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Abstract— In this paper, we study neural cognition in
social network. A stochastic model is introduced and shown to
incorporate two well-known models in Pavlovian conditioning
and social networks as special case, namely Rescorla-Wagner
model and Friedkin-Johnsen model. The interpretation and
comparison of these model are discussed. We consider two cases
when the disturbance is independent identically distributed for
all time and when the distribution of the random variable
evolves according to a markov chain. We show that the systems
for both cases are mean square stable and the expectation of
the states converges to consensus.

I. INTRODUCTION

There is a broad interest in studying social networks
including opinions in a population, e.g., [3], [21]. Incor-
porating initial opinions and weighing them relative to the
network impact was an important extension for understand-
ing social influence networks and opinion change [7], [9];
it was shown how initial opinions may persist, whereby
resulting in consensus or disagreement of the opinions of the
whole population. Recent development considers potentially
correlated opinions on several different issues and shows how
this correlation may affect convergence [8], [16].

The social network analyses with focus on consensus
building preconceive a cognitive process that deals with
how subjects integrate conflicting influential opinions [7].
Traditionally, the cognitive and emotional processes are
perceived as separate, originating from affective or cognitive
brain regions. Recent evidence, however, supports a more
integrated view of cognition and emotion, the physiological
basis being the high connectivity areas of the brain (hubs)
[18]. Hence, pure cognition for opinion building within social
networks cannot be assumed a priori.

Associative learning through conditioning is central to
understanding many key aspects of emotions, such as fear
[6], [10], [11], [14], [13]. The Rescorla-Wagner model [19]
has been found very useful for describing animal as well
as human conditioning in a variety of contexts [17], [20],
[2]. Recently, Epstein [5] used the Rescorla-Wagner model
to study social behavior. The central concept in the work of
[5] is the notion of dispostion composed of an emotional part
(by conditioning) and a rational part (by cognition); action
follows when disposition is greater than a given threshold.
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The main contribution of this paper is to integrate the
two approaches of social network opinion analysis fol-
lowing the Friedkin-Johnsen model [7] and conditioning
using a generalised form of the Rescorla-Wagner model
that accounts for interpersonal influences on emotions. We
model the opinion as a dynamic variable in the sense of
[16] for a single issue, however, we add conditioning to
the dynamic process. The associative strength is loosely
interpreted as emotional disposition [5], and is assumed to
directly influence the opinion on a given issue. In other
words, we assume proportionality between an opinion and
emotional disposition. Generic properties of the integrated
social network-conditioning model are presented, opening
new possibilities for quantifying social dynamics that have
yet to be explored. Particularly, it is shown that the mean
square stability of our model depends on the matrices given
by the proportionality.

The structure of the paper is as follows. In Section II, we
introduce some terminologies and notations. In Section III,
we present our model with comparison to existing works.
The main analytical results are presented in Section IV
mainly with sufficient and necessary conditions for mean
square stability of our model. Then the simulation and
conclusion follow in Sections V and VI respectively.

II. PRELIMINARIES

Given a square matrix A = (aij)
n
i,j=1, let ρ(A) be its spec-

tral radius. The matrix A is Schur stable if ρ(A) < 1. The
matrix is row stochastic if aij > 0 and

∑n
j=1 aij = 1,∀i.

The terminologies about Markov chains are kept consistent
with [15].

Consider a probability space defined on a nonempty set Ω
with corresponding σ−algebra A ⊂ 2Ω. For any A ∈ A, we
denote the indicator function as 1A. For a linear stochastic
difference equation

x(k + 1) = Hx(k) + ζ(k), k = 1, 2, . . . , (1)

with x(k) ∈ Rn, initial condition x(0), H ∈ Rn×n a constant
matrix and ζ(k) : Ω→ Rn a random vector, the mean square
stability is defined as follows.

Definition 1. [1] The linear system (1) is mean square stable
if for any initial condition x(0), there exists µ ∈ Rn and
matrix Q (independent of x(0)) such that

1) limk→∞ ‖E[x(k)]− µ‖ = 0,
2) limk→∞ ‖E[x(k)x(k)>]−Q‖ = 0.

With R−,R+,R>0 and R60 we denote the sets of neg-
ative, positive, non-negative, non-positive real numbers, re-



spectively. A positive definite, positive semi-definite matrix
M is denoted as M > 0 and M > 0, respectively. Denote
I = {1, . . . , n}. The symbol 1n represents a n-dimensional
column vector with each entry being 1. We will drop the
subscript n when no confusion is possible. For a vector
η ∈ Rn, diag(η) is a diagonal matrix with the ith diagonal
element equal to ηi. For a matrix X = [x1, x2, . . . , xn] ∈
Rm×n, vec(X) is the vectorization of X , i.e., vec(X) =
[x>1 , x

>
2 , . . . , x

>
n ]>. We use ⊗ to denote Kronecker prod-

uct. For vectorization and Kronecker product, the following
properties are frequently used in this paper: i) vec(ABC) =
(C> ⊗ A) vec(B); ii) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),
where A,B,C and D are matrices of compatible dimensions.
For matrix M , its 1−norm is the maximum absolute column
sum, i.e., ‖M‖1 = max16j6n

∑m
i=1 |Mij |.

III. MODELS

In this section, we shall review some well-known models
in Pavlovian conditioning theory, neural cognition and social
networks, which serve as major motivations of our model.

A. Rescorla-Wagner model
One of the most well-known models in Pavlovian theory

of associative learning, called Rescorla-Wagner model, was
proposed in [19]. In the classic Rescorla-Wagner model,
the conditional stimulus has an associative value x ∈ R,
supposed to be proportional to the amplitude of the condi-
tional response or to the proportion of conditional response
triggered by the conditional stimulus. A typical Pavlovian
conditioning session is a succession of several trials. Each
trial is composed of the presentation of the conditional
stimulus followed by the presentation of the unconditional
stimulus. On each trial k, the associative value of the
conditional stimulus are updated according to the following
equation

x(k + 1) = x(k) + α
(
r(k)− x(k)

)
,

where r(k) ∈ R is the intensity of the unconditional stimuli
on that trial and α ∈ R is a learning parameter, x(k) ∈ R
is the associative strength between the conditional stimulus
and the unconditional stimulus.

In more general Rescorla-Wagner models, multiple condi-
tional stimulus can be incorporated. Each conditional stim-
ulus has an associative value xi, which is the associative
strength of the ith conditional stimulus and the unconditional
stimulus, namely some degree to which the conditional stim-
ulus alone elicits the unconditional response. The associative
value of all the conditional stimuluses are updated according
to the following equation

xi(k + 1) = xi(k) + α
(
r(k)−

n∑
i=1

xi(k)
)
, i ∈ I, (2)

where n is the number of conditional stimulus on that trial.
Rescorla-Wagner model is especially successful in ex-

plaining the block phenomenon in Pavlovian conditioning
with experimental supports [20].

B. Epstein’s model

Based on Rescorla-Wagner model, a major contribution of
Epstein [5] is to establish the connection from a Pavlovian
conditioning model to neural cognition and human behavior
in social networks. One methodology of describing human
behavior is proposed by separating the human psychology
into irrational, rational and social parts. The irrational com-
ponent evolve according the Rescorla-Wagner model

xi(k + 1) = xi(k) + α(λ− xi(k)),

where λ is a random binary variable, which takes value one
for emotion acquisition, and zero for emotion extinction.
Then in the methodology proposed by [5], human behavior
(or action) depends on whether the summation of irrational
and rational components of each person is larger than a
given threshold. At each time step, everyone communicate
with each others about the irrational part through a network.
One major ”drawback” of this methodology is that the
irrational part of each person can not be affected by the
others dynamically. That motivates our generalization in this
paper.

C. Our model

Consider a society composed by n agents. We focus on
the evolution of irrational component of the agents. We gen-
eralize Epstein’s model by allowing the irrational component
of each agent to be affected by others dynamically, namely,

x(k + 1) = Bx(k) +A(λ(k)−Wx(k)), (3)

where x(k) ∈ Rn, B and W are row-stochastic matrices,
A is a diagonal matrix satisfying 0 6 A 6 I , λ(k) : Ω →
{0, 1}n is a binary random vector. The initial condition is
set to be x(0) = x0 ∈ Rn.

Note that the model (3) contains (2) as a special case by
appropriate choice of matrices A,B and W . Furthermore, by
setting A = I−Λ, B = W and λ(k) being deterministic and
identical for all k, our model corresponds to the Friedkin-
Johnsen model [9] given as

x(k + 1) = ΛWx(k) + (I − Λ)u, x(0) = u, (4)

where W is a row stochastic matrix, Λ is a diagonal matrix
satisfying 0 6 Λ 6 I . This model is used to describe the
dynamic of the (scalar) opinion of a community of n social
agents about one issue and u is the initial opinion, where the
matrix Λ and W represent the stubbornness and interpersonal
influences respectively [16].

IV. ANALYTICAL PROPERTIES

In this section, we study the stability of the stochastic
process (3). As the vector λ introduce the randomness to x,
one can expect the convergence of the system (3) to depend
on the distribution of λ. Here we consider two cases, namely
λ(k) are independent and identically distributed (i.i.d.) for
all k or λ obeys a Markov chain, respectively.



A. independent and identically distributed λ(k)

In this subsection, we assume that the sequence of λ(k)
is i.i.d. . More precisely, ∀k,

λi(k) =

{
0 with probability pi,
1 with probability 1− pi,

∀i ∈ I. (5)

Let us denote p = [p1, . . . , pn]>. Then we have E[λ(k)] =
1−p. Moreover, suppose the components of λ are correlated,
and the covariance matrix of λ(k) is Σ > 0.

In the first result, we characterize the probability of
system (3) having finite limit. More precisely, we provide the
sufficient and necessary condition for system (3) converging
to a finite limit in distribution.

Theorem 1. Consider the system (3) with the random vector
λ satisfying (5), then the random variable x(k) converge
in distribution to a finite limit if and only if B − AW
is Schur stable. Furthermore, if B − AW is Schur stable,
the distribution of

∑∞
k=0(B − AW )kAλ(k) is the unique

invariant distribution for the Markov chain x(k).

Proof. First, by the condition (5), we have that
E
[

log+ ‖λ(k)‖
]

< ∞. Furthermore, it can be seen
that log ‖B − AW‖ < 0 if and only if ρ(B − AW ) < 1,
namely B−AW is Schur stable. Then by using Theorem 2.1
in [4], the random series

∑∞
k=0(B−AW )kAλ(k) converge

almost surely to a finite limit, and its forward process (3)
converge to the same finite limit in distribution.

Remark 1. In the previous results, the Schur stability of B−
AW can guarantee the stability of the system (3). Generally
speaking, the weakened conditions with ρ(B − AW ) 6 1
and 0 6 A 6 I can not guarantee that E[x(k)] converges
to a constant vector. A simulation for this case is given in
Example 2 in Section V.

The previous result presents the condition which guarantee
the sequence (3) has a finite limit. Next, we shall show the
sufficient condition to guarantee the mean square stability of
system (3).

Theorem 2. Suppose the diagonal matrix A satisfies 0 <
A < I . Then the Markov chain x(k) defined in (3) is
mean square stable if and only if B −AW is Schur stable.
Moreover, if B−AW is Schur stable, the expectation of x(k)
converges to (I −B +AW )−1A(1− p).

Proof. For k > 1, the dynamic of the expectation of x(k) is

E[x(k)] =(B −AW )E[x(k − 1)] +A(1− p)

=(B −AW )kx(0) + (1− p)
k−1∑
`=0

(B −AW )`A1

where we have used the fact that E[λ(k)] = 1− p for all k.
It can be verified that if B −AW is Schur stable, we have

lim
k→∞

E[x(k)] = (I −B +AW )−1A(1− p). (6)

Next, we prove the stability of the expectation of the
matrix series

(
x(k) − E[x(k)]

)(
x(k) − E[x(k)]

)>
. Denote

x(k)− E[x(k)] as S(k). Then we have

E[S(k)S>(k)]

=(B −AW )E[S(k − 1)S>(k − 1)](B −AW )>

+AΣA>

=(B −AW )kE[S(0)S>(0)]((B −AW )k)>

+

k−1∑
`=0

(B −AW )`AΣA>((B −AW )`)>. (7)

Notice that Σ > 0, which implies that the summation in (7) is
converging to a finite matrix if and only if ρ(B−AW ) < 1.
Hence E[S(k)S>(k)] converges to a finite matrix as k →∞
if and only if ρ(B − AW ) < 1. Hence the mean square
stability of (3) is proved.

Corollary 3. If the system (3) has Schur stable B − AW
and p ∈ span{1}, then the expectation of x(k) converges to
consensus.

Proof. By Theorem 2, the expectation of x(k) converges to
(I − B + AW )−1A(1 − p). Suppose p = α1. We need to
show that (1− α)(I −B +AW )−1A1 ∈ span{1}. Indeed,
we prove that (1−α)(I−B+AW )−1A1 = (1−α)1 which
can be seen by

(1− α)A1 = (1− α)(I −B +AW )1. (8)

The previous equality holds for row stochastic matrix B and
W . Hence E[x(k)] converge to (1− α)1.

In the previous result, one common assumption is the
Schur stability of the matrix B − AW . For general row
stochastic matrices B and W with 0 < A < I , it usually
can not be guaranteed that the spectral radius of B−AW is
less than one. However for a special case, namely B = W ,
ρ(B −AW ) < 1 always holds.

Corollary 4. If the stochastic matrices B = W and the
diagonal matrix A satisfies 0 < A < I , then B − AW is
Schur stable.

Proof. Since 0 < A < I , the diagonal elements of I − A
belong to the open interval (0, 1). Then the sum of absolute
value of the elements in each row of B−AW is strictly less
than one. Then by using Gershgorin disc theorem, we have
the absolute value of all the eigenvalues of B−AW are less
than one.

Remark 2. If the model (3) satisfy the B = W and 0 <
A < I , then E[x(k)] evolves according to Firedkin-Johnsen
model (4) which is stable, see Theorem 1 in [16].

B. Markovian λ(k)

In this subsection, we consider the case that the vector
λ(k) : Ω→ N := {0, 1}n, is a Markov chain with an initial
distribution π(0) ∈ R2n

, i.e., λ(0) = i with probability
πi(0). For any i ∈ N, the indicator function which maps



Ω to {0, 1} is defined as 1{λ(k)=i}(w) = 1 if λ(k)(w) = i,
and 0 otherwise. The transition matrix for the Markov chain
of λ is P . Furthermore, we can rewrite the system (3) as

x(k + 1) = (B −AW )x(k) +D(k)a (9)

where D(k) = diag(λ(k)) and A = diag(a).
To simplify the presentation, we introduce the following

notations

qi(k) = E
[
x(k)1{λ(k)=i}

]
(10)

Qi(k) = E
[
x(k)x>(k)1{λ(k)=i}

]
, (11)

and collect q(k) := [. . . , q>i (k), . . .] and Q(k) :=
[. . . , Q>i (k), . . .] for all i ∈ N. Then

µ(k) :=E[x(k)] =
∑
i∈N

qi(k)

Q(k) :=E[x(k)x>(k)] =
∑
i∈N

Qi(k)

Lemma 5. Suppose B−AW is Schur stable and the initial
distribution of λ(0) is π = π∗ which is invariant for P , then
the expectation µ(k) is converging to

(I −B +AW )−1
∑
i∈N

πi diag(i)a. (12)

Proof. The dynamic of the expectation of x(k) is given as

µ(k) =(B −AW )kE[x(0)]

+

k−1∑
`=0

(
(B −AW )`

∑
i∈N

πi diag(i)a
)
.

Then, if B −AW is Schur stable, we have

lim
k→∞

µ(k) = (I −B +AW )−1
∑
i∈N

πi diag(i)a.

Notice that by denoting

S :=
[
· · · , a> diag(i), · · ·

]>
, i ∈ N, (13)

we can rewrite
∑
i∈N πi diag(i)a = (π ⊗ In)S.

Theorem 6. Suppose P is irreducible and aperiodic. Then
the process (9) is mean square stable if and only if B−AW
is Schur stable. Moreover, for any initial distribution π(0),
limk→∞ Ex(k) converges to (12) asymptotically.

Proof. If P is irreducible and aperiodic, and moreover there
are finite states in the Markov chain of λ(k), then P has
unique stationary distribution, denoted as π∗.

To simplify the presentation, denote M = B − AW . We
first write the recursive equation for qi(k) and Qi(k) which

are defined in (10) and (11). For (9),

qj(k + 1)

=E
[
x(k + 1)1{λ(k+1)=j}

]
=
∑
i∈N

E
[
(Mx(k) +D(k)a)1{λ(k+1)=j}1{λ(k)=i}

]
=
∑
i∈N

pijMqi(k) +
∑
i∈N

pij diag(i)aπi(k),

and

Qj(k + 1)

=
∑
i∈N

E
[
x(k + 1)x>(k + 1)1{λ(k+1)=j}1{λ(k)=i}

]
=
∑
i∈N

pij
[
MQi(k)M> +Mqi(k)a> diag(i)+

diag(i)aq>i (k)M> + diag(i)aa> diag(i)πi(k)
]
.

For any V = (V1, . . . , VN ) where Vi ∈ Rn×n, we define the
following operators

Tj(V ) :=

N∑
i=1

pijMViM
> (14)

and T := (T1, . . . , TN ). Notice that we can write T (V ) as

vec(T (V )) = (P> ⊗ IN )⊗ (M ⊗M) vec(V ). (15)

Furthermore, we denote

Rj(q(k)) :=
∑
i∈N

pij
[
Mqi(k)a> diag(i)

+ diag(i)aq>i (k)M>

+ diag(i)aa> diag(i)πi(k)
]

(16)

and R(k, q) := (. . . , Ri(k, q), . . .) for all i ∈ N, and

B(q(k)) = (P> ⊗ In) diag(M, . . . ,M)q(k) (17)

= (P> ⊗M)q(k) (18)

ψ(k) =


∑
i∈N pi1 diag(i)aπi(k)

...∑
i∈N pi,2n diag(i)aπi(k)

 (19)

with 2n number of M in (17). Then the recursive equation
of q(k) and Q(k) is given as

q(k + 1) = B(q(k)) + ψ(k) (20)
Q(k + 1) = T (Q(k)) +R(q(k)). (21)

Next we prove that ρ(T ) < 1 if and only if ρ(M) < 1.
Indeed, by Lemma 1 in [12], we have that ρ(T ) < 1 if and
only if

lim
k→∞

‖T k(V )‖1 = 0,∀V = (V1, . . . , VN ) with Vi > 0

which is equivalent to limk→∞ vec(T k(V )) = 0. By the fact
that

vec(T k(V )) =
(

(P> ⊗ IN )⊗ (M ⊗M)
)k

vec(V ),



we have limk→∞ vec(T k(V )) = 0 for any V is equivalent
to

ρ((P> ⊗ IN )⊗ (M ⊗M))

=ρ(P>)ρ(M)

=ρ(M) < 1.

Furthermore, notice that if ρ(M) < 1, then ρ(B) < 1. Hence,
by Proposition 3.37 and 3.38 in [1], which shows system (3)
is mean square stable if and only if ρ(T ) < 1, we have the
mean square stability is equivalent to ρ(M) < 1.

The remaining task is to show that the mean converges
to (12). Since we have limk→∞

∑k
`=0(M)` = (I −M)−1,

then in order to prove µ(k) converge to (12), it is equivalent
to show that

lim
k→∞

µ(k)−
( k−1∑
`=0

(M)`
)
(π∗ ⊗ In)S = 0. (22)

Indeed, denoting y(k) := µ(k)−
(∑k−1

`=0 (M)`
)
(π∗ ⊗ In)S,

we have y(k) equals to

(M)kµ(0) +

k−1∑
`=0

(M)k−`((π(0)P `)⊗ In)S

−
( k∑
`=0

(M)`
)
(π∗ ⊗ In)S

= (M)kµ(0) +
( k−1∑
`=0

(M)k−`
)
(((π(0)− π∗)P `)⊗ In)S.

Then it can shown in a straightforward manner that
‖y(k)‖ → 0 as k → ∞, since M is stable and (π(0) −
π∗)P ` → 0 as `→∞.

V. NUMERICAL STUDY

Example 1. In this example, we demonstrate the mean
square stability of system (3). Here we consider the system
(3) with the matrices are set to be

B =


0.2931 0.0660 0.0948 0.3384 0.2076
0.3670 0.3348 0.1038 0.1203 0.0741
0.0859 0.3849 0.0686 0.0489 0.4117
0.3084 0.1009 0.1948 0.3477 0.0482
0.3110 0.1164 0.1234 0.2924 0.1569

 ,

W =


0.2846 0.2561 0.2067 0.0504 0.2021
0.2423 0.3299 0.0407 0.0753 0.3118
0.0955 0.3605 0.4363 0.0398 0.0680
0.3572 0.3283 0.0169 0.2435 0.0541
0.2922 0.2459 0.0044 0.1127 0.3449

 (23)

and the learning rate A = 0.1I5. Let the random variable
λ(k) be i.i.d. with uncorrelated components, and set the
probability of λi(k) = 0 to 0.5 for all i ∈ I and k > 0. Fig. 1
depicts one result for the system (3). It can be seen that since
the randomness is added to every iteration of the system, the
trajectories are oscillating. However, the expectation of the

Fig. 1: The trajectories of the system (3) with i.i.d. λ(k) and
matrices as in (23).

Fig. 2: The evolution of the expectation of the states of
system (3) with i.i.d. λ(k) and matrices as in (23).

state x(k), given as in Fig 2, converge to 0.51 which also
follows from Theorem 2.

Example 2. In this example, we provide one scenario which
verifies the discussion in Remark 1. Here, we consider the
system (3) with

B =


0.1612 0.1406 0.1096 0.2779 0.3108
0.0075 0.6307 0.1664 0.1910 0.0044
0.0219 0.3147 0.3403 0.2353 0.0878

0 0 0 0 1
0 0 0 1 0

 (24)

and W = B, A = diag(0.5, 0.5, 0.5, 0, 0)>. In this case
we have ρ(B − AW ) = 1 which violate the assumption in
Theorem 2. Fig. 3 depicts one trajectory for this system and
Fig. 4 shows the evolution of expectation of x(k). It can
be seen that the expectation will not converge to a constant
vector in this case.
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Fig. 3: The trajectories of the system (3) with i.i.d. λ(k) and
matrices as in (23).
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Fig. 4: The evolution of the expectation of the states of
system (3) with i.i.d. λ(k) and matrices as in (23).
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Fig. 5: The trajectories of the system (3) with Markovian
λ(k) and matrices as in (23).

Example 3. In this example, we consider the system (3)
with the same matrices as in (23), but the vector λ(k) is
a Markov chain as in subsection IV-B. Here we consider
the case that all the components of λ are independent, and
for each component the distribution evolve according to the
same transition matrix. It can be seen that for this type
of random vector λ(k), the expectation of λ(k) converge
to span{1}. Moreover, the term

∑
i∈N πi diag(i)a in (12)

belongs to span{1}. Then, as can be seen from Fig. 6, the
expectation of x(k) converge to consensus.

VI. CONCLUSION

In this paper, we studied the modeling of the human
behavior in social network along the path proposed by the
author in [5]. We have focused on the irrational component of
human cognitive process and proposed one general model.
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Fig. 6: The evolution of the expectation of the states of
system (3) with Markovian λ(k) and matrices as in (23).

This model contains the well-known Rescorla-Wagner and
Friedkin-Johnsen model as special cases. The sufficient and
necessary condition is provided for the mean square stability
of our system. For the future directions, we will mainly
focus on how the incorporation of our model into the
human cognitive process affect the human behavior for large
networks.
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