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Abstract: In this paper, we formulate and solve a randomized optimal consensus problem for multi-agent systems with stochasti-
cally time-varying interconnection topology. The considered multi-agent system with a simple randomized iterating rule achieves
an almost sure consensus meanwhile solving the optimization problem minz∈Rd

∑n
i=1 fi(z), in which the optimal solution set

of objective function fi corresponding to agent i can only be observed by agent i itself. At each time step, each agent indepen-
dently and randomly chooses either taking an average among its neighbor set, or projecting onto the optimal solution set of its
own optimization component. Both directed and bidirectional communication graphs are studied. Connectivity conditions are
proposed to guarantee an optimal consensus almost surely with proper convexity and intersection assumptions. The convergence
analysis is carried out using convex analysis. The results illustrate that a group of autonomous agents can reach an optimal
opinion with probability one by each node simply making a randomized trade-off between following its neighbors or sticking to
its own opinion at each time step.
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1 Introduction

In recent years, there have been considerable research ef-
forts on multi-agent dynamics in application areas such as
engineering, natural science, and social science. Cooper-
ative control of multi-agent systems is an active research
topic, where collective tasks are enabled by the recent devel-
opments of distributed control protocols via interconnected
communication [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 19]. How-
ever, fundamental difficulties remain in the search of suit-
able tools to describe and design the dynamical behavior
of these systems and thus to provide insights in their basic
principles. Unlike what is often the case in classical control
design, multi-agent control systems aim at fully exploiting,
rather than attenuating, the interconnection between subsys-
tems. The distributed nature of the information processing
and control requires completely new approaches to analysis
and synthesis.
Minimizing a sum of functions,

∑n
i=1 fi(z), using dis-

tributed algorithms, where each component function fi is
known only to a particular agent i, has attracted much at-
tention in recent years, due to its wide application in multi-
agent systems and resource allocation in wireless networks
[29, 30, 31, 32, 33, 34]. A class of subgradient-based incre-
mental algorithms when some estimate of the optimal solu-
tion can be passed over the network via deterministic or ran-
domized iteration, were studied in [29, 30, 38]. Then in [33]
a non-gradient-based algorithm was proposed, where each
node starts at its own optimal solution and updates using a
pairwise equalizing protocol. The local information trans-
mitted over the neighborhood is usually limited to a convex
combination of its neighbors [6, 7, 8]. Combing the ideas of
consensus algorithms and subgradient methods has resulted
in a number of significant results. A subgradient method
in combination with consensus steps was given for solving
coupled optimization problems with fixed undirected topol-
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ogy in [32]. An important contribution on multi-agent op-
timization is [36], in which the presented decentralized al-
gorithm was based on simply summing an averaging (con-
sensus) part and a subgradient part, and convergence bounds
for a distributed multi-agent computation model with time-
varying communication graphs with various connectivity as-
sumptions were shown. A constrained optimization problem
was studied in [37], where each agent is assumed to always
lie in a particular convex set, and consensus and optimization
were shown to be guaranteed together by each agent taking
projection onto its own set at each step. Then a convex-
projection-based distributed control was presented for multi-
agent systems with continuous-time dynamics to solve this
optimization problem asymptotically [35].

In this paper, we present a randomized multi-agent optimiza-
tion algorithm. Different from the existing results, we focus
on the randomization of individual decision-making of each
node. We assume that the optimal solution set of fi, is a con-
vex set, and can be observed only by node i. Then at each
time step, there are two options for each agent: an average
(consensus) part as a convex combination of its neighbors’
state, and an projection part as the convex projection of its
current state onto its own optimal solution set. In the al-
gorithm, each agent independently makes a decision via a
simple Bernoulli trial, i.e., chooses the averaging part with
probability p, and the projection part with probability 1− p.
Viewing the state of each agent as its “opinion”, one can in-
terpret the randomized algorithm considered in this paper as
a model of spread of information in social networks [28].
In this case, the averaging part of the iteration corresponds
to an agent updating its opinion based on its neighbors’ in-
formation, while the projection part corresponds to an agent
updating its opinion based only on its own belief of what is
the best move. The authors of [28] draw interesting conclu-
sions from a model similar to ours on how misinformation
can spread in a social network.

In our model, the communication graph is assumed to be
a general random digraph process independent with the



agents’ decision making process. Instead of assuming
that the communication graph is modeled by a sequence
of i.i.d. random variables over time, we just require the
connectivity-independence condition, which is essentially
different with existing works [25, 27, 26]. Borrowing the
ideas on uniform joint-connection [6, 7, 22] and [t,∞)-
joint connectedness [8, 18], we introduce connectivity condi-
tions of stochastically uniformly (jointly) strongly connected
(SUSC) and stochastically jointly connected (SJC) graphs,
respectively. The results show that the considered multi-
agent network can almost surely achieve a global optimal
consensus, i.e., a global consensus within the optimal solu-
tion set of

∑n
i=1 fi(z), when the communication graph is

SUSC with general directed graphs, or SJC with bidirec-
tional information exchange. Convergence is derived with
the help of convex analysis and probabilistic analysis.
The paper is organized as follows. In Section 2, some pre-
liminary concepts are introduced. In Section 3, we formulate
the considered multi-agent optimization model and present
the optimization algorithm. We also establish some basic as-
sumptions and lemmas in this section. Then the main result
and convergence analysis are shown for directed and bidi-
rectional graphs, respectively in Sections 4 and 5. Finally,
concluding remarks are given in Section 6.

2 Preliminaries

Here we introduce some mathematical notations and tools on
graph theory [5], convex analysis [2, 3] and Bernoulli trials
[4].

2.1 Directed Graphs
A directed graph (digraph) G = (V, E) consists of a finite
set V = {1, . . . , n} of nodes and an arc set E . An element
e = (i, j) ∈ E , which is an ordered pair of nodes i, j ∈ V ,
is called an arc leaving from node i and entering node j.
If the ej’s are pairwise distinct in an alternating sequence
v0e1v1e2v2 . . . envn of nodes vi and arcs ei = (vi−1, vi) ∈
E for i = 1, 2, . . . , n, the sequence is called a (directed) path.
A path from i to j is denoted i → j. G is said to be strongly
connected if it contains paths i → j and j → i for every pair
of nodes i and j.
A weighted digraph G is a digraph with weights assigned for
its arcs. A weighted digraph G is called to be bidirectional
if for any two nodes i and j, (i, j) ∈ E if and only if (j, i) ∈
E , but the weights of (i, j) and (j, i) may be different. A
bidirectional digraph is strongly connected if and only if it is
connected as an undirected graph (ignoring the directions of
the arcs).
The adjacency matrix, A, of digraph G is the n × n matrix
whose ij-entry, Aij , is 1 if there is an arc from i to j, and 0
otherwise. Additionally, if G1 = (V, E1) and G2 = (V, E2)
have the same node set, the union of the two digraphs is de-
fined as G1 ∪ G2 = (V, E1 ∪ E2).

2.2 Convex Analysis
A set K ⊂ Rd (d > 0) is said to be convex if (1−λ)x+λy ∈
K whenever x, y ∈ K and 0 ≤ λ ≤ 1. For any set S ⊂ Rd,
the intersection of all convex sets containing S is called the
convex hull of S, and is denoted by co(S).
Let K be a closed convex set in Rd and denote |x|K ,
infy∈K |x − y| as the distance between x ∈ Rd and K,

where | · | denotes the Euclidean norm. Then we can as-
sociate to any x ∈ Rd a unique element PK(x) ∈ K satis-
fying |x − PK(x)| = |x|K , where the map PK is called the
projector onto K with

⟨PK(x)− x, PK(x)− y⟩ ≤ 0, ∀y ∈ K. (1)

Moreover, we have the following non-expansiveness prop-
erty for PK :

|PK(x)− PK(y)| ≤ |x− y|, x, y ∈ Rd. (2)

A function f : Rd → R is said to be convex if it satisfies

f(αv + (1− α)w) ≤ αf(v) + (1− α)f(w), (3)

for all v, w ∈ Rd and 0 ≤ α ≤ 1. The following conclusion
holds.

Lemma 2.1 Let K be a convex set in Rd. Then |x|K is a
convex function.

The next lemma can be found in [1].

Lemma 2.2 Let K be a subset of Rd. The convex hull
co(K) of K is the set of elements of the form x =∑d+1

i=1 λixi, where λi ≥ 0, i = 1, . . . , d+1 with
∑d+1

i=1 λi =
1 and xi ∈ K.

Additionally, for every two vectors 0 ̸= v1, v2 ∈ Rd,
we define their angle as ϕ(v1, v2) ∈ [0, π] with cosϕ =
⟨v1, v2⟩/|v1| · |v2|.

2.3 Bernoulli Trials
A sequence of independent identically distributed (i.i.d.)
Bernoulli trials is a finite or infinite sequence of independent
random variables Z1, Z2, Z3, . . . , such that

(i) For each i, Zi equals either 0 or 1;

(ii) For each i, the probability that Zi = 1 is a constant p0.

p0 is called the success probability. The next lemma shows
an important property of an infinite i.i.d. Bernoulli trials
which will be useful in the sequent analysis. The proof is
obvious, and therefore omitted.

Lemma 2.3 Let Zk, k = 1, 2, . . . , be an infinite sequence of
i.i.d. Bernoulli trials with success probability p0 > 0. De-
note {Zω

k }∞k=0 as a sample sequence. Then we can select a
subsequence {Zω

km
}∞m=0 of {Zω

k }∞0 with probability 1 such
that Zω

km
= 1 for all m.

3 Problem Formulation

3.1 Multi-agent Model
Consider a multi-agent system with agent set V =
{1, 2, . . . , n}. The objective of the network is to reach a con-
sensus, and meanwhile to cooperatively solve the following
optimization problem

min
z∈Rd

F (z) =
n∑

i=1

fi(z) (4)

where fi : R
d → R represents the cost function of agent i,

observed by agent i only, and z is a decision vector.



Time is slotted, and the dynamics of the network is in dis-
crete time. Each agent i starts with an arbitrary initial po-
sition, denoted xi(0) ∈ Rd, and updates its state xi(k) for
k = 0, 1, 2, . . . , based on the information received from its
neighbors and the information observed from its optimiza-
tion component fi.

3.1.1 Communication Graph

We suppose the communication graph over the multi-agent
network is a stochastic digraph process Gk = (V, Ek), k =
0, 1, . . . . To be precise, the ij-entry Aij(k) of the adjacency
matrix, A(k) of Gk, is a general {0, 1}-state stochastic pro-
cess. We use the following assumption on the independence
of Gk.
A1 (Connectivity Independence) Events Ck =
{Gk is connected (in certain sense)}, k = 0, 1, . . . , are
independent.

Remark 3.1 Connectivity independence means that a se-
quence of random variables ϖ(k), which are defined by
that ϖ(k) = 1 if Gk is connected (in certain sense) and
ϖ(k) = 0 otherwise, are independent. Note that, different
with existing works [25, 27, 26], we do not impose the as-
sumption that ϖ(k), k = 0, . . . , are identically distributed.

At time k, node j is said to be a neighbor of i if there is an
arc (j, i) ∈ Ek. Particularly, we assume that each node is
always a neighbor of itself. Let Ni(k) represent the set of
agent i’s neighbors at time k.
Denote the joint graph of Gk in time interval [k1, k2] as
G([k1, k2]) = (V,∪t∈[k1,k2]E(t)), where 0 ≤ k1 ≤ k2 ≤
+∞. Then we have the following definition.

Definition 3.1 (i) Gk is said to be stochastically uniformly
(jointly) strongly connected (SUSC) if there exist two con-
stants B ≥ 1 and 0 < q < 1 such that for any k ≥ 0,

P{G([k, k +B − 1]) is strongly connected} ≥ q.

(ii) Assume that Gk is bidirectional for all k ≥ 0. Then Gk

is said to be stochastically jointly connected (SJC) if there
exists a sequence 0 = k0 < · · · < km < . . . and a constant
0 < q < 1 such that

P{G[km,km+1) is connected} ≥ q, m = 0, . . . .

3.1.2 Neighboring Information

The local information that each agent uses to update its state
consists of two parts: the average and the projection parts.
The average part is defined as

ei(k) =
∑

j∈Ni(k)

aij(k)xj(k),

where aij(k) > 0, i, j = 1, . . . , n are the arc weights. The
weights fulfill the following assumption:
A2 (Arc Weights) (i)

∑
j∈Ni(k)

aij(k) = 1 for all i and k.

(ii) There exists a constant η > 0 such that η ≤ aij(k) for
all i, j and k.

Fig. 1: The goal of the multi-agent network is to achieve a
consensus in the optimal solution set X0.

The projection part is defined as

gi(k) = PXi(xi(k)),

where Xi
.
= {v |fi(v) = minz∈Rd fi(z)} is the optimal

solution set of each objective function fi, i = 1, . . . , n. We
use the following assumptions.
A3 (Convex Solution Set) Xi, i = 1, . . . , n, are closed con-
vex sets.
A4 (Nonempty Intersection) X0

.
=

n∩
i=1

Xi is nonempty.

In the rest of the paper, A1–A4 are our standing assumptions.

3.1.3 Randomized Algorithm

We are now ready to introduce the randomized optimiza-
tion algorithm. At each time step, each agent independently
and randomly either takes an average among its time-varying
neighbor set, or projects onto the optimal solution set of its
own objective function:

xi(k + 1) =

{∑
j∈Ni(k)

aij(k)xj(k), with prob. p
PXi

(xi(k)), with prob. 1− p

(5)
where 0 < p < 1 is a given constant.

Remark 3.2 The constrained consensus algorithm studied
in [37], can be viewed as a deterministic special case of (5),
in which each node alternate between averaging and pro-
jection. Note that, we do not impose a double stochasticity
assumption on the weights.

Under assumptions A3 and A4, it is obvious that X0 is
the optimal solution set of cost function F (z). Let x0 =
(xT

1 (0), . . . , x
T
n (0))

T ∈ Rnd be the initial condition. The
considered optimal consensus problem is defined as follows.
See Fig. 1 for an illustration.

Definition 3.2 (i) A global optimal set aggregation is
achieved almost surely for (5) if for all x0 ∈ Rnd, we have

P{ lim
k→+∞

|xi(k)|X0 = 0, i = 1, . . . , n} = 1. (6)

(ii) A global consensus is achieved almost surely for (5) if
for all x0 ∈ Rnd, we have

P{ lim
k→+∞

|xi(k)− xj(k)| = 0, i, j = 1, . . . , n} = 1. (7)

(iii) A global optimal consensus is achieved almost surely for
(5) if both (6) and (7) hold.



3.2 Basic Properties
In this subsection, we establish two key lemmas on the algo-
rithm (5).

Lemma 3.1 Let K be a closed convex set in Rd, and K0 ⊆
K be a convex subset of K. Then for any y ∈ Rd, we have

|PK(y)|2K0
+ |y|2K ≤ |y|2K0

.

Proof. According to (1), we know that

⟨PK(y)− y, PK(y)− PK0(y)⟩ ≤ 0.

Therefore, we obtain

⟨PK(y)− y, y − PK0(y)⟩
= ⟨PK(y)− y, y − PK(y) + PK(y)− PK0(y)⟩
≤ −|y|2K .

Then,

|PK(y)|2K0
= |PK(y)− PK0(PK(y))|2

≤ |PK(y)− PK0(y)|2

≤ |y|2K0
− |y|2K .

The desired conclusion follows. �

Lemma 3.2 Let {x(k) = (xT
1 (k), . . . , x

T
n (k))

T }∞k=0 be a
sequence defined by (5). Then for any k ≥ 0, we have

max
i=1,...,n

|xi(k + 1)|X0 ≤ max
i=1,...,n

|xi(k)|X0 .

Proof. Take l ∈ V . If node l follows average update rule at
time k, we have

|xl(k + 1)|X0 = |PXl
(xl(k))− PX0(PXl

(xl(k)))|
≤ |xl(k)− PX0(xl(k))|
≤ max

i=1,...,n
|xi(k)|X0 . (8)

On the other hand, if node l follows projection update rule at
time k, according to Lemma 2.1, we have

|xl(k + 1)|X0 = |
∑

j∈Nl(k)

alj(k)xj(k)|X0

≤
∑

j∈Nl(k)

alj(k)|xj(k)|X0

≤ max
i=1,...,n

|xi(k)|X0 . (9)

Hence, the conclusion holds. �
Based on Lemma 3.2, we know that the following limit ex-
ists:

ξ
.
= lim

k→∞
max

i=1,...,n
|xi(k)|X0 .

It is immediate that the global optimal set aggregation is
achieved almost surely if and only if P{ξ = 0} = 1.

4 Main Results

Algorithm (5) is nonlinear and stochastic, and therefore quite
challenging to analyze. In this section, we introduce the
main results and convergence analysis. Due to space limi-
tations, all the proofs which are skipped can be found in [39]
for the rest of the paper.

4.1 Directed Graphs
The main result under general directed communications is
stated as follows.

Theorem 4.1 System (5) achieves a global optimal consen-
sus almost surely if Gk is SUSC.

Define

δi
.
= lim sup

k→∞
|xi(k)|Xi , i = 1, . . . , n.

Let A = {ξ > 0} and M = {∃i0 s.t. δi0 > 0} be two
events, indicating that convergence to X0 for all the agents
fails and convergence to Xi0 fails for some node i0, respec-
tively. The next lemma shows the relation between the two
events.

Lemma 4.1 P[A ∩M] = 0 if Gk is SUSC.

Proof. Let {xω(k)}∞k=0 be a sample sequence. Take an ar-
bitrary node i0 ∈ V . Then there exists a time sequence
k1 < · · · < km < . . . with limm→∞ km = ∞ such that

|xω
i0(km)|Xi0

≥ 1

2
δi0(ω) ≥ 0. (10)

Moreover, according to Lemma 3.2, ∀ℓ = 1, 2, . . . ,
∃T (ℓ, ω) > 0 such that

k ≥ T ⇒ 0 ≤ |xω
i (k)|X0 ≤ ξ(ω)+

1

ℓ
, i = 1, . . . , n. (11)

For any km ≥ T , node i0 projects onto Xi with probability
p. Thus, Lemma 3.1 implies

P{|xi0(km + 1)|X0 ≤
√

(ξ +
1

ℓ
)2 − 1

4
δ2i0} ≥ p. (12)

At time km + 2, either one of two cases can happen in the
update.

• If node i0 chooses the projection option at time km+2,
we have

|xi0(km+2)|X0 = |xi0(km+1)|X0 ≤
√
(ξ +

1

ℓ
)2 − 1

4
δ2i0

(13)
with probability at least p.

• If node i0 chooses the average option at time km + 2,
with (11), we can obtain from the weights rule and
Lemma 2.1 that

|xi0(km + 2)|X0

= |
∑

j∈Ni0 (km+1)

ai0j(km + 1)xj(km + 1)|X0

≤ η

√
(ξ +

1

ℓ
)2 − 1

4
δ2i0 + (1− η)(ξ +

1

ℓ
) (14)

with probability at least p.

Through similar analysis, we can also obtain that for τ =
1, 2, . . . ,

P{|xi0(km + τ)|X0 ≤ ητ−1

√
(ξ +

1

ℓ
)2 − 1

4
δ2i0

+ (1− ητ−1)(ξ +
1

ℓ
)} ≥ p. (15)



The upper analysis process can be carried out continuingly
on intervals [km+2B+1, km+3B], . . . , [km+(n−2)B+
1, km + (n− 1)B], and i3, . . . , in−1 can be found until V =
{i0, i1, . . . , in−1}. Then one can obtain that for any i ∈ V ,

P{ max
i=1,...,n

|xi(km + (n− 1)B + 1)|X0 ≤

η(n−1)B

√
(ξ +

1

ℓ
)2 − 1

4
δ2i0 + (1− η(n−1)B)(ξ +

1

ℓ
)}

≥ pnqn−1. (16)

Since (16) holds for any km ≥ T and pnqn−1 is a constant,
and noting the fact the analysis on different time instances
{km + (n− 1)B + 1, km ≥ T} is independent for different
m, the events that

max
i=1,...,n

|xi(km + (n− 1)B + 1)|X0

≤ η(n−1)B

√
(ξ +

1

ℓ
)2 − 1

4
δ2i0 + (1− η(n−1)B)(ξ +

1

ℓ
)

can be viewed as an infinite sequence of i.i.d. Bernoulli tri-
als with success probability pnqn−1. Then based on Lemma
2.3, we see that with probability 1, there is an infinite subse-
quence {k̃j , j = 1, 2, . . . } from {km + (n− 1)B+1, km ≥
T} satisfying

max
i=1,...,n

|xi(k̃j)|X0

≤ η(n−1)B

√
(ξ +

1

ℓ
)2 − 1

4
δ2i0 + (1− η(n−1)B)(ξ +

1

ℓ
).

This implies
P[R∗] = 1, (17)

where R∗ = limℓ→∞ Rℓ = {ξ ≤ η(n−1)B
√
ξ2 − 1

4δ
2
i0

+

(1− η(n−1)B)ξ}.
Finally, it is not hard to find that A∩M ⊆ Rc

∗ because 0 <
η(n−1)B < 1. Then the conclusion holds straightforwardly.
�
Take a node α0 ∈ V . Then define

zα0(k)
.
= max

i=1,...,n
|xi(k)|Xα0

.

We also need the following fact to prove the optimal set con-
vergence.

Lemma 4.2 We have

zα0(k + 1) ≤ zα0(k) + max
i=1,...,n

|xi(k)|Xi , k = 0, 1, . . . .

The optimal set convergence part of Theorem 4.1 can be
proved in the following conclusion.

Proposition 4.1 System (5) achieves a global optimal set
aggregation almost surely if Gk is SUSC.

In this subsection, we present the consensus analysis of the
proof of Theorem 4.1. Let xi,[ȷ](k) represent the ȷ’th coor-
dinate of xi(k). Denote

h(k) = min
i=1,...,n

xi,[ȷ](k), H(k) = max
i=1,...,n

xi,[ȷ](k).

The consensus proof of Theorem 4.1 will be built on the es-
timates of S(k) = H(k)−h(k), which is summarized in the
following conclusion.

Proposition 4.2 System (5) achieves a global consensus al-
most surely if Gk is SUSC.

4.2 Bidirectional Graphs
In this subsection, we discuss the randomized optimal con-
sensus problem under more restrictive communication as-
sumptions, that is, bidirectional communications.
To get the main result, we also need the following assump-
tion.
A5 (Compactness) X0 is compact.

Then we propose the main result on optimal consensus for
the bidirectional case. It turns out that with bidirectional
communications, the connectivity condition to ensure an op-
timal consensus is weaker.

Theorem 4.2 Suppose Gk is bidirectional for all k ≥ 0 and
A5 holds. System (5) achieves a global optimal consensus
almost surely if Gk is SJC.

Remark 4.1 Note that, although we assume that Gk, k ≥ 0
is bidirectional, the weight of arc (i, j) may not be equal to
that of arc (j, i). In other words, we do not need the weight
functions aij(k) to be symmetric.

In order to complete the proof of Theorem 4.2, we first need
the following lemmas.

Lemma 4.3 Assume that Gk is bidirectional for all k ≥ 0.
Then P[A ∩M] = 0 if Gk is SJC.

Lemma 4.4 Define

yi = lim inf
k→∞

|xi(k)|X0 , i = 1, . . . , n

and denote D = {∃i0 s.t. yi0 < ξ}. Assume that Gk is
bidirectional for all k ≥ 0. Then P[A∩D] = 0 if Gk is SJC.

Then Theorem 4.2 follows from the following conclusions.

Proposition 4.3 Assume Gk is bidirectional for all k ≥ 0
and A5 holds. System (5) achieves a global optimal set ag-
gregation almost surely if Gk is SJC.

Proposition 4.4 Assume that Gk is bidirectional for all k ≥
0 and A5 holds. System (5) achieves a global consensus al-
most surely if Gk is SJC.

5 Conclusions

The paper investigated a randomized optimal consensus
problem for multi-agent systems with stochastically time-
varying interconnection topology. In this formulation, the
decision process for each agent was a simple Bernoulli trial
between following its neighbors or sticking to its own opin-
ion at each time step. In terms of the optimization prob-
lem, each agent independently chose either taking an av-
erage among its time-varying neighbor set, or projecting
onto the optimal solution set of its own objective function
randomly with a fixed probability. Both directed and bidi-
rectional communications were studied, and stochastically
jointly connectivity conditions were proposed to guarantee
an optimal consensus almost surely. The results showed that
under this randomized decision making protocol, a group of
autonomous agents can reach an optimal opinion with prob-
ability 1 with proper convex and nonempty intersection as-
sumptions for the considered optimization problem.
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