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a b s t r a c t

The spectral properties of the incidence matrix of the communication graph are exploited to provide
solutions to twomulti-agent control problems. In particular, we consider the problem of state agreement
with quantized communication and the problem of distance-based formation control. In both cases,
stabilizing control laws are providedwhen the communication graph is a tree. It is shownhow the relation
between tree graphs and the null space of the corresponding incidence matrix encode fundamental
properties for these two multi-agent control problems.
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1. Introduction

The spectral properties of the Laplacian matrix of a graph
were extensively used recently to provide convergence results
in various multi-agent control problems (Arcak, 2007; Cortes,
Martinez, & Bullo, 2006; Olfati-Saber & Murray, 2004; Olfati-Saber
& Shamma, 2005). In this paper we use another matrix namely,
the incidence matrix and its spectral properties, in order to study
the convergence properties of two multi-agent control problems.
Cycles are not captured by the properties of the Laplacian, but note
instead that the incidence matrix has an empty null space when
the communication graph is a tree. This property is used to show
that multi-agent networks represented by trees can compensate
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for bounded disturbances in the control input. On the other hand,
in a cyclic graph, the error never ceases to propagate in these
cycles. These facts are encoded by the definiteness properties of the
quadratic form of the incidence matrix. The first problem to which
we apply the properties of the incidencematrix ismulti-agent state
agreement under quantized communication. The only information
each agent has is a quantized estimate of its neighbors’ relative
positions.We first treat a static communication topology and show
that convergence is achieved in the case of a tree topology. The
results are then extended to switching topologies. While results
for discrete-time systems appeared recently (Carli, Fagnani, &
Zampieri, 2006; Johansson, Speranzon, & Zampieri, 2005; Kashyap,
Basar, & Srikant, 2007), a continuous-time model is considered
here. The second problemwe consider is distance-based formation
control. Such formations have been studied in the context of graph
rigidity (Baillieul & Suri, 2004; Hendrickx, Anderson, & Blondel,
2005), where a common factor is the lack of globally stabilizing
formation control laws.Wepropose here a control law that is based
on the negative gradient of a potential function between each of
the pairs of agents that form an edge in the formation graph. We
show that the corresponding control law stabilizes the system to
the desired formation provided that the graph is a tree. A similar
result for directed acyclic graphs with three agents appeared in
Cao, Anderson, Morse, and Yu (2008). We then show that it is
necessary with a tree for stabilization to the desired formation.

The rest of the paper is organized as follows: preliminaries and
the system model are discussed in Section 2. Section 3 treats the
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quantized agreement problemwhile Section 4 dealswith distance-
based formation control. A summary is given in Section 5.

2. Preliminaries

2.1. Graph theory

Wefirst review someelements of algebraic graph theory (Godsil
& Royle, 2001) used in the sequel. For an undirected graph G =
(V , E) with N vertices V = {1, . . . ,N} and edges E ⊂ V × V ,
the adjacency matrix A = A(G) = (aij) is the N × N matrix given
by aij = 1, if (i, j) ∈ E, and aij = 0, otherwise. If (i, j) ∈ E,
then i, j are adjacent. A path of length r from i to j is a sequence
of r + 1 distinct vertices starting with i and ending with j such that
consecutive vertices are adjacent. For i = j, this path is a cycle. If
there is a path between any two vertices of G, then G is connected.
A connected graph is a tree if it contains no cycles. The degree di

of vertex i is given by di = �
j
aij. Let � = diag(d1, . . . , dN). The

Laplacian of G is the symmetric positive semidefinite matrix L =
� − A. For a connected graph, L has a single zero eigenvalue with
the corresponding eigenvector 1 = [1, . . . , 1]T. An orientation
on G is the assignment of a direction to each edge. The incidence
matrix B = B(G) = (bij) of an oriented graph is the {0, ±1}-
matrix with rows and columns indexed by the vertices and edges
of G, respectively, such that bij = 1 if the vertex i is the head of
the edge j, bij = −1 if the vertex i is the tail of the edge j, and
bij = 0 otherwise. We have L = BB

T. If G contains cycles, the
edges of each cycle have a direction, where each edge is directed
towards its successor according to the cyclic order. A cycle C is
represented by a vector vC with M = |E| elements. For each edge,
the corresponding element of vC is equal to 1 if the direction of the
edge with respect to C coincides with the orientation assigned to
the graph for defining B, and−1, if the directionwith respect to C is
opposite to the orientation. The elements corresponding to edges
not in C are zero. The cycle space of G is the subspace spanned by
vectors representing cycles in G (Guattery & Miller, 2000).

Let x = [x1, . . . , xN ]T, where xi is a real scalar variable assigned
to vertex i of G. Denote by x̄ the M-dimensional stack vector of
relative differences of pairs of agents that form an edge in G, where
M = |E| is the number of edges, in agreement with a defined
orientation. In particular, denoting by ei = (hi, ti) ∈ E, i =
1, . . . ,M , the edges of G, where hi,ti are the head and tail of ei
respectively, we denote x̄ei = xhi − xti . The vector x̄ is given by
x̄ = [x̄e1 , . . . , x̄eM ]T. It is easy to verify that Lx = Bx̄ and x̄ = B

T
x.

For x̄ = 0 we have that Lx = 0.

Lemma 1. If G is a tree, then B
T
B is positive definite.

Proof. For any y ∈ RM , we have y
T
B
T
By = |By|2 and hence

y
T
B
T
By > 0 if and only if By �= 0, i.e., the matrix B has empty

null space. For a connected graph, the cycle space of the graph
coincides with the null space of B (Lemma 3.2 in Guattery &Miller,
2000). Thus, forGwith no cycles, zero is not an eigenvalue of B. This
implies that BT

B is positive definite. �

2.2. Stability of a linear system

Let z = [z1, . . . , zM ]T denote a vector of real variables assigned
to each edge of G. We examine the behavior of the system:

ż = −B
T
B (z + e) , (1)

where e is a state error to be defined in the sequel. For F(z) = 1
2 z

T
z,

we have Ḟ(z) = −z
T
B
T
Bz − z

T
B
T
Be. If G is a tree, then by Lemma 1

Ḟ(z) ≤ −λmin
�
B
T
B

� |z|2 + |z|
��BT

B

�� |e| . (2)

We can now state the following result.

Lemma 2. Consider system (1) and assume that G is a tree. Then,

• if |e| ≤ Θ , for some Θ > 0, then z converges to a ball of radius���BTB
���Θ

λmin(BTB)
in finite time;

• if |e| ≤ θ |z|, for some θ > 0, then z converges exponentially to

the origin, provided that θ <
λmin(BTB)
�BTB� .

Proof. For |e| ≤ Θ , (2) yields Ḟ(z) ≤ −λmin
�
B
T
B

� |z| (|z| −���BTB
���Θ

λmin(BTB)
) so the first statement follows. For the second, |e| ≤

θ |z| gives Ḟ(z) ≤ − |z|2
�
λmin

�
B
T
B

�
−

��BT
B

�� θ
�
which is negative

definite for θ <
λmin(BTB)
�BTB� . �

Consider now instead the system

ż = −B
T
BWz, (3)

where W = diag(w1, . . . , wM) with wj ≥ 0. Note that (3) is a
special case of (1) ifWz − z ≡ e. The particular structure of (3) will
be useful in the study of distance-based formation control.

Lemma 3. Consider system (3) and assume that G is a tree. Then z

converges to the set {z ∈ RM : wizi = 0, ∀i = 1, . . . ,M}.
Proof. Since B

T
B is positive definite and W is diagonal positive

semidefinite, the linear system (3) is stable. At steady statewehave
B
T
BWz = 0, and since B

T
B is positive definite due to G being a

tree, we get
�
B
T
B

�−1
B
T
BWz = Wz = 0 at steady state. The result

follows fromW being diagonal. �
We note that BT

B is defined as the ‘‘Edge Laplacian’’ in Zelazo,
Rahmani, and Mesbahi (2007) and its properties are used for
providing another perspective to the agreement problem.

2.3. Multi-agent control system

Consider N agents. Let qi ∈ R2 denote the position of agent i.
Let xi, yi denote the coordinates of agent i in the x and y directions,
respectively. Let q = [qT1, . . . , qTN ]T denote the vector of all
agents’ positions. We assume that agents’ motion obeys the single
integrator model:

q̇i = ui, i ∈ V = {1, . . . ,N}, (4)

where ui denotes the control input for each agent. We assume
that each agent has limited information on the states and goals of
the other group members. In particular, each agent is assigned a
neighbor set Ni ⊂ V , which is given by the agents with whom it
can communicate.

3. Quantized agreement

The first problem we consider is agreement with quantized
communication. We assume that agents aim to converge to a
common value in the state space under quantized relative position
information of their neighbors. It will be shown that thematrix B

T
B

plays an important role in the convergence of the system. Three
classes of communication graphs are considered.

3.1. Quantized control

Consider system (4) in the x-direction and let x = [x1, . . . , xN ]T.
Without loss of generality, we omit the notation regarding the
x-direction from the control input. We then have ẋi = ui.
We consider the agreement control laws in Fax and Murray
(2002) and Olfati-Saber and Murray (2004), which were given by
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ui = −�
j∈Ni

�
xi − xj

�
. The closed-loop nominal system (without

quantization) is then given by ẋi = −�
j∈Ni

�
xi − xj

�
, i ∈ V , so that

ẋ = −Lx. Then, ˙̄x = B
T
ẋ = −B

T
Lx = −B

T
Bx̄. Hence the nominal

system is also given by ˙̄x = −B
T
Bx̄.

In this section, each agent i is assumed to have quantized
measurements Q (xi−xj), Q (yi−yj) of all j ∈ Ni where Q (.) : R →
R is the quantization function. Since the values of the quantizer
are decomposed into the measurements Q (xi − xj), Q (yi − yj)
in the x- and y-coordinates respectively, we can treat only the
behavior of the system in the x-coordinates. The analysis that
follows holds mutatis mutandis in the y-coordinates. We hence
examine the stability properties of the closed-loop system in the
x-coordinates under quantization, namely of the system ẋi =
− �

j∈Ni
Q

�
xi − xj

�
, with i ∈ V . Two classes of quantized sensors

are considered: uniform and logarithmic quantizers. For a given
δu > 0, a uniform quantizer Qu : R → R satisfies |Qu (a) − a| ≤
δu, ∀a ∈ R. For a given δl > 0, a logarithmic quantizer Ql : R → R
satisfies |Ql (a) − a| ≤ δl |a| , ∀a ∈ R. We use the notation Q when
we need not specify if it is a uniform or a logarithmic quantizer.
For a vector v = [v1, . . . , vd]T ⊂ Rd of size d, we define Qu(v) �
[Qu(v1), . . . ,Qu(vd)]T and Ql(v) � [Ql(v1), . . . ,Ql(vd)]T. The
following bounds also hold: |Qu (v) − v| ≤ δu

√
d, |Ql (v) − v| ≤

δl |v|.

3.2. Static communication graph

We first assume that the communication graph is static, i.e., that
Ni do not vary over time. In the case of quantized information we
have ẋi = − �

j∈Ni
Q

�
xi − xj

�
. Since Q (−a) = −Q (a) for all

a ∈ R, we get

˙̄x = −B
T
BQ (x̄) , (5)

whereQ (x̄) is the stack vector of all pairsQ
�
xi − xj

�
with (i, j) ∈ E.

The system (5) can be written in the form (1): ˙̄x = −B
T
B (x̄ + e)

with e ≡ Q (x̄) − x̄.
Consider now the quadratic edge function

F(x̄) = 1
2
x̄
T
x̄. (6)

Note that x̄ = 0 guarantees that x has all its elements equal, in the
case of a connected graph. This is due to that x̄ = 0, Lx = 0, which
implies x1 = x2 = · · · = xN for a connected graph. The following
result is now a straightforward consequence of Lemma 2:

Theorem 4. Assume that G is static and a tree. Then system (5) has
the following convergence properties.

• When Q = Qu, x converges to a ball of radius

���BTB
���δu

√
M

λmin(BTB)
which is

centered at the desired agreement equilibrium x1 = x2 = · · · =
xN in finite time.

• When Q = Ql, x converges exponentially to the desired agreement

equilibrium x1 = x2 = · · · = xN , provided that δl satisfies

δl <
λmin

�
B
T
B

�
��BTB

�� . (7)

From the previous analysis, for the case of a logarithmic
quantizer we can compute

Ḟ(x̄) ≤ − |x̄|2
�
λmin

�
B
T
B

�
−

��BT
B

�� δl
�
. (8)

By applying the Comparison Lemma, we get the following
estimates of the convergence rate for the case of a logarithmic
quantizer and a tree structure:

F (x̄ (t)) ≤ e−2
�
λmin(BTB)−

���BTB
���δl

�
t

F (x̄ (0)) (9)

so that |x̄ (t) | ≤ e−
�
λmin(BTB)−

���BTB
���δl

�
t |x̄ (0) | for all times t ≥ 0.

Using (8) we also get the following relations for the trajectories of
the closed loop system in the casewhen the graph is not necessarily
a tree:

F (x̄ (t)) ≤ e2
���BTB

���δlt
F (x̄ (0)) (10)

so that |x̄ (t) | ≤ e
���BTB

���δlt |x̄ (0) |.

3.3. Time-varying communication graph

We next treat the case when the communication graph is time-
varying. It is not possible to use F(x̄) = 1

2 x̄
T
x̄ as a common

Lyapunov function for the switched system, since x̄ changes
discontinuously whenever edges are added or deleted when the
topology changes. We use instead W = max {x1, . . . , xN} −
min {x1, . . . , xN} as a common Lyapunov function. Denote xmax =
xm1 , xmin = xm2 where m1 � maxi{i : xi = maxk{xk}}, and
m2 � mini{i : xi = mink{xk}}. With this definition, the system
is guaranteed not to exhibit Zeno behavior (Lygeros, Johansson,
Simic, Zhang, & Sastry, 2003). This is due to that if there exists an
interval [τ , τ + �τ ] with �τ > 0, for which there exist two or
more agents that simultaneously attain the maximum (minimum)
value, then only the agent with the largest (smallest) index is
considered. The notation T = {t1, t2 . . . , } is used for the set of
switching instants, i.e., times when a new link is created or an
existing one is lost, or themaximumorminimumelement changes,
i.e., a new agent attains the maximum or minimum value, xmax or
xmin, respectively. Wewill use the extension of LaSalle’s Invariance
Principle for hybrid systems (Lygeros et al., 2003) to check the
stability of the overall system. The main result is stated as the
following theorem.

Theorem 5. Assume that the time-varying communication graph

G = G(t) remains a tree for all intervals [tp, tp+1] and the quantizer is

logarithmic. Further assume that the gain of the quantizer δl satisfies

δl < min
B∈T (B)

λmin
�
B
T
B

�
��BTB

�� , (11)

where the minimization is over all possible incidence matrices that

belong to the set T (B) of incidence matrices corresponding to all

possible trees with N vertices. Then, x converges to an agreement point

x1 = x2 = · · · = xN .

Proof. Weshow thatW is strictly decreasing in between switching
instances. For the logarithmic quantizer, we have sign(Ql(x)) =
sign(x). Since xmax ≥ xi ≥ xmin for all i ∈ V , the following
equations hold for all t ∈ [tp, tp+1], [tp, tp+1] ∈ T : ẋmax =
− �

j∈Nmax
Ql

�
xmax − xj

�
≤ 0, and ẋmin = −�

j∈Nmax
Ql

�
xmin − xj

�

≥ 0. Thus,W is non-increasing throughout the closed loop system
evolution. We now show that W is strictly decreasing within
each subinterval [τ , τ + �τ ] of [tp, tp+1] with �τ > 0 as
long as the graph is a tree and the system has not reached an
agreement point x̄ = 0. This is proved by contradiction. Assume
first that xmax is constant at each time instant of the time interval
in consideration, i.e. ẋmax = 0, for all t ∈ [τ , τ + �τ ]. This is
equivalent to

�
j∈Nmax

Ql

�
xmax − xj

�
= 0, and since xmax ≥ xi

for all i ∈ {1, . . . ,N}, the latter implies that xj = xmax for all
j ∈ Nmax. Pick any k ∈ Nmax, where k does not coincide with
the maximum vertex. Then xk ≥ xj, for all j ∈ Nk and hence
ẋk = −�

j∈Nk
Ql

�
xk − xj

�
≤ 0. If ẋk < 0, then necessarily

ẋmax < 0 since xk = xmax for all t ∈ [τ , τ + �τ ]. Hence we
also have ẋk = 0 and hence xj = xk = xmax for all j ∈ Nk.
We can now repeat the same procedure for a random l ∈ Nk.
Since the graph is a tree and has finite number of vertices, we
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conclude that there exist a finite number of iterations of the above
procedure that propagates to every vertex in the graph. Thus,
all vertices in the graph should have a zero time derivative. By
virtue of the above procedure all vertices thenwill have a common
value equal to the constant maximum value of xmax. This is a
contradiction to the fact that the function F defined in (6) is strictly
decreasing, by virtue of (8), (7) and (11), as long as the system has
not reached agreement. We thus conclude that there should be at
least one vertex p chosen in the above iterative procedure which
has a strictly negative time derivative at some t ∈ [τ , τ + �τ ].
Since the above procedure suggests that xp = xmax, and therefore
ẋp = ẋmax, for all t ∈ [τ , τ + �τ ], we conclude that xmax is
strictly decreasing in [τ , τ + �τ ]. The above analysis can be used
to show—albeit not necessary for our proof—that xmin is strictly
increasing in [τ , τ + �τ ]. We conclude that W strictly decreases
within each time interval [tp, tp+1], i.e., W

�
tp

�
< W

�
tp+1

�
, and

thus, W converges to zero as t → ∞. The latter corresponds
to a desired agreement point by definition. This completes the
proof. �

3.4. Loss of connectivity

The above result is useful when the communication graph
retains the tree structure at all switching instances. A different case
occurs if we allow for the tree assumption to be lost for some times.
In particular, we assume that in betweenmomentswhere the team
switches to a different tree, there are time intervals when the
communication graph is not a tree. Hence we consider a switching
sequence of the form T = {0 = t01, t1, t12, t2, t23, t3, . . .}, where
intervals of the form �tp = tp − tp−1,p > 0 correspond to a tree
while the reset intervals �tp,p+1 = tp,p+1 − tp > 0 correspond to a
switch between two trees. The connectivity and tree assumptions
may not hold in the reset intervals �tp,p+1. We assume that each
�tp where the topology is a tree has a minimum dwell time �tmin,
i.e., �tp > �tmin. The following result states that agreement can
still be achieved provided that the reset intervals are small enough.

Theorem 6. Assume that the time-varying communication graph

G = G(t) is a tree for all time intervals �tp = tp − tp−1,p and

the quantizer is logarithmic. Further assume that there is a path

connecting the maximum and the minimum vertex, for all reset time

intervals of the form �tp,p+1 = tp,p+1 − tp. Assume that there exists

an ε, where 0 < ε < minB∈T (B)
λmin(BTB)
�BTB� , such that the quantizer

gain satisfies δl < minB∈T (B)
λmin(BTB)
�BTB� − ε. Furthermore, assume that

the tree time intervals �tp satisfy �tmin > 2 ln(N(N−1)/2)
ε·maxB∈T (B)�BTB� . Then the

closed-loop system converges to an agreement point x1 = x2 = · · · =
xN , provided that the reset time intervals �tp,p+1 satisfy �tp,p+1 <

�t
r

max = minp

vp+1�tmin−2 ln(N(N−1)/2)���BT
p,p+1Bp,p+1

���δl
, where the minimization is

held over all incidence matrices Bp,p+1 corresponding to graphs with

N vertices and vp+1 = λmin
�
B
T
p+1Bp+1

�
−

��BT
p+1Bp+1

�� δl.

Proof. We consider Wc = W√
N(N−1) as a common Lyapunov

function for the overall switched system. Since for all intervals
there is a path m1, l1, l2, . . . , lf ,m2 connecting the maximum
and minimum vertices, we have W = xm1 − xm2 = xm1 −
xl1 + xl1 − xl2 + · · · + xlf − xm2 , and using the inequality
n

�
n

i=1 r
2
i

≥
��

n

i=1 ri
�2

, ∀ri ∈ R, we have W
2 ≤ N(N−1)

2 .��
xm1 − xl1

�2 +
�
xl1 − xl2

�2
. . .

�
xlf − xm2

�2� ≤ N(N − 1)F , and

hence Wc ≤
√
F where F = F(x̄) is the quadratic function (6)

corresponding to the edges of G(t) at each time instant and N(N −
1)/2 is the maximum number of edges at each time instant. Hence

the candidate common Lyapunov function is bounded from above
by F at each time instant, where F = F(x̄) is the quadratic edge
function corresponding to the vector x̄ of edges at the same time
instant. All pairs i, j ∈ {1, . . . ,N} satisfy |xmax − xmin| ≥

��xi − xj

��

and thus, M

2 (xmax − xmin)
2 ≥ 1

2

�
(i,j)∈E

�
xi − xj

�2 = F . Since the
maximum number of edges M is N(N − 1)/2 the last equation
impliesW ≥ 2√

N(N−1)

√
F , so thatWc ≥ 2

N(N−1)

√
F . We hence have

2
N(N − 1)

√
F ≤ Wc ≤

√
F (12)

for all possible quadratic edge functions F corresponding either to
a tree interval or a reset interval.

With a slight abuse of notation, denote by Fp the quadratic edge
function F corresponding to a random tree that represents the
communication topology in the time interval �tp and by Fp,p+1 the
quadratic edge function F corresponding to the reset time interval
�tp,p+1. For two consecutive intervals [tp, tp,p+1], [tp,p+1, tp+1],
using (9), (10) and (12) we have

Wc

�
tp+1

�
≤

�
Fp+1

�
tp+1

�

≤ e−
�
λmin

�
B
T
p+1Bp+1

�
−

���BT
p+1Bp+1

���δl

�
�tp+1

�
Fp+1

�
tp,p+1

�

≤ e−
�
λmin

�
B
T
p+1Bp+1

�
−

���BT
p+1Bp+1

���δl

�
�tp+1 N(N − 1)

2
Wc

�
tp,p+1

�

≤ e−
�
λmin

�
B
T
p+1Bp+1

�
−

���BT
p+1Bp+1

���δl

�
�tp+1

× N(N − 1)
2

�
Fp,p+1

�
tp,p+1

�

≤ e−
�
λmin

�
B
T
p+1Bp+1

�
−

���BT
p+1Bp+1

���δl

�
�tp+1 N(N − 1)

2

× e
���BT

p,p+1Bp,p+1

���δl�tp,p+1
�
Fp,p+1

�
tp

�

≤
�
N(N − 1)

2

�2

e−
�
λmin

�
B
T
p+1Bp+1

�
−

���BT
p+1Bp+1

���δl

�
�tp+1

× e
���BT

p,p+1Bp,p+1

���δl�tp,p+1
Wc

�
tp

�

where, in accordance with the defined notation, Bp+1 ∈ T (B)
is an incidence matrix belonging to the set T (B) of incident ma-
trices corresponding to trees with N vertices, while Bp,p+1 is an
arbitrary incidence matrix corresponding to a graph with N ver-
tices. It suffices to show that Wc strictly decreases in tp, tp+1.
This is equivalent to −

�
λmin

�
B
T
p+1Bp+1

�
−

��BT
p+1Bp+1

�� δl
�
�tp+1 +

��BT
p,p+1Bp,p+1

�� δl�tp,p+1 < −2 ln
�

N(N−1)
2

�
. Using �tp+1 > �tmin,

an upper bound on the reset interval time for which the above
inequality holds is given by �tp,p+1 <

vp+1�tmin−2 ln(N(N−1)/2)���BT
p,p+1Bp,p+1

���δl
,

where the parameter vp+1 = λmin
�
B
T
p+1Bp+1

�
−

��BT
p+1Bp+1

�� δl is

always positive, due to δl satisfying δl < minB∈T (B)
λmin(BTB)
�BTB� −

ε. Due to the fact that �tmin satisfies �tmin > 2 ln(N(N−1)/2)
ε·maxB∈T (B)�BTB� ,

there is a strictly positive upper bound on the reset inter-
vals�t

r

max forwhich−
�
λmin

�
B
T
p+1Bp+1

�
−

��BT
p+1Bp+1

�� δl
�
�tp+1+

��BT
p,p+1Bp,p+1

�� δl�tp,p+1 < −2 ln
�

N(N−1)
2

�
holds, i.e. we have

�tp,p+1 < �t
r

max for allp, and�t
r

max = minp

vp+1�tmin−2 ln(N(N−1)/2)���BT
p,p+1Bp,p+1

���δl
.

Hence for sufficiently small reset intervals, Wc is strictly decreas-
ing, i.e.,Wc(tp+1) < Wc(tp) for all p. The result follows by allowing
p go to infinity. �
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4. Distance-based formation control

The second multi-agent problem considered is distance-based
formation stabilization. A formation is an assignment of scalar
weights dij = dji > 0 to each edge (i, j) ∈ E of the com-
munication graph G. These weights represent the distance to
which agents i, j should converge. Define the set Φ � {q ∈
R2N

�� �qi − qj� = dij, ∀ (i, j) ∈ E } of desired distance-based for-
mations. The desired formation is called feasible ifΦ is non-empty.
The problem treated in this section is summarized as follows: de-
rive control laws, for which the information available for each
agent i is encoded in Ni that drive the agents to the desired for-
mation, i.e., limt→∞ q(t) = q

∗ ∈ Φ .

4.1. Control law and stability analysis

Let βij(q) =
��qi − qj

��2 for any i, j ∈ V . The class Γ of formation
potentials γ ∈ Γ between agents i, j, j ∈ Ni is defined to have the
following properties: (1) γ : R+ → R+ ∪ {0} is a function of the
distance between i and j, i.e., γ = γ (βij), (2) γ (βij) is continuously
differentiable, and (3) γ (d2

ij
) = 0 and γ (βij) > 0 for all βij �= d

2
ij
.

We also define ρij � ∂γ (βij)

∂βij

. Note that ρij = ρji, for all i, j ∈ V , i �= j.
The proposed control law for i ∈ V is

ui = −
�

j∈Ni

∂γ (βij(q))

∂qi
= −

�

j∈Ni

2ρij

�
qi − qj

�
. (13)

Let ⊗ denote the Kronecker product. Then (13) is written in
stack vector form as u = −2 (R ⊗ I2) q where u = [uT

1, . . . , u
T
N
]T

and the symmetric matrix R is given by Rij = −ρij, for j ∈ Ni,
Rij = 0, for j �∈ Ni, and Rii = �

j∈Ni
ρij, for all i ∈ V . Let

Vf (q) = �
i

�
j∈Ni

γ (βij(q)). Its gradient is ∇Vf = 4 (R ⊗ I2) q,
so that its time-derivative is given by

V̇f = −8 �(R ⊗ I2) q�2 ≤ 0. (14)

The following theorem now holds.

Theorem 7. Assume that (4) evolves under (13), and that G is

connected. Then ui(t) → 0 as t → ∞ for all i ∈ V , and the closed

loop system is stable.

Proof. The level sets of Vf are compact and invariant with respect
to the relative positions of adjacent agents. Specifically, the set
Ωc = {q : Vf (q) ≤ c} for 0 < c < ∞ is closed by continuity of Vf .
From Vf ≤ c we have γ (βij) ≤ c for all (i, j) ∈ E. This implies that
there is a ξ , where 0 < ξ < ∞, such that βij ≤ ξ , by definition of
Γ , and thus,

��qi − qj

�� ≤ √
ξ for all (i, j) ∈ E. Since the maximum

length of the path between any two vertices of a connected graph is
N−1, we have 0 ≤

��qi − qj

�� ≤ (N − 1)
√

ξ for all i, j ∈ V . Eq. (14)
and LaSalle’s principle now guarantee that the system converges
to the largest invariant subset of S = {q : (R(q) ⊗ I2) q = 0}. Since
u = q̇ = −2 (R ⊗ I2) q, we have u → 0 as t → ∞ and the result
follows. Compactness ofΩc and (14) imply also that the closed loop
system is stable. �

We next provide a formation potential that guarantees
formation stabilization for a class of communication graphs. In
particular, we now consider:

γ
�
βij (q)

�
=

�
βij − d

2
ij

�2

βij

. (15)

Note that this potential satisfies all properties of the set Γ .

Moreover, γ (βij) ≤ c ⇒ 0 ≤
�
βij−d

2
ij

�2

βij

≤ c ⇒ 0 ≤
�
βij − d

2
ij

�2 ≤

cβij ⇒ βij ∈ [ξ1, ξ2] where ξ1,2 = 1
2

�
2d2

ij
+ c ±

�
4cd2

ij
+ c2

�
. For

this case, ρij = ∂γ (βij)

∂βij

= β2
ij
−d

4
ij

β2
ij

. For this potential, the following

Lemma holds.

Lemma 8. Consider system (4) driven by (13) with γ as in (15), and
starting from a set of initial conditions I (q) = {q|�qi − qj� >
0, ∀(i, j) ∈ E}. Then I (q) is invariant for the trajectories of the closed
loop system.

Proof. For every initial condition q(0) ∈ I(q), the time derivative
of Vf remains non-positive for all t ≥ 0, by virtue of (14). Hence
Vf (q(t)) ≤ Vf (q(0)) < ∞ for all t ≥ 0. When

��qi − qj

�� → 0 for at
least one pair of agents i, j, with j ∈ Ni, we haveVf (q) → ∞, which
is impossible. We conclude that q(t) ∈ I (q), for all t ≥ 0. �

Thus, βij(t) > 0, i.e., qi(t) �= qj(t), for all t ≥ 0 and all (i, j) ∈ E.
This will be used in the stability analysis of the closed-loop system.
Denote by q̄ the M-dimensional stack vector of relative position
differences of pairs of agents that form an edge in G, where M is
the number of edges, i.e, M = |E| and q̄ =

�
q̄
T
1, . . . , q̄

T
M

�T, where
q̄e = qi − qj for e = (i, j) ∈ E. Equation q̇ = −2 (R ⊗ I2) q implies

˙̄q = −
�
B
T
BWf ⊗ I2

�
q̄, (16)

where Wf = 2 · diag {ρe, e ∈ E} ∈ RM×M . Note that (16) is in the
form (3) in two dimensions. We then have the following theorem.

Theorem 9. Assume that (4) evolves under the control law (13)with

γ as in (15), and that the communication graph is a tree. Further

assume that the desired formation is feasible, i.e., Φ �= ∅. Then
the agents are driven to the desired formation, i.e., limt→∞ q(t) =
q
∗ ∈ Φ .

Proof. Since at steady state, q̇ = u = −2 (R ⊗ I2) q = 0, we
also have ˙̄qe = 0 for all e ∈ E and thus ˙̄q = 0. Eq. (16) yields�
B
T
BWf ⊗ I2

�
q̄ = 0. By virtue of Lemma 3 the system converges to

a configuration where ρeq̄e = 0 for all e ∈ E. Since ρe is scalar this
implies ρe = 0 or q̄e = 0. However, for all e ∈ E we have q̄e(t) �= 0
for all t ≥ 0, due to Lemma 8. We conclude that ρe = 0 for all
e ∈ E at steady state and hence βij = d

2
ij
, i.e, �qi − qj� = dij for all

(i, j) ∈ E, since ρij = β2
ij
−d

4
ij

β2
ij

. �

4.2. Tree communication graph is necessary

We next characterize the communication graphs for which a
control law of the form (13) leads to the desired formation for any
choice of potential γ ∈ Γ . In particular, for any choice of γ ∈ Γ ,
the closed-system dynamics are given by q̇ = u = −2 (R ⊗ I2) q,
and thus by ˙̄q = −

�
B
T
BWf ⊗ I2

�
q̄ in the edge space. The analysis

leading to Theorem 9 guarantees that
�
B
T
BWf ⊗ I2

�
q̄ = 0 at a

steady state. By virtue of Lemma 1, the matrix B
T
B is non-singular

only when G contains no cycles. The following result holds.

Theorem 10. Assume that the system (4) evolves under the control

law (13) and that Φ is non-empty. Further assume that G is connected.

Then there exists a formation potential γ ∈ Γ such that (i) ˙̄q = 0 only

for q ∈ Φ , and (ii) limt→∞ q(t) = q
∗ ∈ Φ hold, if and only if the

graph G is a tree.

Proof. The ‘‘if’’ part is shown in Theorem 9, with the choice of
formation potential field (15). For the ‘‘only if’’ part, we know that
the closed-loop system reaches a steady state at which u = 0, by
virtue of Theorem 7. This implies that ˙̄q =

�
B
T
BWf ⊗ I2

�
q̄ = 0.We

will show that condition (i) cannot hold if G is not a tree. If G is not
a tree, then B

T
B is singular and then the null space of B, and thus
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B
T
B, is nonempty. In fact, in this case, using properties of Kronecker

products (Horn & Johnson, 1996) we have
�
B
T
BWf ⊗ I2

�
q̄ = 0,

so that
�
B
T
B ⊗ I2

� �
Wf ⊗ I2

�
q̄ = 0. Multiplying by

�
q̄

�
Wf ⊗ I2

��T

on the left-hand side, we get
�
q̄

�
Wf ⊗ I2

��T �
B
T
B ⊗ I2

� �
Wf ⊗ I2

�

q̄ = 0, which implies q̄
T
�
BWf ⊗ I2

�T �
BWf ⊗ I2

�
q̄ = 0, so that�

BWf ⊗ I2
�
q̄ = 0. Denoting by x̄, ȳ the stack vectors of the

elements of q̄ in the x- and y-coordinates, the last equation yields
BWf x̄ = BWf ȳ = 0, i.e., Wf x̄,Wf ȳ belong to the null space of
B. Since G contains cycles, the null space of B is non-empty. Thus
we cannot reach the conclusion of the proof of Theorem 9 that
(Wf ⊗ I2)q̄ = 0. In fact, equations BWf x̄ = BWf ȳ = 0 have an
infinite number of solutions, since B

T
B is now singular. Hence in

this case,
�
B
T
BWf ⊗ I2

�
q̄ = 0 does not hold only when q ∈ Φ , as

was the case in Theorem 9. Thus (i) cannot hold if G is not a tree.
We conclude that (i) and (ii) hold only if G is a tree. �

The last result states that if G contains cycles, then we cannot
design a control law of the form (13) that stabilizes the agents to
the desired relative distances.

5. Conclusions

We used the spectral properties of the incidence matrix to
provide solutions to two multi-agent network control problems.
In particular, we first considered the problem of state agreement
with quantized communication in continuous systems, and then
looked into the problem of distance-based formation control. In
both cases, stabilizing control laws were provided for the case of
tree graphs. This topology is directly related to the null space of
the incidence matrix, thus making its role evident in these cases of
networked control problems.
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