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a b s t r a c t

We study the deployment of a first-order multi-agent system over a desired smooth curve in 2D
or 3D space. We assume that the agents have access to the local information of the desired curve and
their relative positions with respect to their closest neighbors, whereas in addition a leader is able to
measure his relative position with respect to the desired curve. For the case of an open C2 curve, we
consider two boundary leaders that use boundary instantaneous static output-feedback controllers. For
the case of a closed C2 curve we assume that the leader transmits his measurement to other agents
through a communication network. The resulting closed-loop system is modeled as a heat equation
with a delayed (due to the communication) boundary state, where the state is the relative position of
the agents with respect to the desired curve. By choosing appropriate controller gains (the diffusion
coefficient and the gain multiplying the leader state), we can achieve any desired decay rate provided
the delay is small enough. The advantage of our approach is in the simplicity of the control law and
the conditions. Numerical example illustrates the efficiency of the method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the existing work on multi-agent systems (MAS) con-
sider interconnected agents modeled using ordinary differential
equations (ODEs) or difference equations, and design the control
for each agent depending either on global or local information.
Besides these studies, there has been some work using partial
differential equations (PDEs) to describe the spatial dynamics of
multi-agent systems, e.g., Freudenthaler and Meurer (2016), Frid-
man (2014a), Frihauf and Krstic (2011), Qi, Vazquez and Krstic
(2015) and Servais, d’Andréa Novel, and Mounier (2014). This
approach is especially powerful when the number of the agents
is large. One of the advantages of using PDE models for MAS is to
reduce a high-dimensional ODE system to a single PDE. Further-
more, for a desired PDE model, the corresponding performance
and the control protocol for the individual agents can be designed
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by proper PDE discretization. In principle, this procedure is in-
dependent with respect to the number of agents, provided this
number is large enough.

In this paper, we consider a formation control problem which
is referred to as formation transition or deployment. This can
be seen as a combination of a displacement-based and position-
based method. Each agent measures the relative positions (dis-
placements) of its neighboring agents with respect to a global
coordinate system. The desired formation is specified by the
desired relative positions between pair of agents. Then the agents,
without any knowledge of their positions, achieve the desired
formation by actively controlling the relative positions of their
neighboring agents. As pointed out in Oh, Park, and Ahn (2015),
in order to move the agents to prescribed absolute positions,
there should be a small number of agents able to measure their
absolute positions. For existing ODE methods we refer to Gar-
cia de Marina, Jayawardhana, and Cao (2017) and Tanner, Jad-
babaie, and Pappas (2007) and the references within. Here we
review some related work on deployment using PDE models.
In Frihauf and Krstic (2011) and Qi, Vazquez et al. (2015), the
agents’ dynamics is modeled by reaction–advection–diffusion
PDEs. By using the backstepping approach to boundary control,
the agents are deployed onto families of planar curves and 2D
manifolds, respectively. In Qi, Pan and Qi (2015), the authors
consider the formation tracking problem using complex-valued
PDE with an input-to-state stability (ISS) type of convergence.
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In Meurer and Krstic (2011), finite-time deployment of MAS into
a planar formation is studied, via predefined spatial–temporal
paths, using a leader–follower architecture, i.e., boundary control.
For details of this method we refer to Meurer (2012). The same
problem of deployment into planar curves using boundary control
is considered in Freudenthaler and Meurer (2016) and Servais
et al. (2014) by using non-analytic solutions and a modified
viscous Burger’s equation, respectively. In Pilloni, Pisano, Orlov,
and Usai (2016), the authors proposed a boundary control law for
a MAS, which is modeled as the heat equation, to achieve state
consensus.

The main contribution of the paper is that we propose a
framework for the deployment of mobile agents onto arbitrary
open or closed C2 curves under the assumption that only leader
measures his absolute position and by using simple static output-
feedback control. In this framework we assume that a small
number of agents, which will be referred as leaders, are able
to measure their absolute positions. More precisely, the leaders
calculate their relative position with respect to the desired curve.
We consider two scenarios: deployment on open or closed C2

curves. In the first scenario leaders use simple boundary con-
trollers proportional to their relative positions with respect to
the desired curve. Note that in this scenario it is difficult to
guarantee the convergence in the presence of small time-varying
delays in the relative leaders’ positions (that appear e.g. due to
network-based measurements). In the second scenario, leaders
send the value of their relative positions to all the agents by
using a communication network which results in time-varying
delay due to sampling and communication (Fridman, 2014a). The
other agents, which are referred as followers, have access only to
the local information of the desired curve and relative positions
with respect to their neighbors. Since in the second scenario the
desired formation is a closed curve, the MAS is modeled as a
diffusion equation with periodic boundary condition. The method
used in this paper is based on Fridman and Blighovsky (2012)
and Selivanov and Fridman (2018) which deal with Dirichlet and
mixed boundary conditions. We derive linear matrix inequality
(LMI) conditions for convergence with a desired convergence rate.
Compared to the ODE MAS with communication delay, e.g., Li,
Chen, and Liu (2013), the LMI conditions derived in this paper are
simpler with lower dimension. This paper is an extended version
of the conference paper (Wei, Fridman, Selivanov, & Johansson,
2019) where the results were presented for the second scenario
only and part of the proof was omitted.

The paper is organized as follows. In Section 2, some useful
inequalities are recalled. The MAS deployment problem using
sampled control is formulated in Section 3. In Section 4, we
consider a simple boundary control protocol for deployment into
arbitrary smooth open curves. The main results, i.e., deployment
on the closed C2 curve, are included in Section 5, where we
derive LMI conditions for the desired decay rate with commu-
nication delay. Simulations are presented in Section 6. The paper
is concluded in Section 7.

Notations. With R−,R+,R≥0 and R⩽0 we denote the sets of
negative, positive, non-negative, and non-positive real numbers,
respectively. ∥ · ∥p denotes the ℓp-norm and the ℓ2-norm is
denoted as ∥ · ∥ without a subscript. L2(a, b) is the Hilbert
space of square integrable functions φ(ξ ), ξ ∈ [a, b] with the

corresponding norm given as ∥φ∥L2 =

√∫ b
a z2dξ . H1(a, b) is

the Sobolev space of absolutely continuous scalar functions φ :

[a, b] → R with dφ
dξ ∈ L2(a, b). H2(a, b) is the Sobolev space of

scalar functions φ : [a, b] → R with absolutely continuous dφ
dξ

and with d2φ

dξ2
∈ L2(a, b).

2. Preliminaries: some inequalities

Recall the following Wirtinger-type inequality (Hardy, Little-
wood, & Pólya, 1952): let φ ∈ H1(a, b) be a scalar function with
φ(a) = 0 or φ(b) = 0. Then,∫ b

a
φ2(ξ )dξ ≤

4(b − a)2

π2

∫ b

a

(dφ
dξ

)2dξ . (1)

Lemma 1 (Halanay’s Inequality, Fridman, 2014a; Halanay, 1966).
Let 0 < δ1 < 2δ0 and let V : [t0 − τM , ∞) → [0, ∞) be an
absolutely continuous function that satisfies

V̇ (t) ≤ −2δ0V (t) + δ1 sup
−τM≤θ≤0

V (t + θ ), t ≥ t0. (2)

Then

V (t) ≤ exp(−2δ(t − t0)) sup
−τM≤θ≤0

V (t0 + θ ), t ≥ t0,

where δ > 0 is the unique positive solution of

δ = δ0 −
δ1 exp(2δτM )

2
. (3)

The following lemma, which is an extension of Sobolev’s in-
equality, will be useful for this paper.

Lemma 2 (Kang & Fridman, 2018). Let φ ∈ H1(0, 1) be a scalar
function. Then

max
x∈[0,1]

φ2(x) ≤ 2
∫ 1

0
φ2(ξ )dξ +

∫ 1

0
φ2

ξ (ξ )dξ .

3. Problem formulation

We consider a group of N agents that move in the space Rj for
j ∈ {2, 3}. Denote I = {1, . . . ,N}. The dynamics of each agent is
given as

ẋmi = um
i , m ∈ {1, . . . , j}, j = 2, 3. (4)

where i ∈ I, xmi ∈ R and um
i are components of the position and

control for ith agent, respectively. The aim is to deploy the agents
on a given C2 curve γ : [0, a] → Rj, where 0 < a ≤ 2π .

Let us denote the line graph with N vertices as Gℓ = {V, E},
where V = {v1, . . . , vN} is the vertex set and E = {(vi, vi+1), i =

1, . . . ,N − 1} is the edge set. As a typical formation control pro-
cedure, one assigns N points on the curve, denoted as γ (h), . . . ,
γ (Nh) where h = a/N . For simplicity we omit the superscriptm in
multi-agent description. Then the following displacement-based
protocol (Oh et al., 2015)

ẋ1(t) =ϕ
x2(t) − x1(t)

h2 − ϕ
γ (2h) − γ (h)

h2

ẋi(t) =ϕ
xi−1(t) + xi+1(t) − 2xi(t)

h2

− ϕ
γ ((i − 1)h) + γ ((i + 1)h) − 2γ (ih)

h2

i = 2, . . . ,N − 1,

ẋN (t) =ϕ
xN−1(t) − xN (t)

h2 − ϕ
γ ((N − 1)h) − γ (Nh)

h2

(5)

where xi = [x1i , . . . , x
j
i]

⊤ and ϕ > 0, guarantees that all agents
converge to the formation

E := {x ∈ RNj
| xi − xj = γ (ih) − γ (jh), i, j ∈ I}, (6)

which is the desired curve up to constant translations. The pa-
rameter ϕ is a controller gain. Indeed, the dynamics of the error
e := x − γ obeys the following consensus protocol

ė = −(L ⊗ Ij)e (7)
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where L is the weighted Laplacian of the graph Gc with edge
weights ϕ/h2. As suggested in Ferrari-Trecate, Buffa, and Gati
(2006), system (7) can be considered as the discretization in the
spatial variable of the heat equation

et (α, t) = ϕeαα(α, t), α ∈ (0, a). (8)

Thus the model (5), when N is large, is an approximation of

xt (α, t) = ϕ(xαα(α, t) − γαα(α)). (9)

It can be seen that system (9) cannot drive the agents onto
the desired curve γ , but up to a constant translation. In fact, x∗

=

γ + c is an equilibrium of system (9) for any constant c . This is
consistent with the displacement-based formation control in Oh
et al. (2015). In order to solve this problem, we shall consider two
different scenarios to guarantee the convergence to the desired
curve.

In both of the scenarios, we assign leader agents who can
measure the absolute positions of themselves and of their targets.

In the first scenario, we consider the case that the agents
x(0, t) and x(a, t) are the leaders of the system and controlled
by

xt (0, t) = κ(γ (0) − x(0, t))
xt (a, t) = κ(γ (a) − x(a, t))

(10)

where κ > 0 is the controller gain. The other agents only have
access to their relative positions with respect to their nearest
neighbors. Now the closed-loop of (9) and (10) will be referred to
as systems with boundary control. Note that the ODE version of
this model corresponds to the model in Section 5.5.1 in Oh et al.
(2015).

By defining e(α, t) = x(α, t)−γ (α), the error dynamics is given
as (8) with boundary condition

et (0, t) = −κe(0, t)
et (a, t) = −κe(a, t),

(11)

and subject to absolutely continuous initial condition e(α, 0) with
respect to α ∈ (0, a). The stability of this system will be analyzed
in Section 4.

In the second scenario, which is the main contribution of the
paper, we consider closed curve γ , i.e., γ is defined over [0, a] =

[0, 2π ], and is C2. Then it is natural to consider the multi-agent
system with periodic boundary condition

x(0, t) = x(2π, t)
xα(0, t) = xα(2π, t).

(12)

Furthermore, we assume, without loss of generality, that the
leader is located at α = π and it can measure x(π, t) − γ (π )
and send this information to the other agents through a commu-
nication network which results in a bounded time-varying input
delay. The closed-loop system is given as

xt = ϕ(xαα − γαα) − K (x(π, tk − ηk) − γ (π )), (13)

where t ∈ [tk, tk+1), ϕ > 0, K > 0, tk is the updating time of the
controller with limk→∞ tk = ∞, and ηk is the uniformly bounded
network-induced delay. Note that the closed-loop system (13)
suggests a unified control protocol for all the agents. So one
does not have to design the actuators of the agents separately.
This is not the case for the first approach where the leaders are
controlled separately using boundary conditions. Parameters ϕ

and K are the control gains. By using the time-delay approach
to networked control systems (Fridman, 2014a, Chapter 7), we
denote τ (t) = t − tk + ηk. Then the system (13) can be presented
as

xt = ϕ(xαα − γαα) − K (x(π, t − τ (t)) − γ (π )). (14)

Here τ (t) ≤ τM , where τM is the sum of the maximum
transmission interval and maximum network-induced delay. We
shall refer to (14) with boundary condition (12) as the system
with periodic boundary condition. In this paper, we set t0 = 0. In
this case, the error dynamics is given as

et = ϕeαα − Ke(π, t − τ (t)) (15)

= ϕeαα − K [e(α, t − τ (t)) −

∫ α

π

eζ (ζ , t − τ (t))dζ ].

with boundary condition

e(0, t) = e(2π, t)
eα(0, t) = eα(2π, t).

(16)

Consider the initial condition for (15), (16) as

e(α, t) = e(α, 0), t < 0. (17)

The stability of this system will be analyzed in Section 5.
In this paper, we design sufficient conditions for the system

(14), with delay bound τM , to achieve exponential stabilization
(with any desirable decay rate for small enough τM ≥ 0).

4. Deployment onto open curves

In this section, we consider the first scenario, i.e., system
(9) with boundary control (10). In the following proposition,
we prove that the deployment of the agents to the curve γ is
guaranteed with any desirable decay rate.

Proposition 3. Given a positive scalar δ, choose κ > δ and
ϕ > 8δa2

(1−δ)π2 . Then the system (8) under the boundary conditions
(11) is exponentially stable with a decay rate δ meaning that the
following inequality holds,

2aκδ

κ − δ
e2(0, t) +

∫ a

0
[κe2(α, t) + ϕe2α(α, t)]dα

≤ exp(−2δt)[
2aκδ

κ − δ
e2(0, 0) +

∫ a

0
[κe2(α, 0) + ϕe2α(α, 0)]dα].

Proof. Since in the system (8) the components of e are decoupled,
here we prove the case that e : [0, a] × R≥0 → R. Consider the
Lyapunov functional

V (e) = q1e2(0, t) +

∫ a

0
[κe2(α, t) + ϕe2α(α, t)]dα (18)

with time derivative

V̇ = − 2q1κe2(0, t) + 2
∫ a

0
κeet + ϕeαeαtdα

= − 2q1κe2(0, t) − 2ϕκ

∫ a

0
e2αdα − 2ϕ

∫ a

0
eteααdα

where the last equality follows from integration by parts. By
Lemma 2 in Selivanov and Fridman (2018) with ν = 2, we have∫ a
0 e2dα ≤ C1e2(0, t) + C2

∫ a
0 e2αdα, where C1 = 2a and C2 =

8a2

π2
are constant parameters. Hence,

V̇ + 2δV ≤ − 2q1(κ − δ)e2(0, t) − 2ϕ(κ − δ)
∫ 2π

0
e2αdα

+ 2δκC1e2(0, t) + 2δκC2

∫ 2π

0
e2αdα.

By setting q1 =
δκC1
1−δ

, we have

V̇ + 2δV ≤ −(2ϕ(κ − δ) − 2δκC2)
∫ 2π

0
e2αdα.
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Then for ϕ >
δκC2
κ−δ

=
8δκa2

(κ−δ)π2 , we obtain V̇ + 2δV ≤ 0. Hence

the conclusion follows. □

Remark 1. In Frihauf and Krstic (2011), the authors consid-
ered a linear reaction–advection–diffusion equation. Differently
from Frihauf and Krstic (2011), where the deployment can only
be achieved to a family of curves, our protocol can be applied
to arbitrary C2 curves. Our main advantage is in the simplicity
of the control law. Note that adding m − 1 leaders at aℓ/m, ℓ =

1, . . . ,m−1, points, we can reduce the condition of Proposition 3

to ϕ >
8δ(a/m)2

(1−δ)π2 that allows to reduce the value of ϕ.

Remark 2. Deployment to arbitrarily time-varying C2 curves
was introduced in Qi, Pan et al. (2015), where a practical sta-
bility of the error equation was guaranteed. In the present pa-
per, we achieve exponential convergence of the error to zero
with any desired decay rate by employing the simplest static
output-feedback.

Remark 3. To deploy the agents to time-varying curves, namely
γ (α, t) instead of γ (α), the authors in Meurer (2012) and Meurer
and Krstic (2011) employed Burgers equation with time-varying
parameters. However, only some families of curves were feasible.
One can verify in a straightforward manner that the result derived
in this section can be extended to the case with an arbitrary
smooth time-varying curve γ (α, t) provided the value of γt (ih, t)
is available to each agent. In fact, the dynamics of the agents is
governed by

xt (α, t) = ϕ(xαα(α, t) − γαα(α, t)) + γt (α, t)

with the leaders controlled by

xt (0, t) = κ(γ (0, t) − x(0, t)) + γt (0, t)

xt (a, t) = κ(γ (a, t) − x(a, t)) + γt (a, t).

Remark 4. The algorithm developed in this section is valid for the
deployment also in 1D space, which corresponds to deployment
of the agents from an initial interval to a desired one.

5. Network-based deployment onto closed curves

As already mentioned, in the first scenario, it is difficult to
guarantee the convergence in the presence of small time-varying
delays in the relative leaders’ positions. In this section, we con-
sider the second scenario, where the agent at π is the leader
who can measure x(π, t)−γ (π ) and send this information to the
other agents under a bounded communication delay. The system
is given as (14) with boundary condition (12).

We start with the well-posedness of the system (15) with
periodic boundary condition (16) is analyzed as follows. Consider
the initial condition e(·, 0) ∈ X , where

X = {w ∈ H1(0, 2π ) | w(0) = w(2π )}

is the state space with the H1-norm. The system (15), (16) can be
presented in the form

ζ̇ (t) + Aζ (t) = −Kζ (π, tk − ηk) =: f , t ∈ [tk, tk+1) (19)

where ζ (t) = e(·, t) and

A : D(A) → L2(0, 2π )
Aw = −w′′,

where w′′ denotes the second order derivative, is a linear operator
on the Hilbert space

D(A) ={w ∈ H2(0, 2π ) | w(0) = w(2π ), (20)

wα(0) = wα(2π )} (21)

with the inner product ⟨u, v⟩D(A) = ⟨Au,Av⟩L2 .
A strong solution of (19) on [0, T ] is a function

ζ ∈ L2(0, T ;D(A)) ∩ C([0, T ]; X), (22)

such that ζ̇ ∈ L2(0, T ;L2(0, 2π )) and (19) holds almost every-
where on [0, T ]. By arguments of Fridman and Blighovsky (2012)
and Selivanov and Fridman (2018), (19) has a unique strong
solution for the initial condition ζ (0) = e(·, 0) ∈ X and all t ≥ 0.
Moreover, for e(·, 0) ∈ D(A) this solution is in C1([tk, tk+1); X) for
all k = 0, 1, . . . (Fridman & Bar Am, 2013).

In the rest part of this section, we derive LMI conditions for
desired decay rate with given system parameters ϕ, K , and τM for
system (14) with bounded delay and periodic boundary condition
(12).

The main result is given as follows.

Theorem 4. Consider the boundary-value problem (15) with
boundary condition (16). Given positive tuning parameters δ0 and
δ1 satisfying δ1 < 2δ0 and ϕ, K, let there exist positive scalars
p1, p2, p3, r, g and s satisfying the following LMIs

δ0p3 ≤ p2, Φ ≤ 0,
[
r s
s r

]
≥ 0, (23)

where

Φ12 = p1 − p2, Φ11 = g + 2δ0p1 − r exp(−2δ0τM ),

Φ22 = τ 2
Mr − 2p3, Φ14 = −p2K + (r − s) exp(−2δ0τM ),

Φ15 = p2K , Φ13 = exp(−2δ0τM )s,
Φ24 = −p3K , Φ33 = −(g + r) exp(−2δ0τM ),
Φ25 = p3K , Φ34 = (r − s) exp(−2δ0τM ),

Φ55 = −
δ1p3ϕ

4
, Φ44 = −2(r − s) exp(−2δ0τM ) − δ1p1.

Then the system (15), initialized with e(α, t) = e(α, 0) ∈ X, ∀t <

0, is exponential stable with a decay rate δ, where δ is the unique
solution to (3), i.e., the following inequality holds

C2 max
α∈[0,2π]

e2(α, t) (24)

≤p1

∫ 2π

0
e2(α, t)dα + p3

∫ 2π

0
ϕe2α(α, t)dα (25)

≤C exp(−2δt)
[
p1

∫ 2π

0
e2(α, 0)dα + p3

∫ 2π

0
ϕe2α(α, 0)dα

]
(26)

with some positive constant C2 and C. Moreover, given any δ > 0
and K > δ0, LMIs (23) are always feasible for large enough ϕ and
small enough τM .

Proof. Consider the Lyapunov–Krasovskii functional (Fridman &
Blighovsky, 2012)

V (t) =p1

∫ 2π

0
e2(α, t)dα + p3

∫ 2π

0
ϕe2α(α, t)dα

+

∫ 2π

0

[
τMr

∫ 0

−τM

∫ t

t+θ

exp(2δ0(s − t))e2s (α, s)dsdθ

+ g
∫ t

t−τM

exp(2δ0(s − t))e2(α, s)ds
]
dα. (27)
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For the strong solution of (19), the functional V is well-defined
and continuous. Differentiating V in time, almost for all t ≥ 0 we
have

V̇ + 2δ0V

=2δ0p1

∫ 2π

0
e2(α, t) + 2δ0p3ϕ

∫ 2π

0
e2α(α, t)dα

+ 2p1

∫ 2π

0
etedα + 2p3ϕ

∫ 2π

0
eαeαtdα

+ τ 2
Mr

∫ 2π

0
e2t (α, t)dα (28)

− τMr
∫ 2π

0

∫ 0

−τM

exp(2δ0θ )e2t (α, t + θ )dθdα

+ g
∫ 2π

0
[e2(α, t) − exp(−2δ0τM )e2(α, t − τM )]dα.

Note that the derivative eαt is defined in the distributional
sense, where etα = eαt almost for all α and t (cf. Remark A.1
of Fridman and Bar Am (2013)). Thus, almost for all t ≥ 0∫ 2π

0
eαetαdα =

∫ 2π

0
eαeαtdα. (29)

Note also that

−

∫ 2π

0
τMr

∫ 0

−τM

[exp(2δ0θ )e2t (α, t + θ )]dθdα

= − τMr
∫ 2π

0

∫ t

t−τM

exp(2δ0(s − t))e2s (α, s)dsdα.

By applying Jensen’s inequality (Gu, Chen, & Kharitonov, 2003,
Proposition B.8) and further Park inequality (Lemma 1 in Fridman
(2014b)), we have

− τMr
∫ 2π

0

∫ t

t−τM

exp(2δ0(s − t))e2s (α, s)dsdα

≤ −
τM

τM − τ (t)
r exp(−2δ0τM )

∫ 2π

0
[

∫ t−τ (t)

t−τM

es(α, s)ds]2dα

−
τM

τ (t)
r exp(−2δ0τM )

∫ 2π

0
[

∫ t

t−τ (t)
es(α, s)ds]2dα

≤ − exp(−2δ0τM )
∫ 2π

0
ξ⊤

[
r s
s r

]
ξdα, (30)

where the parameter s is chosen such that[
r s
s r

]
≥ 0,

and ξ⊤
:= [e(α, t) − e(α, t − τ ), e(α, t − τ ) − e(α, t − τM )].

We further employ the descriptor method (Fridman, 2001),
where the left-hand side of the following equation

D :=2
∫ 2π

0
[p2e + p3et ][−et + ϕeαα − Ke(π, t − τ (t))]dα

=0 (31)

is added to V̇ + 2δ0V . Integrating by parts we have

2ϕ
∫ 2π

0
p3eteααdα = −2p3ϕ

∫ 2π

0
eαetαdα

2p2ϕ
∫ 2π

0
eeααdα = −2p2ϕ

∫ 2π

0
e2αdα. (32)

Then, from (28)–(32) we find

V̇ + D + 2δ0V

≤2δ0p1

∫ 2π

0
e2(α, t)dα + 2δ0p3ϕ

∫ 2π

0
e2α(α, t)dα

+ 2p1

∫ 2π

0
etedα − exp(−2δ0τM )

∫ 2π

0
ξ⊤

[
r s
s r

]
ξdα

+ τ 2
Mr

∫ 2π

0
e2t (α, t)dα − 2p2ϕ

∫ 2π

0
e2αdα

+ g
∫ 2π

0
[e2(α, t) − exp(−2δ0τM )e2(α, t − τM )]dα

+ 2
∫ 2π

0
[p2e + p3et ]

[
−et − Ke(π, t − τ (t))

]
dα

=

∫ 2π

0
η⊤Φ̄ηdα − (2p2ϕ − 2δ0p3ϕ)

∫ 2π

0
e2α(α, t)dα

where

Φ̄11 = g + 2δ0p1 − r exp(−2δ0τM ), Φ̄12 = p1 − p2,
Φ̄14 = −p2K + (r − s) exp(−2δ0τM ), Φ̄15 = p2K ,

Φ̄13 = exp(−2δ0τM )s, Φ̄22 = τ 2
Mr − 2p3,

Φ̄34 = (r − s) exp(−2δ0τM ), Φ̄25 = p3K ,

Φ̄33 = −(g + r) exp(−2δ0τM ), Φ̄24 = −p3K ,

Φ̄44 = −2(r − s) exp(−2δ0τM ), Φ̄55 = 0,

η := [e, et , e(α, t−τM ), e(α, t−τ (t)), f ]⊤ and f := e(α, t−τ (t))−
e(π, t − τ (t)).

To further apply Halanay’s inequality, we note that

V̇ + 2δ0V − δ1 sup
θ∈[−τM ,0]

V (t + θ )

≤V̇ + 2δ0V − δ1V (t − τ (t))

≤V̇ + 2δ0V − δ1

∫ 2π

0
p1e2(α, t − τ (t))

+ p3ϕe2α(α, t − τ (t))dα

≤

∫ 2π

0
η⊤Φ̄ηdα − (2p2ϕ − 2δ0p3ϕ)

∫ 2π

0
e2α(α, t)dα

− δ1

∫ 2π

0
p1e2(α, t − τ )dα

− δ1p3ϕ
∫ 2π

0
e2α(α, t − τ (t))dα

≤

∫ 2π

0
η⊤Φ̄ηdα − (2p2ϕ − 2δ0p3ϕ)

∫ 2π

0
e2α(α, t)dα

− δ1

∫ 2π

0
p1e2(α, t − τ )dα −

δ1p3ϕ
4

∫ 2π

0
f 2dα

≤

∫ 2π

0
η⊤Φηdα − (2p2ϕ − 2δ0p3ϕ)

∫ 2π

0
e2α(α, t)dα

where Φ = Φ̄ + diag(0, 0, 0, −δ1p1, −
δ1p3ϕ

4 ). This implies that, if
p2 ≥ δ0p3 and Φ ≤ 0, then (2) holds and Halanay’s inequality
yields

V (t) ≤ exp(−2δt) sup
θ∈[−τM ,0]

V (θ ). (33)

Finally, since the initial condition is set to be e(α, t) = e(α, 0),
∀t < 0, we have

sup
θ∈[−τM ,0]

V (θ ) (34)

=p1

∫ 2π

0
e2(α, 0)dα + p3

∫ 2π

0
ϕe2α(α, 0)dα

+ g
∫ 2π

0

∫ 0

−τM

exp(2δ0s)e2(α, 0)dsdα (35)

=C(p1

∫ 2π

0
e2(α, 0)dα + p3

∫ 2π

0
ϕe2α(α, 0)dα), (36)
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Fig. 1. Deployment of the agents according to the system (9) with boundary
control (10) . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

where constant C does not depend on the initial condition, which
implies the inequality (26). The inequality (25) is implied by
Lemma 2 with positive constant C2.

Denote by Ψ the matrix Φ with the deleted last column and
row and δ1 = 0. Then Ψ < 0 guarantees via the descriptor
method that the system

ẋ(t) = −Kx(t − τ )

is exponentially stable with a decay rate δ0 (cf. (4.23) in Fridman
(2014a)). Moreover, given any δ0 > 0 and K > δ0 by arguments
of Fridman (2014a) it can be shown that Ψ < 0 is always feasible
for small enough τM . Given any δ > 0 and choosing δ1 = 0.1δ and
δ0 = δ + 2δ1 and K > δ0, we find further p1, p2, p3, r and s that
solve Ψ < 0 for small τM . Then, applying Schur complements to
the last column and row of Φ , we conclude that Φ < 0 for large
enough ϕ. The latter implies that the system is exponentially
stable with a decay rate δ. □

Remark 5. It was shown in Wei et al. (2019) that for any δ >
0, the choice of K > δ and φ ≥ K 2/(K − δ) guarantees the
exponential convergence of (15) with a decay rate δ > 0 for
τM = 0.

Remark 6. If there are several leaders (e.g. at π/2 and 3/2π ),
then in (13), we can use −K (x(π/2, tk − ηk) − γ (π/2)) for x ∈

[0, π ), and −K (x(1.5π, tk − ηk) − γ (1.5π )) for x ∈ [π, 2π ], that
allows to reduce the gain ϕ (Fridman & Blighovsky, 2012).

6. Simulations

In this section, we present the simulative results of the pro-
posed control laws in Sections 4 and 5. In all the simulations, we
consider a multi-agent system with N = 45 agents. In all the
figures of the deployment, the blue dashed lines are the desired
formation, and the red dashed lines are the initial positions of
the agents which are set to be (0.5 ∗ sin(i aN ), 0.5 ∗ cos(i aN ), 0), i =

1, . . . ,N , where a = π in the case of open desired curve and
a = 2π in the case of the closed one. The black solid lines are the
trajectories of the agents.

In the first example, we present the simulation of the system
(9) with boundary control (10). For the system parameters, we
set ϕ = 10, K = 1. The desired curve in R3 is parameterized
in the interval [0, π] as (0.8 sin3(α), 0.05(13 cos(α)− 5 cos(2α)−
2 cos(3α)−cos(4α)), 5). For any δ such that ϕ > 8δ

1−δ
, we have the

system is exponential converging with a decay rate δ. Here we
take δ = 0.1. The simulation is given in Fig. 1. In this example,
the initial positions of the agents only occupy an arc in the red
dashed circle. The two magenta solid lines are the trajectories of
the leaders.

Fig. 2. Deployment of the agent according to the system (14) with periodic
boundary condition (12).

Fig. 3. The error e1(α, t) of the simulation given in Fig. 2.

For the closed curves, namely with periodic boundary con-
dition, we present an example with the desired curve being
parameterized in the interval [0, 2π ] as (sin3(α), cosα, cos(2α)
sin(2α) + 5). For the system parameters, we set ϕ = 10, K = 3.
We choose δ0 = 2.5. Furthermore, the parameter δ1 in Halanay’s
inequality is set to be equal to 1.5δ0 which is less than 2δ0. The
LMI conditions (23) are satisfied by p1 = 0.34, p2 = 1.18, p3 =

0.46, r = 10, g = 0.06, s = 0.32 and τM = 0.12 which can
be verified numerically, e.g., by CVX (Grant & Boyd, 2014). This
guarantees the desired decay rate δ = 0.60. The performance of
(14) is given in Fig. 2 and the error of the first dimension is plotted
in Fig. 3.

7. Conclusion

In this paper, we considered the deployment of the first-order
multi-agents onto a desired smooth curve. The model is moti-
vated by the displacement-based multi-agent formation control
algorithm (Oh et al., 2015). For the open curves, we proposed
a simple static output-feedback boundary control mechanism.
The main part of the paper is devoted to the case with closed
curves, where we assumed that the agents have access to the
local information of the desired curve and their relative positions
with respect to their closest neighbors, whereas a leader is able
to measure its relative position with respect to the desired curve
and transmit it to other agents through communication network.
It was proved that, based on LMI conditions, by choosing appro-
priate controller gains, any desired decay rate can be achieved
provided the delay is small enough. More precisely, exponential
convergence to any closed C2 curve is guaranteed.
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