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Abstract

A consensus problem consists of finding a distributed control strategy that brings the state or output of a group of agents to a common
value, a consensus point. In this paper, we propose a negotiation algorithm that computes an optimal consensus point for agents modeled as
linear control systems subject to convex input constraints and linear state constraints. By primal decomposition and incremental subgradient
methods, it is shown that the algorithm can be implemented such that each agent exchanges only a small amount of information per iteration
with its neighbors.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Consensus; Optimal trajectory planning; Decentralized optimization; Model predictive control; Convex optimization

1. Introduction

The problem of cooperatively controlling systems composed
of a large number of autonomous agents has attracted substan-
tial attention in the control and robotics communities. An inter-
esting instantiation is the consensus problem, see for example
the recent survey paper Olfati-Saber, Fax, and Murray (2007)
and the references therein. It consists of designing distributed
control strategies such that the state or output of a group of
agents asymptotically converges to a common value, a consen-
sus point. The agents are typically modeled by identical first-
order systems with no input constraints.

The main contribution of this paper is a decentralized ne-
gotiation algorithm that computes the optimal consensus point
for a set of agents modeled as linear control systems. In this

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Mayuresh
Kothare under the direction of Editor André Tits. Part of this work was
presented at the 17th International Symposium on Mathematical Theory of
Networks and Systems in Kyoto, Japan, July 2006.
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paper, the consensus point is a vector that specifies, for exam-
ple, the position and velocity the agents shall converge to. Our
approach allows us to incorporate constraints on the state and
the input, which is not easily done for the traditional consensus
algorithm, see the discussion in Marden, Arslan, and Shamma
(2007). By primal decomposition and incremental subgradient
methods we design a decentralized negotiation algorithm, in
which each agent performs individual planning of its trajectory
and exchanges only a small amount of information per iteration
with its neighbors. We show that the cost of reaching the con-
sensus point can be significantly reduced, by letting the agents
negotiate to find an optimal or near optimal consensus point,
before applying a control signal.

There has been a lot of research activity in this area, and a
good starting point for related work is the recent survey paper
Olfati-Saber et al. (2007). In particular, if the consensus point
is a position and fixed a priori1 (contrary to our approach,
where the optimal consensus point is a decision variable) we
get a so called rendezvous problem. For this type of problem,
much work have been focused on establishing convergence to

1 In the consensus literature, the consensus point is typically fixed in the
sense that it is computed from the initial conditions using a simple rule, for
example, the consensus point could be the average of the starting positions
of the agents.
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the fixed consensus point under different communication and
visibility conditions, see for example Cortéz, Martínez, and
Bullo (2006) and the references therein. Furthermore, optimal
control formulations have been used in papers that focus on
the convergence of distributed model predictive control (MPC)
based strategies to an a priori fixed equilibrium point. Dunbar
and Murray (2006) propose a decentralized scheme where a
given desired equilibrium point is asymptotically reached. The
scheme requires coupled subsystems to update and exchange
the most recent optimal control trajectories prior to each update
step. Stability is guaranteed if each subsystem does not deviate
too far from the previous open-loop trajectory. In Keviczky,
Borelli, and Balas (2006), the authors propose a strategy where
each subsystem solves a finite time optimal control problem.
The solution of the problem requires each subsystem to know
the neighbors’ model, constraints, and state. The strategy also
requires the prior knowledge of an overall system equilibrium.
Finally, a related distributed optimization problem, focused on
formation flight, is considered in Raffard, Tomlin, and Boyd
(2004), where the decentralized algorithm is based on dual
relaxation. Their approach differs from ours in that they do
not consider the consensus problem and that they use dual
relaxation instead of primal decomposition.

The outline of the paper is as follows. In Section 2, we for-
mulate the optimal consensus problem. The novel distributed
negotiation algorithm is presented in Section 4. Section 5 dis-
cusses some control strategies and shows a numerical example.
Finally, the paper is concluded in Section 5.

2. Problem formulation

Consider N > 1 agents whose dynamics are described by

xi(t + 1) = Aixi(t) + Biui(t),

zi(t) = Cixi(t), i = 1, . . . , N , (1)

where Ai ∈ Rni×ni , Bi ∈ Rni×pi , and Ci ∈ Rs×ni are observ-
able and controllable. The vector xi(0)=x0

i ∈ Rni is the initial
condition and zi(t) is the performance output. We assume that
the inputs are constrained according to

(uT
i (0), uT

i (1), . . . , uT
i (T ))T ∈ Ui , i = 1, . . . , N , (2)

where T is a (fixed) time horizon and Ui is a convex set. By
using standard techniques from MPC, the constraint can encode
magnitude and rate constraints on ui(t), as well as restrictions
on linear combinations of the agent states (Maciejowski, 2002,
Section 3.2).

Definition 1. Let � lie in a compact and convex set � ⊂ Rs .
The agents described by (1) reach consensus2 at time T if

zi(T + k) = � for all k�0 and i = 1, . . . , N ,

2 By introducing a fixed offset, �̄i , one for each agent, it is possible
to define a consensus formation relative to a global consensus point �. The
condition of consensus formation is that zi (T + k)= �+ �̄i , for all k�0 and
i = 1, . . . , N.

with

ui(T + k) = ui(T ) for all k�0 and i = 1, . . . , N .

The objective is to find a consensus point � ∈ � and a
sequence of inputs (uT

i (0), uT
i (1), . . . , uT

i (T ))T ∈ Ui , with
i = 1, . . . , N , such that consensus is reached at time T. The
following cost function is associated to the ith system:

Vi(zi(t), ui(t − 1), �)�(zi(t) − �)TQi(zi(t) − �)

+ ui(t − 1)TRiui(t − 1), (3)

where Qi ∈ Rs×s and Ri ∈ Rpi×pi are positive definite sym-
metric matrices that encode the cost of deviating from the con-
sensus point and the cost of control energy for agent i. Let us
introduce the following vectors:

xi�(xT
i (1), xT

i (2), . . . , xT
i (T + 1))T,

ui�(uT
i (0), uT

i (1), . . . , uT
i (T ))T.

Since

xi =

⎛
⎜⎜⎝

Ai

A2
i
...

AT +1
i

⎞
⎟⎟⎠

︸ ︷︷ ︸
Ei

x0
i +

⎛
⎜⎜⎝

Bi 0 . . . 0
AiBi Bi . . . 0

...
...

. . .
...

AT
i Bi AT −1

i Bi . . . Bi

⎞
⎟⎟⎠

︸ ︷︷ ︸
Fi

ui ,

we have zi(T ) = Cixi(T ) = Hi (Eix
0
i + Fiui ) = �, where

Hi�(0 . . . Ci 0 ). We also introduce Ui�AT +1
i −AT

i and
Wi�(AT

i Bi AT −1
i Bi . . . Bi )−(AT −1

i Bi AT −2
i Bi . . . 0 ).

We now formulate the optimization problem,

minimize
u1,...,uN ,�

N∑
i=1

Vi (ui , �), (4a)

s.t. Hi (Eix
0
i + Fiui ) = �, i = 1, . . . , N , (4b)

Uix
0
i + Wiui = 0, i = 1, . . . , N , (4c)

ui ∈ Ui , i = 1, . . . , N , (4d)

� ∈ �, (4e)

with the cost function

Vi (ui , �)�
T +1∑
t=1

Vi(zi(t), ui(t − 1), �)

= (Ci (Eix
0
i + Fiui ) − 1T +1 ⊗ �)TQi (Ci (Eix

0
i

+ Fiui ) − 1T +1 ⊗ �) + uT
i Riui ,

where3 Qi = IT +1 ⊗Qi , Ri = IT +1 ⊗Ri , and Ci = IT +1 ⊗Ci .
Notice that the constraint (4b) guarantees consensus at time T
and (4c) guarantees that the consensus point is an equilibrium,
i.e., xi(T ) = Aixi(T ) + Biui(T ). The constraint (4b) can po-
tentially lead to infeasibility problems, but such problems can
be mitigated by replacing the constraint with a penalty term in
the objective, penalizing deviations from the consensus point at

3 With 1T +1 we denote the column vector with T + 1 ones, with IT +1
the T + 1 ×T + 1 identity matrix, and with ⊗ the Kronecker matrix product.
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time T. Note, however, that due to assumption A2 infeasibility
problems do not arise in our setup.

We make the following standing assumptions, which make
the optimization problem (4a) convex and feasible, and guar-
antee that the consensus point is an equilibrium.

A1: The matrices Qi ∈ Rs×s and Ri ∈ Rpi×pi , i = 1, . . . , N ,
are positive definite and symmetric. The set � is convex
and compact. The sets Ui , i = 1, . . . , N , are convex.

A2: For all � ∈ �, xi ∈ {y ∈ Rni |Ciy = �}, and i = 1, . . . , N ,
there exists ui in the relative interior of Ui such that
zi(T ) = � and xi = Aixi + Biui(T ).

The optimization problem (4a) is interesting for a multi-agent
setting if the computations can be distributed among the agents
and the amount of information that they need to exchange is
limited. In the following we develop a negotiation algorithm
to find the optimal consensus point, in which agents exchange
only their current estimates of �.

3. Distributed negotiation

To distribute the computation of the optimal consensus point,
we use primal decomposition in combination with an incremen-
tal subgradient method (Bertsekas, Nedić, & Ozdaglar, 2003).
Let us start with defining qi(�) as follows:

qi(�) = min
ui

Vi (ui )

s.t. Hi (Eix
0
i + Fiui ) = �,

Uix
0
i + Wiui = 0,

ui ∈ Ui , (5)

where we have eliminated the dependence on � in Vi (ui , �)

using the constraint Hi (Eix
0
i + Fiui ) = �. The optimization

problem (4a) can be written as

minimize
�

N∑
i=1

qi(�)

s.t. � ∈ �. (6)

We then have the following result.

Proposition 2. The cost function qi(·) defined in (5) is a convex
function. A subgradient �i for qi(·) at � is given by the Lagrange
multipliers corresponding to the constraint Hi (Eix

0
i +Fiui )=�.

Proof. By Lagrangian relaxation we can define

Li(ui , �, �i ) = Vi (ui ) − �T
i (Hi (Eix

0
i + Fiui ) − �),

where �i are Lagrange multipliers. We also introduce the dual
function

di(�i , �) = min
ui∈Ũi

{Vi (ui ) − �T
i (Hi (Eix

0
i + Fiui ) − �)},

where Ũi={ui ∈ Ui | Uix
0
i +Wiui=0}. Strong duality follows

from Theorem 6.4.4 (p. 373) in Bertsekas et al. (2003), since

(1) the constraint Hi (Eix
0
i + Fiui ) = � is linear in ui ,

(2) assumption A2 guarantees that there exists a solution in
the relative interior of Ui to this equation,

(3) the function Vi (·) and the set Ui are convex.

Hence, qi(�)=max�i
di(�i , �). Consider two feasible points, �†

and �‡, and let �†
i be the Lagrange multipliers corresponding

to the relaxed constraint for �†, then

qi(�
‡) = max

�i

di(�i , �
‡)�di(�

†
i , �

†) + (�†
i )

T(�‡ − �†)

= qi(�
†) + (�†

i )
T(�‡ − �†).

Hence, by the definition of a subgradient, �†
i is a subgradient

of qi(·) at �†. Now qi(�
‡) can be expressed as

qi(�
‡) = max

�i

g{di(�i , �) + �T
i (�‡ − �)}

= max
�i

{g(�i ) + �T
i �‡},

where g(�i ) = di(�i , �) − �T
i � and g(�i ) + �T

i �‡ is affine in �‡.
Since qi(�

‡) is the pointwise maximum of a family of convex
functions, qi(�

‡) is convex. �

The optimal consensus point can be computed in a distributed
way using the incremental subgradient methods from optimiza-
tion theory (Bertsekas et al., 2003). In this scheme, an estimate
of the optimal consensus point is passed around between agents.
Upon receiving an estimate from its neighbor, an agent solves
the optimization problem (5) to evaluate its cost of reaching
the suggested consensus point and to compute an associated
subgradient (using Proposition 2). The agent then updates the
consensus estimate via

�k+1 := P�{�k − �h�i,k} (7)

and passes the estimate to the next agent. The algorithm pro-
ceeds iteratively. Here P�{·} denotes the Euclidean projection
on the set �, �h is the stepsize, and �i,k is the subgradient
of qi(·) at �k . Pseudocode of the algorithm is given in Algo-
rithm 1. The difference between the incremental subgradient
method and the vanilla subgradient method is that each agent
only computes a subgradient with respect to its own part of the
objective function and not the global objective function. The
convergence of the incremental subgradient algorithm is guar-
anteed if the agents can be organized into a cycle graph, which
we formalize in the following assumption.

A3: The agents can be organized into a cycle graph. Neighbor-
ing nodes in this graph can communicate with each other.

The following proposition guarantees convergence.
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Proposition 3. Under the assumptions A1–A3, Algorithm 1
converges to an optimizer of problem (4a).

Proof. The proof follows from Theorem 8.2.6 (p. 480) and
Theorem 8.2.13 (p. 496) in Bertsekas et al. (2003), since the
set � is convex and compact (so the norms of all subgradients
have an upper bound), and the stepsize �h is square summable
over h, but not summable over h. �

Algorithm 1 can easily be modified to a randomized version
(Bertsekas et al., 2003), which corresponds to that the estimate
is sent to a random agent at each update. Regardless if the
deterministic or the randomized version of the algorithm is
used, the convergence behavior is asymptotic, which means that
some stopping criteria need to be used. The simplest and most
practical criteria is to negotiate for a fixed number of iterations.
More advanced stopping criteria are of course possible, but
these are outside the scope of this paper.

4. Control strategies and numerical examples

In this section we discuss control strategies and possible
extensions. The simplest way to devise a control strategy from
the problem formulation is to first execute a negotiation phase
in which Algorithm 1 is run until a sufficiently accurate optimal
consensus point is agreed upon and then, in a motion phase,
apply the corresponding open-loop control to reach it. If there
are no disturbances the system will reach the consensus point
at time T. The main advantage of the proposed strategy is that
the optimal consensus point is computed in a distributed way
and only a small amount of information, the current consensus
point estimate, needs to be exchanged at each step. To make
the strategy robust to noise, the motion phase can be performed
using closed-loop feedback control with the optimal consensus
point as a set point. The controller could be devised using, for
example, MPC techniques.
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Fig. 1. The consensus point estimates for each agent. The estimates are
converging to ��, an optimizer of problem (4).
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Fig. 2. The trajectories of three agents with double integrator dynamics. The
solid lines correspond to the optimal case, ��, and the dashed lines correspond
to the mean case, �̄. The circles are the starting points, the squares are the
ending points, and the arrows show the initial velocities.
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Fig. 3. The control signals for agent 2, where ux(t) and uy(t) correspond
to the acceleration in the x and y directions, respectively. The solid lines
correspond to the optimal case and the dashed lines correspond to the mean
case.

Algorithm 1. Cyclic incremental algorithm.

1: Initialize �0 and �0. Set k := 0 and h := 1.
2: loop
3: �h := �0/h

4: for i = 1 to N do
5: Compute a subgradient, �i,k , for qi(�k)

6: �k+1 := P�{�k − �h�i,k}
7: k := k + 1
8: end for
9: h := h + 1
10: end loop
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We explore the performance of the distributed negotiation.
The setup is as follows: three agents with double integrator dy-
namics and input constraints (|ui |�1) should reach the same
coordinates at time T = 40. The convergence rate of the con-
sensus point negotiation is shown in Fig. 1. The iterations can
clearly be seen to converge, and the convergence rate is high
in the beginning but slows down after a while. This behavior
is typical for algorithms with diminishing stepsizes. For com-
parison, we solve problem (4a) with � fixed to the mean of
the initial positions of the three agents, �̄. The optimal cost
is

∑N
i=1qi(�

�) = 6446 and the cost for meeting at �̄ is 6982.
The corresponding optimal trajectories and control signals for
agent 2 are shown in Figs. 2 and 3, respectively.

5. Discussion

Primal decomposition and incremental subgradient methods
provide an interesting framework to pose distributed consensus
problems. It allows us to consider general linear models for the
agents and easily handle convex input constraints and linear
state constraints. The convergence is mathematically guaran-
teed in the simplest case when negotiation and motion phases
are separated. Future work includes the extension of the results
to strategies with interleaved negotiation and motion phases
and realistic models of the communication network.
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