µe−ατ cos(βτ) = 0, (14a)

β + µe−ατ sin(βτ) = 0, (14b)

Note that s = 0 is a solution of (14). However if β satisfies

(14b), −β also does. For all β such that βτ = kπ with

k ∈ N/{0}, (14b) does not hold. This means that cos(βτ) 6=
1,−1. For all the solutions βk, k ∈ N/{0}, of (14b), define

ǫk ∈] − 1, 1[ such that ǫk = cos(βkτ). If ǫk ≤ 0, then
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α ≤ −µ. If ǫk > 0, consider the function fǫk
(α) = α + µ−

ǫkµe−ατ . As ǫk > 0, fǫk
is a strictly increasing function.

By noting that fǫk
(0) = µ(1 − ǫk) > 0, this means that

the solutions αk of (14a) such that fǫk
(αk) = 0 are strictly

negative.

Then all the roots of (14) are such that α ≤ 0. From [15],

the system (11b) is stable and the final equilibrium of z2 is

given by:

lim
t→∞

z2(t) = lim
s→0

s
z2(0) + µ

∫ 0

−τ
z2(u)e−(u+τ)sdu

s + µ(1 − e−τs)
.

B. Main result

Theorem 1: Consider the system (7) with a constant delay

τ . If there exists τ̄ ≥ τ such that:

• 1 + λi(−B − µI) 1−esτ̄

s 6= 0, for all s ∈ C+, and

• there exist symmetric and positive-definite matrices:

P, S such that the following LMI holds:
[

BT P + PB + τ̄S BT P (B + µI)
(B + µI)T PB −τ̄S

]

< 0, (15)

then all elements of x converge asymptotically to a common

valus xeq which is given by:

xeq = U2

(

lim
s→0

s
x(0) + µe−τs

∫ 0

−τ
x(u)e−usdu

s + µ(1 − e−τs)

)

−→
1 .

Proof: Consider the consensus problem (8) under a

symmetric or non-symmetric communication network and a

constant delay τ . There exists a change of coordinates z =
Wx, where W is an orthogonal matrix in the symmetric

case or a non singular matrix in the non symmetric case,

such that the system can be rewritten as (11). The first part

of the proof is to show that the reduced-order variable z1 is

stable. Consider thus the reduced-order system:

ż1(t) = −µIz1(t) + (B + µI)z1(t − τ). (16)

If Lemma 1 is satisfied for system (16) with A0 = −µI ,

A1 = B + µI and τ , then z1 converges to z1 = 0. Finally

according to Lemma 3 and the change of coordinates defined

by W and U , the equilibrium is given in Theorem 1.

Note that the stability conditions does not depend on

the choice of W . It is only required that B belongs to

R(N−1)×(N−1).

In [10], it was noted that the consensus problem (6) does

not preserve the average consensus. In contrast to [7], [8], the

effect that initial conditions and delays have in the resulting

consensus equilibrium is explicitly shown.

Another issue that has to be solved concerns the case

of disconnected communication networks. In the case of a

disconnected network, B has at least one 0-eigenvalue [3].

Then the stability conditions given in Lemma 1 will not be

satisfied as well since the matrix B is not Hurwitz. The term

BT P + PB can not be negative definite and consequently

the LMI (15) can not hold. It also means that there exists at

least another eigenvalue equal to zero. Then another equation

like (11b) will define another equilibrium.

From Theorem 1, it can be seen that the initial condition

has a strong effect on the equilibrium position. The following

corollaries examine two different cases of initial conditions:

Corollary 1: Consider initial conditions of the form:

x(θ) = 0, ∀θ ∈ [−τ, 0[
x(0) = x0 6= 0,

Then the equilibrium is given by :

xeq = U2x0/(1 + µτ)~1.
It can then be seen that the delay is attenuated in the value

of the final equilibrium. Note that in this context, we are not

considering discontinuous initial conditions but discontinuity

in the control law (2).

Corollary 2: Consider initial conditions of the form:

x(θ) = x0, ∀θ ∈ [−τ, 0],

Then the equilibrium is

xeq = U2x0
~1.

Proof: The result is straightforward by noting that:

∫ 0

−τ

z2(u)e−(u+τ)sdu = µz2(0)/s(1 − e−τs).

The initial condition did indeed not change the final

equilibrium of the consensus problem. However in this case,

the position of the equilibrium did not change compared to

the non delay case.

Note that these two examples are motivated by practical

considerations. Corollary 1 implies that, whatever the posi-

tion of all the agents, the control laws ui(t) will only use

information taken after the initial time t = 0. During [0, τ ],
no information from the other agents is used in the control.

On the other hand, Corollary 2 can be interpreted as follows.

At time t = −τ , all agents have to wait until they receive

data from their neighbors. At time t = 0, the control using

non zero initial conditions in [−τ, 0] is implemented.

Finally, the difference between these two protocols has

an unexpected influence on the position of the equilibrium

point.

C. Precision on the symmetric case

Provided that the communication graph is connected, the

rest of the Laplacian eigenvalues are all positive. We denote

them by 0 < λ2 ≤ . . . ≤ λN . It thus means that B is a

diagonal matrix with −λi. The first equation of (11) can

be further decomposed into N − 1 equations based on the

diagonal form of the B matrix. In particular, denoting z1 =
[z11, . . . , z1,N−1] the first equation of (11) is equivalent to

ż1i(t) = −µz1i(t) + (−λi + µ)z1i(t − τ), i ∈ {2, . . . , N}.
(17)

In the sequel, we examine the stability of the system (17).
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Theorem 2: The consensus problem (9) is asymptotically

stable for all delays τ and the consensus equilibrium is given

by:

xeq = lim
s→0

s
N

∑

i=1

(

xi(0) + µe−τs
∫ 0

−τ
xi(u)e−usdu

s + µ(1 − e−τs)

)

−→
1 .

(18)

Proof: The proof follows the line of the proof of

Theorem 1. Consider equation (17) in the frequency domain.

Its stability is equivalent to proving that all the roots of the

characteristic equation:

s + µ + (λi − µ)e−τs = 0, (19)

lie in the left hand side of the complex plane. Consider s =
α + jβ with α, β ∈ R. Then (19) is equivalent to:

α + µ + (λi − µ)e−ατ cos(βτ) = 0, (20a)

β − (λi − µ)e−ατ sin(βτ) = 0, (20b)

It is well known that these equations have an infinite

number of solutions, and that the solutions are conjugate,

i.e., if β is a solution of (20b) then −β is a solution as well.

For all βk which are solutions of (20b), define ǫk =
cos(βkτ). Since (20b) is verified, ǫk can not be equal to

1 or −1, except the case β = 0. If ǫi(λi − µ) ≤ 0, then

α + µ ≤ 0. Then α is strictly negative. For ǫk(λi − µ) > 0,

consider the function fǫk
= α + µ − ǫk(λi − µ)e−ατ . Since

ǫk(λi−µ) > 0, fǫk
is a strictly increasing function. Consider

now fǫk
(0) = µ + ǫk(λi − µ). From [5], the eigenvalues of

B lie in the interval ]0, 2µ]. This implies that |λi − µ| ≤ µ.

Since ǫk lies in ] − 1, 1[, fǫi
is strictly positive. It means

that the solution αk such that fǫk
(αk) = 0 is strictly

negative. Since all the roots of (19) have strictly negative

real part, the solutions asymptotically converge to zi1 = 0,

whatever the delay τ . Finally according to Lemma 3, the

equilibrium is given by (13) and is further simplified using

U2 = 1/(αN)~1.

IV. EXAMPLE

Consider a set four agents moving from their initial

positions X0 = [0 5 15 20]. We consider different kind of

networks and wether or not consensus is achieved and then

provide the consensus value. The communication networks

are defined with µ = 1 and the following adjacency matrices:

A0 =

[

0 0.5 0 0.5
0.5 0 0.5 0
0 0.5 0 0.5

0.5 0 0.5 0

]

, A1 =

[

0 1 0 0
0.5 0 0 0.5
0 0.5 0 0.5
0 0.5 0.5 0

]

,

A2 =

[

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

]

, A3 =

[

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]

,

A4 =

[

0 1/3 1/3 1/3
1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0

]

.

Note that A0 and A4 are a symmetric matrices, A1 and A2

are non-symmetric and A3 represents a disconnected graph.

The following table shows the coordinates of the consensus

equilibrium provided that the LMI of Theorem 2 are satisfied.
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Fig. 1. Simulation results for A0 and Corollary 1 type with τ = 0.1 (a),
τ = 0.6 (b) and τ = 2 (c) and Corollary 2 with τ = 0.6 (d)

The conditions of Theorem 1 can be verified for all delay

bounds τ̄ , which means that consensus is achieved for any

delay τ .

Network A0 A1 A2 A3 A4

τ̄ ∞ ∞ ∞ X ∞
C1 &
τ = 0.1

9.09 8.48 9.09 X 9.09

C1 &
τ = 0.6

6.25 5.83 6.25 X 6.25

C1 &
τ = 2

3.33 3.11 3.33 X 3.33

C2 10 9.33 10 X 10

Figures 1, 2 and 3 show the simulation results for the

consensus defined by the adjacency matrices A0, A1 and

A4. It contains three different cases which correspond to

the initial conditions of Corollary 1 type with τ = 0.1 (a),

τ = 0.6 (b) and τ = 2 (c) and Corollary 2 type with τ = 0.6
(d). For all of them, consensus is achieved, but the consensus

equilibria are different.

In all the figures, the plots (a), (b) and (c) show the

influence the initial conditions on the solutions. It can be

seen that the agents are only driven by the diagonal terms

during the interval [0, τ ]. Then since the delayed terms act

on the dynamics, the agents achieve a consensus.

In the (c) plots, consensus is achieved with the classical

oscillatory behavior of time-delay systems.

Another interesting comment concerns the convergence

rate. Consider the cases where the initial conditions follow

Corollary 1 in Figure 3. It can be seen that the convergence
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Fig. 2. Simulation results for A1 and the same cases as in Figure 1.

rate for τ = 0.1 and τ = 1.2 is less than the one for τ = 0.6.

Thus, it is not intuitive that the introduction of a delay into

the consensus problem may improve the convergence rate.

The phenomenon does not appear in the simulations with

A1 and A0 which means that the behavior depends on the

network. Some recent articles already investigated this issue

[6],[14]. Further research investigating on the influence of

the delay on the convergence rate would be interesting to

explain these phenomena.

V. CONCLUSION

The influence of time delays in the consensus problem was

studied. The main result shows that consensus is achieved

but the position of equilibrium point strongly depends both

on the value of the delay and on the initial conditions.

This time delay approach allows considering simple sym-

metric/asymmetric and connected/disconneted communica-

tion network. Further research involves considering different

time-varying delays and using results on exponential stability

of time-delay systems [13] to provide an estimate of the

exponential decay rate.
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