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a b s t r a c t

We consider a distributed consensus problem over a network, where at each time instant every node
receives two pieces of information from disjoint neighboring sets: a weighted average of current states of
neighbors from a primary network, and a weighted average of one-hop delayed states of neighbors from
a secondary network. The proposed algorithmmakes each node update its state to a weighted average of
these individual averages.We show that convergence to consensus is guaranteedwithnon-trivialweights.
We also present an explicit formula for the weights allocated to each piece of the information for the
optimal rate of convergence, when the secondary network is the complement of the primary network.
Finally numerical examples are given to explore the case when the neighbor sets of the agents do not
cover the whole network.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have witnessed great advances in the devel-
opment of distributed algorithms for multi-agent systems. One
benchmark problem is the design of distributed consensus algo-
rithms that aim at driving a group of agents to reach an agreement
on a variable of interest (Jadbabaie, Lin, & Morse, 2003; Moreau,
2005; Olfati-Saber & Murray, 2007). Along this research line, the
impact of directed communication topologies, high-order dynam-
ics, nonlinear interactions has been considered (Lin, Francis, &
Maggiore, 2007; Liu, Slotines, & Barabasi, 2011; Wieland, Kim, &
Allgower, 2011) and fruitful results have been obtained on forma-
tion control, coverage control, and network controllability (Cortes,
Martinez, Karatas, & Bullo, 2003; Ren & Atkins, 2007; Scardovi &
Sepulchre, 2009; Tanner, Jadbabaie, & Pappas, 2007).
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In wireless communication networks, the information ex-
change between agents can sometimes be affected by time de-
lays, which can have great impact on system performance. In
the study of multi-agent systems, there have been continuing
efforts on disclosing the effect of time delays in the process of
reaching an agreement (Olfati-Saber & Murray, 2004). In Blon-
del, Hendrickx, Olshevsky, and Tsitsiklis (2005); Moreau (2004),
the authors showed that consensus algorithms are robust to ar-
bitrary bounded communication delays in both continuous-time
and discrete-time settings. These results were extended to the
case with unbounded time-varying coupling delays in Liu, Lu,
and Chen (2010). Time-domain and frequency-domain approaches
have been adopted to derive convergence conditions in the pres-
ence of input delays (Tian & Liu, 2009). While negative impact
of time delays on the system performance was studied in the
literature above, there are also research efforts making use of
delayed information to accelerate the convergence of consensus al-
gorithms. By introducingmemory for each node, it has been shown
that the convergence process of the consensus algorithm can speed
up (Oreshkin, Coates, & Rabbat, 2010; Sarlette, 2014). In the voter
model, where each voter is equipped with an individual inertia
to change their opinion depending on the persistence time of a
voter’s current opinion, this can counter-intuitively lead to faster
consensus (Stark, Tessone, & Schweitzer, 2008). In Jin andMurray
(2006), a multi-hop relay protocol has been proposed for fast
consensus in a network where an agent can send not only its own
state but also a collection of its instantaneous neighbors’ states.
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0005-1098/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2017.06.021
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.06.021&domain=pdf
mailto:wgxiaseu@dlut.edu.cn
mailto:ziyangmeng@mail.tsinghua.edu.cn
mailto:guodong.shi@anu.edu.au
mailto:kallej@kth.se
http://dx.doi.org/10.1016/j.automatica.2017.06.021


W. Xia et al. / Automatica 83 (2017) 116–123 117

Motivated by that network nodes often have multiple radio
interfaces in practice, we consider in this paper a scenario with
twonetworks describing the interactions betweennodes. Themes-
sages exchanged in the primary network are received immediately,
while in the secondary network the messages are received with a
one-hop delay. For such a prototypical setup, we ask under what
circumstances the consensus protocol converges. In particular, we
consider that every node receives two pieces of information from
two disjoint neighboring sets in the primary and secondary net-
works: aweighted average of current states of the primarynetwork
neighborhood and aweighted average of one-hop delayed states of
the neighborhood of the secondary network. The tradeoff between
current and delayed information is characterized by a parameter in
the system update equation. We give conditions on this parameter
to ensure the convergence of the algorithmandexplore the optimal
value of the parameter that leads to the fastest convergence rate
when the twoneighbor sets of each agent cover thewhole network.

The organization of this paper is as follows. We first formulate
the problem in Section 2. The convergence conditions are given
in Section 3. The optimal selection on the tradeoff parameter is
presented in Section 4. Numerical results are given in Section 5
to study possible extensions. Concluding remarks are given in
Section 6.

2. Problem Statement

Consider a network consisting of N agents (nodes) indexed in
the set V = {1, 2, . . . ,N}. Interactions between nodes are carried
out through two networks: the primary and secondary networks,
which are described by two simple undirected graphs without
self-loops. The messages exchange between nodes in the primary
network is instantaneous, while in the secondary network the
messages are received with a one-hop delay.

Let the undirected graphs G(1)
= (V, E (1)) and G(2)

= (V, E (2))
denote the primary and secondary networks, respectively. Let G =

G(1)
∪ G(2)

= (V, E (1)
∪ E (2)) and suppose that E (1)

∩ E (2)
= ∅. Let

N (1)
i =

{
j : {i, j} ∈ E (1)

}
be the set of neighbors of agent i in G(1)

and N (2)
i defined similarly. Assume that each edge {i, j} ∈ E (1) is

associated with a weight wji > 0, each edge {i, j} ∈ E (2) has weight
w

†
ji > 0, and assume that self-weights wii, w

†
ii, i = 1, . . . ,N ,

are non-negative (not necessarily all positive, in contrast to the
literature (Blondel et al., 2005; Jadbabaie et al., 2003; Xiao &Wang,
2006)). Assume that the weights wij and w

†
ij satisfy the following

assumption.

Assumption 1. For all i,
∑

j∈{i}∪N (1)
i

wij = 1 and
∑

j∈{i}∪N (2)
i

w
†
ij = 1.

Time is slotted as t = 0, 1, 2, . . ., and each node i holds a scalar
value xi(t). At each time t , agent i has access to two aggregated
values:
(i) The instantaneousweighted average fromneighbor setN (1)

i and
itself in the primary network given by

Ai(t) :=

∑
j∈{i}∪N (1)

i

wijxj(t).

(ii) The one-step delayed weighted average from neighbor setN (2)
i

and itself in the secondary network given by

A†
i (t) :=

∑
j∈{i}∪N (2)

i

w
†
ijxj(t − 1).

Let x(t) = [x1(t), . . . , xN (t)]T and define x(−1) = x(0). The aim
of the network is to reach a consensus making use of the two
pieces of information at each node, Ai(t) and A†

i (t). We propose

the following simple algorithm that makes a tradeoff between the
current and the delayed information exchange:

xi(t + 1) = (1 − β)Ai(t) + βA†
i (t), (1)

where the parameter β is a constant weight given to the delayed
information.

We aim to analyze the range of β for the convergence of Algo-
rithm (1) and its optimal value leading to the fastest convergence
rate for a given network G. Algorithm (1) relates to the algorithm
studied in Jin and Murray (2006), where each agent sends to
its neighbors not only its own state but also a collection of its
instantaneous neighbors’ states. The collection of each agent’s in-
stantaneous neighbors’ states can be regarded as one-hop delayed
information for the receiver. The convergence speed is accelerated
compared to the original systemwhere each agent only makes use
of its neighbors’ information.

Remark 1. Here we assume that Ai(t) and A†
i (t) are the messages

received at each node i, so node i can distinguish betweenAi(t) and
A†

i (t),while it cannot infer the value of xj(t) or xj(t−1) of a neighbor
j in N (1)

i or N (2)
i , respectively. Note that Ai(t) can be written as

Ai(t) = xi(t) +
∑

j=N (1)
i

wij(xj(t) − xi(t)) for all i = 1, . . . ,N

and A†
i (t) can be written in a similar way. In such expressions

xi(t) only provides a description of the state without assuming
that it is known to node i. Therefore the nodes do not have to
possess the values of their absolute states according to some global
coordinate system and only relative or aggregated states can be
communicated (Olfati-Saber & Murray, 2007).

3. Convergence conditions

In this section, convergence conditions for Algorithm (1) are
given for the case when G is connected and then for the case when
G(2) is the complement of G(1).

3.1. G is connected

Define y(t) = [xT (t) xT (t − 1)]T with y(0) = [xT (0) xT (−1)]T .
Let W1 ∈ RN×N with [W1]ii = wii, [W1]ij = wij for {j, i} ∈ E (1),
and [W1]ij = 0 otherwise. Similarly W2 ∈ RN×N is defined by
[W2]ii = w

†
ii , [W2]ij = w

†
ij for {j, i} ∈ E (2), and [W2]ij = 0 otherwise.

Let

Φ(β) =

[
(1 − β)W1 βW2

I 0

]
,

where I and 0 are the identity matrix and zero matrix with com-
patible dimension. It is clear that W1 and W2 are stochastic matri-
ces (Horn & Johnson, 1985) from Assumption 1. Algorithm (1) can
be rewritten as

y(t + 1) =

[
(1 − β)W1 βW2

I 0

]
y(t) := Φ(β)y(t). (2)

Similar to Theorem 1 in Xiao and Boyd (2004) and Theorem 1
in Johansson and Johansson (2008), it can be shown that the
necessary and sufficient conditions for Algorithm (1) converging
to the average of its initial condition are (C1) Φ(β)1 = 1;
(C2) αTΦ(β) = αT for vector αT

= [α11T α21T
]
T with α1, α2

satisfying α1+α2 = 1; and (C3) ρ(Φ(β)−1/N1αT ) < 1, where 1 is
an all-one vector with compatible dimension and ρ(·) is the spec-
tral radius of a matrix. If these three conditions are satisfied, then
limt→∞Φ(β)t = 1/N1αT . The conditions (C1)–(C3) are equivalent
to the condition that one is a simple eigenvalue ofΦ(β) with 1 and
α being its corresponding right and left eigenvectors, respectively,
and all the other eigenvalues lie inside the unit circle.
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Since W1 and W2 are stochastic matrices, it is easy to verify
that Φ(β)1 = 1. Let α1 = 1/(1 + β) and α2 = β/(1 + β).
It is clear that αTΦ(β) = αT since W1 and W2 are symmetric
matrices. For condition (C3), using similar arguments to that in
Proposition 1 in Oreshkin et al. (2010), we are able to show that
Φ(β) − 1/N1αT and Φ(β) − J have the same spectra where J =

1/(2N)11T and consequently ρ(Φ(β)−1/N1αT ) = ρ(Φ(β)− J). As
discussed in Oreshkin et al. (2010), minimizing the spectral radius
ρ(Φ(β) − J) is an optimality criterion of the convergence time for
approaching the average of Algorithm (1). A sufficient condition for
the convergence of Algorithm (1) can be derived.

Theorem 1. Suppose that there exists a node i0 ∈ V such that wi0i0 >

0 and G = G(1)
∪ G(2) is connected. If β ∈ (0, 1), then Algorithm (1)

converges to the average of the initial state.

Proof. It suffices to prove that one is a simple eigenvalue of Φ(β)
and all the other eigenvalues lie inside the unit circle. Define a di-
rected graph G(Φ(β)) corresponding to thematrixΦ(β) as follows:
G(Φ(β)) has 2N nodes and has no self-loops; there exists an edge
{j, i} in G(Φ(β)) if and only if the ij-th element (Φ(β))ij of Φ(β) is
nonzero for i ̸= j. Then from the structure of Φ(β), one knows that
{i,N + i} is an edge of G(Φ(β)) for all i = 1, . . . ,N . In addition, if
{j, k} is an edge of G1, then {j, k} is an edge of G(Φ(β)) and if {j, k}
is an edge of G2, then {N + j, k} is an edge of G(Φ(β)). Since the
union graph G of the subgraphs G(1) and G(2) is connected, it is easy
to show that in G(Φ(β)) there exists a directed path from a node i
to every other node for all i = 1, . . . ,N . Hence G(Φ(β)) contains
a directed spanning tree and in particular G(Φ(β)) is rooted at i0.1
In view of Lemma 1 in Xiao and Wang (2006), it follows that 1 is a
simple eigenvalue of Φ(β) and all the other eigenvalues lie inside
the unit circle. □

The idea of the proof is inspired by Lemma 2 in Xiao and Wang
(2006), but note that in Theorem 1 it is not required that all the
diagonal elements of W1 are positive, which is in contrast to the
assumption of Lemma 2 in Xiao and Wang (2006).

Remark 2. In Theorem 1, we give a sufficient condition such that
the convergence of Algorithm (1) is achieved. This shows that the
existence of delayed information in the secondary networkwill not
negatively affect the convergence of the consensus algorithm as
long as the parameter β is properly chosen.

Next we focus on the case when the secondary graph G(2) is the
complement of G(1). It turns out that a larger range of β can be
established for the convergence of Algorithm (1).

3.2. G(2) is the complement of G(1)

Theorem 1 indicates that as long as β ∈ (0, 1), convergence can
be guaranteed if G is connected. It is however unclear how sharp
this condition on β is. We show in the following that for the case
when G(2) is the complement of G(1) and hence G is a complete
graph, the condition can be considerably improved. The scenario
on complete graphs has been proposed in different settings in the
literature such as reaching consensus in a network consisting of
cooperative and adversarial agents (LeBlanc & Koutsoukos, 2011)
and the Byzantine generals problem (Lamport, Shostack, & Pease,
1982).

1 A directed graph G is said to contain a directed spanning tree if there exists a
node that has a directed path to every other node. Such a node is called a root and
we say that G is rooted at this node.

Calculate the characteristic polynomial of Φ(β) as

|λI − Φ(β)| =
⏐⏐λ2I − (1 − β)λW1 − βW2

⏐⏐ . (3)

Assume that the eigenvalues λ1(W1), . . . , λN (W1) ofW1 and those
ofW2 are ordered in decreasing order asλN (W1) ≤ · · · ≤ λ2(W1) ≤

λ1(W1) = 1 and λN (W2) ≤ · · · ≤ λ2(W2) ≤ λ1(W2) = 1.
In general, it is difficult to derive the explicit expression of the
eigenvalues of Φ(β) as functions of eigenvalues ofW1 andW2.

IfW1W2 = W2W1, then there exists an orthogonalmatrix P that
simultaneously diagonalizes W1 and W2 ( (Horn & Johnson, 1985).
One has that

PW1PT
= diag(λ1(W1), λ2(W1) . . ., λN (W1)),

PW2PT
= diag(λi1 (W2), λi2 (W2) . . ., λiN (W2)),

(4)

where 1 ≤ i1, . . . , iN ≤ N . Note that ik is not necessarily equal to k
for k = 1, . . . ,N . Eq. (3) becomes

|λI − Φ(β)| =

N∏
k=1

(
λ2

− (1 − β)λk(W1)λ − βλik (W2)
)
. (5)

It is clear from (5) that for β = 0, Algorithm (1) converges to an
agreement when G(1) is connected andW1 has at least one positive
diagonal element. For β = 1, Algorithm (1) does not converge to
an agreement since both 1 and −1 are roots of the polynomial (5).

It is in general difficult to check whether two matrices W1 and
W2 commute. Since the position of the nonzero elements of W1
and W2 are determined by the two graphs G(1) and G(2), it is an
open question which graphs of G(1) and G(2) can guarantee that
W1W2 = W2W1. When the union graph G is a complete graph,
then for a proper choice of the weights,W1 andW2 commute. This
motivates us to impose the following assumption.

Assumption2.G(2) is the complement ofG(1).Moreover, theweight
matrices W1 and W2 satisfy wij = 1/N for {i, j} ∈ E1, and wij = 0,
otherwise, and w

†
ij = 1/N for {i, j} ∈ E2, and w

†
ij = 0, otherwise.

It can be verified that when Assumption 2 holds, W1 + W2 =

I+J , where J has all entries equal to 1/N . ObviouslyW2 = I+J−W1,
so W1W2 = W2W1. In addition, for the orthogonal matrix P that
diagonalizesW1 in (4), PJPT

= diag(1, 0, . . ., 0). We have that

PW2PT
= diag(1, 1 − λ2(W1), . . ., 1 − λN (W1)). (6)

From (5), the characteristic polynomial of Φ(β) is given by

|λI − Φ(β)| = (λ − 1)(λ + β)
N∏
i=2

(
λ2

− (1 − β)λi(W1)λ − β(1 − λi(W1))
)

. (7)

We present the following result based on this observation.

Theorem 2. Assume that Assumption 2 holds and λN (W1) ≥ 0.
When λ2(W1) ∈ ( 23 , 1], Algorithm (1) converges to the average of the
initial states of all the agents if and only if β ∈ ( λ2(W1)−1

2λ2(W1)−1 , 1); when
λ2(W1) ∈ [0, 2

3 ], Algorithm (1) converges to the average if and only if
β ∈ (−1, 1).

Proof. Denote the eigenvalues of Φ(β) as λ∗

i (Φ(β)) and λ∗∗

i (Φ(β)),
1 ≤ i ≤ N . First consider the case λ2(W1) < 1. It is clear that
λ∗

1(Φ(β)) = 1 and λ∗∗

1 (Φ(β)) = −β are always roots of (7). Note
that when |β| ≥ 1, |λ∗∗

1 (Φ(β))| ≥ 1. So the parameter β should
lie in the interval (−1, 1) for the convergence of (2) to consensus.
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β∗

i =

λ2
i (W1) + 2λi(W1) − 2 + 2

√
(λi(W1) − 1)(λ2

i (W1) + λi(W1) − 1)

λ2
i (W1)

β∗∗

i =

λ2
i (W1) + 2λi(W1) − 2 − 2

√
(λi(W1) − 1)(λ2

i (W1) + λi(W1) − 1)

λ2
i (W1)

.

(11)

Box I.

From λ2
− (1 − β)λi(W1)λ − β(1 − λi(W1)) = 0, one has

λ∗

i (Φ(β)) =
1
2

(
(1 − β)λi(W1)

+

√
(1 − β)2λ2

i (W1) + 4β(1 − λi(W1))
)

λ∗∗

i (Φ(β)) =
1
2

(
(1 − β)λi(W1)

−

√
(1 − β)2λ2

i (W1) + 4β(1 − λi(W1))
)
.

(8)

Let

Ji[β, λi(W1)] =

{
|λ∗∗

1 (Φ(β))| = |β|, i = 1,
max(|λ∗

i (Φ(β))|, |λ∗∗

i (Φ(β))|), i ≥ 2. (9)

It can be verified that 0, λ∗∗

1 (Φ(β)), . . . , λ∗

N (Φ(β)), λ∗∗

N (Φ(β)) are
eigenvalues of Φ(β) − J and thus ρ(Φ(β) − J) = maxi=1,...,N
Ji[β, λi(W1)]. We specify the range of β such that maxi=1,...,NJi
[β, λi(W1)] < 1.

For i = 2, . . . ,N , to check whether the eigenvalues λ∗

i (Φ(β))
and λ∗∗

i (Φ(β)) are complex or real, we solve the equation

(1 − β)2λ2
i (W1) + 4β(1 − λi(W1)) = 0. (10)

This gives us the two possible solutions β∗

i and β∗∗

i in (11) (see
Box I).

The expression under the square root in (11) (see Box I) is non-
negative if λi(W1) ∈ [0,

√
5−1
2 ] and negative if λi(W1) ∈ (

√
5−1
2 , 1).

Thuswhen λi(W1) ∈ (
√
5−1
2 , 1), (1−β)2λ2

i (W1)+4β(1−λi(W1)) >

0 for β ∈ (−1, 1). It follows that the eigenvalues λ∗

i (Φ(β)) and
λ∗∗

i (Φ(β)) in (8) are both real and

Ji[β, λi(W1)] =
1
2

(
(1 − β)λi(W1)

+

√
(1 − β)2λ2

i (W1) + 4β(1 − λi(W1))
)
.

(12)

When λi(W1) ∈ [0,
√
5−1
2 ], β∗

i and β∗∗

i are real and β∗∗

i ≤

β∗

i . Algebraic manipulation shows that β∗∗

i ≤ −1 ≤ β∗

i ≤ 0.
When β ∈ (−1, β∗

i ), the expression under the square root in (8)
is negative and thus the eigenvalues λ∗

i (Φ(β)) and λ∗∗

i (Φ(β)) are
complex. It follows that

Ji[β, λi(W1)] =

√
−β(1 − λi(W1)). (13)

Whenβ ∈ [β∗

i , 1), the eigenvaluesλ∗

i (Φ(β)) andλ∗∗

i (Φ(β)) are real
and Ji[β, λi(W1)] is the same as in (12).

For Ji[β, λi(W1)] given by (12), it can be shown that when
λi(W1) ∈ ( 23 , 1), Ji[β, λi(W1)] < 1 if β >

λi(W1)−1
2λi(W1)−1 ; when λi(W1) ∈

[0, 2
3 ], Ji[β, λi(W1)] < 1 if β ∈ (−1, 1). Since λ−1

2λ−1 is an increasing
function ofλ, if there exists someλi(W1) > 2

3 , thenJi[β, λi(W1)] <

1 when β ∈ ( λ2(W1)−1
2λ2(W1)−1 , 1); otherwise, Ji[β, λi(W1)] < 1 when

β ∈ (−1, 1).
When Ji[β, λi(W1)] =

√
−β(1 − λi(W1)), Ji[β, λi(W1)] < 1

when β ∈ (−1, 0] and λi(W1) ∈ [0, 1).

From the above derivations, we conclude that when λ2(W1) ∈

( 23 , 1), maxi=1,...,NJi[β, λi(W1)] < 1 if and only if β ∈

( λ2(W1)−1
2λ2(W1)−1 , 1); when λ2(W1) ∈ [0, 2

3 ], maxi=1,...,NJi[β, λi(W1)] < 1
if only if β ∈ (−1, 1).

When λ2(W1) = 1, which implies that W1 is not connected, it
can be seen from (7) that β and 1 − β are eigenvalues of Φ(β).
It is clear that β should be in the interval (0, 1) to guarantee the
convergence of Algorithm (1) to the average consensus. The proof
is completed. □

Remark 3. In Theorem 2, we give a necessary and sufficient con-
dition on β such that the convergence of Algorithm (1) is achieved
for the case when G is a complete graph. It is clear that the range
of tradeoff parameter β is enlarged due to the nice property of
complete graphs.

4. Optimal tradeoff

In this section, we calculate the optimal value of β for Algo-
rithm (1) to achieve the fastest convergence rate. To this end, the
expression Ji[β, λi(W1)] in (9) should be available. As discussed in
the previous section, for general matricesW1 andW2, it is difficult
to derive an explicit expression for the eigenvalues of Φ(β). In
the following, we focus on the case when the union graph G is a
complete graph. We conduct numerical examples to explore the
case when G(2) is not the complement of G(1) in the next section.

Finding out the optimal value of the parameter β which
achieves the fastest convergence rate is equivalent to finding the
solution to the optimization problem

β̄ = arg min
β∈(−1,1)

max
i=1,...,N

Ji[β, λi(W1)]. (14)

The following result holds.

Theorem 3. Suppose that Assumption 2, λN (W1) ≥ 0, and λ2(W1) <

1 hold. Algorithm (1) achieves the fastest convergence rate if β takes
the value β̄ given in (15) (see Box II) with β̃ given in (16) (see Box III).

Proof. The outline of the proof is as follows. We first specify the
expression of maxi=1,...,NJi[β, λi(W1)] for β ≥ 0 and then explore
the optimal value of β for three different cases:

√
5−1
2 < λN (W1) ≤

λ2(W1), λN (W1) ≤

√
5−1
2 < λ2(W1), and λN (W1) ≤ λ2(W1) ≤

√
5−1
2 . For the first two cases, the optimal value of β is achieved

when β > 0; for the third case, the optimal value of β is achieved
when β < 0 and hence we further explore the expression of
maxi=1,...,NJi[β, λi(W1)] for β < 0 to identify the optimal β.

We first specify the expression of maxi=1,...,NJi[β, λi(W1)] for
β ≥ 0. When β ≥ 0, the eigenvalues of Φ(β) are given by (8)
and Ji[β, λi(W1)] is given by (12) for i = 2, . . . ,N . Algebraic
calculation of the derivative ofJi[β, λi(W1)]with respect to λi(W1)
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β̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λN (W1) + 1

, if

√
5 − 1
2

< λN (W1),

3 −
√
5

2
, if λN (W1) ≤

√
5 − 1
2

< λ2(W1),

1 − 2λ2(W1)
1 − λ2(W1)

, if
1 − 2λ2(W1)
1 − λ2(W1)

+ 1 ≤ λN (W1) ≤ λ2(W1) ≤

√
5 − 1
2

,

β̃, if λ2(W1) ≤

√
5 − 1
2

and λN (W1) <
1 − 2λ2(W1)
1 − λ2(W1)

+ 1,

(15)

Box II.

β̃ =
1

2λ2
2(W1)(1 − λN (W1))

[
− (2 − λ2(W1) − λN (W1))2 − 2(λN (W1) − 1)λ2

2(W1)

+ (2 − λ2(W1) − λN (W1))
√
(2 − λ2(W1) − λN (W1))2 + 4(λN (W1) − 1)λ2

2(W1)
] (16)

Box III.

gives

∂Ji[β, λi(W1)]
∂λi(W1)

=
1
2

(
1 − β

+
λi(W1)(1 − β)2 − 2β√

(1 − β)2λ2
i (W1) + 4β(1 − λi(W1))

)
.

(17)

It can be verified that when β ∈ [0, 3−
√
5

2 ], ∂Ji[β,λi(W1)]
∂λi(W1)

≥ 0; when

β ∈ ( 3−
√
5

2 , 1), ∂Ji[β,λi(W1)]
∂λi(W1)

< 0.

When β ∈ [0, 3−
√
5

2 ], Ji[β, λi(W1)] ≤ J2[β, λ2(W1)] for i =

3, . . . ,N . We compare J2[β, λ2(W1)] with J1[β, λ1(W1)] = β .
Straightforward calculation shows that J2[β, λ2(W1)] ≥ β if β ∈

[0, 3−
√
5

2 ]. It follows thatmaxi=1,...,NJi[β, λi(W1)] = J2[β, λi(W1)].
When β ∈ ( 3−

√
5

2 , 1), Ji[β, λi(W1)] ≤ JN [β, λN (W1)] for i =

2, 3, . . . ,N−1.We compareJN [β, λN (W1)]withβ . It can be shown
that when β ≥

1
λN (W1)+1 , β ≥ JN [β, λN (W1)]; when β < 1

λN (W1)+1 ,

β < JN [β, λN (W1)]. Since 1
λN (W1)+1 > 3−

√
5

2 , the expression of
maxi=1,...,NJi[β, λi(W1)] for β ≥ 0 is given in (18) (see Box IV).

By examining the derivative of Ji[β, λi(W1)] given in (12) with
respect to β , algebraic manipulations show that for β ∈ (−1, 1),
∂Ji[β,λi(W1)]

∂β
< 0 when λi(W1) ∈ (

√
5−1
2 , 1), and ∂Ji[β,λi(W1)]

∂β
≥ 0

when λi(W1) ∈ [0,
√
5−1
2 ].

We consider three different cases depending on the eigenvalues
ofW1:

√
5−1
2 < λN (W1) ≤ λ2(W1), λN (W1) ≤

√
5−1
2 < λ2(W1), and

λN (W1) ≤ λ2(W1) ≤

√
5−1
2 .

Case 1:
√
5−1
2 < λN (W1) ≤ λ2(W1): From the calcula-

tion of ∂Ji[β,λi(W1)]
∂β

above, one knows that J2[β, λ2(W1)] and
JN [β, λN (W1)] are both decreasing functions on the interval β ∈

[0, 1). Obviously, β is an increasing function. We can conclude
from (18) (see Box IV) that maxi=1,...,NJi[β, λi(W1)] is a decreasing
function on β ∈ [0, 1

λN (W1)+1 ] and is an increasing function on
β ∈ [

1
λN (W1)+1 , 1). It immediately follows that the smallest value

of maxi=1,...,NJi[β, λi(W1)] on β ∈ [0, 1) is 1
λN (W1)+1 , which is no

greater than λ2(W1) and is achieved when β =
1

λN (W1)+1 . In the
following, we show that λ2(W1) ≤ maxi=1,...,NJi[β, λi(W1)] for
β ∈ (−1, 0).

When J2[β, λ2(W1)] is given by (12) with i = 2, we ex-
amine J2[β, λ2(W1)] − λ2(W1). It can be verified that for β ∈

(−1, 0), J2[β, λ2(W1)] > λ2(W1) if λ2(W1) ∈ (
√
5−1
2 , 1), and

J2[β, λ2(W1)] ≤ λ2(W1) if λ2(W1) ∈ [0,
√
5−1
2 ].

Since maxi=1,...,NJi[β, λi(W1)] ≥ J2[β, λ2(W1)] for β < 0, one
has maxi=1,...,NJi[β, λ2(W1)] ≥ λ2(W1) if λ2(W1) >

√
5−1
2 . We

can conclude that the solution to the optimization problem (14)
is β̄ =

1
λN (W1)+1 and ρ(Φ(β̄) − J) =

1
λN (W1)+1 .

Case 2: λN (W1) ≤

√
5−1
2 < λ2(W1): Since J2[β, λ2(W1)] is

decreasing on the interval β ∈ [0, 3−
√
5

2 ] and JN [β, λN (W1)] is
increasing on the intervalβ ∈ ( 3−

√
5

2 , 1
λN (W1)+1 ), in viewof (18) (see

Box IV), maxi=1,...,NJi[β, λi(W1)] is decreasing on β ∈ [0, 3−
√
5

2 ]

and increasing on β ∈ ( 3−
√
5

2 , 1). Thus in this case, the optimal
parameter β̄ =

3−
√
5

2 and J2[β̄, λ2(W1)] =

√
5−1
2 .

Case 3: λN (W1) ≤ λ2(W1) <
√
5−1
2 : In this case, Algorithm (1)

converges to the average of the initial values for β ∈ (−1, 1).
From previous discussions, one knows that J2[β, λ2(W1)] is in-
creasing on the interval β ∈ [0, 3−

√
5

2 ] and JN [β, λN (W1)] is
increasing on the interval β ∈ ( 3−

√
5

2 , 1
λN (W1)+1 ). This implies that

maxi=1,...,NJi[β, λi(W1)] ≥ J2[0, λ2(W1)] = λ2(W1) for β ∈ [0, 1).
But for β ∈ (−1, 0), it is possible that Ji[β, λi(W1)] < λ2(W1). We
next examine maxi=1,...,NJi[β, λi(W1)] for β ∈ (−1, 0).

Since all the eigenvalues λi(W1) lie in the interval [0,
√
5−1
2 ], we

obtain β∗∗

i ≤ −1 ≤ β∗

i ≤ 0 given in (11) (see Box I). Calculating
the derivative of β∗

i with respect to λi(W1) leads to

∂β∗

i

∂λi(W1)
=

1
λ3
i (W1)

(
4 − 2λi(W1) +

−λ3
i (W1) + 6λi(W1) − 4√

λ3
i (W1) − 2λi(W1) + 1

)
.

(19)

Algebraic manipulations show that ∂β∗
i

∂λi(W1)
≤ 0 when λi(W1) ∈

[0,
√
5−1
2 ].

Since λN (W1) ≤ · · · ≤ λ2(W1) ≤

√
5−1
2 , we have that −1 ≤

β∗

2 ≤ · · · ≤ β∗

N ≤ 0. From (13), on the interval (−1, β∗

2 ),
Ji[β, λi(W1)] =

√
−β(1 − λi(W1)) for i = 2, . . . ,N and it is



W. Xia et al. / Automatica 83 (2017) 116–123 121

max
i=1,...,N

Ji[β, λi(W1)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
(1 − β)λ2(W1) − 2 +

√
(1 − β)2λ2

2(W1) + 4β(1 − λ2(W1))
)

, β ∈

[
0,

3 −
√
5

2

]
,

1
2

(
(1 − β)λN (W1) − 2 +

√
(1 − β)2λ2

N (W1) + 4β(1 − λN (W1))
)

, β ∈

(
3 −

√
5

2
,

1
λN (W1) + 1

)
,

β, β ∈

[
1

λN (W1) + 1
, 1
)

.

(18)

Box IV.

obvious that
√

−β(1 − λN (W1)) ≥
√

−β(1 − λi(W1)) for i =

2, . . . ,N − 1. We conclude that on the interval β ∈ (−1, β∗

2 ),

max
1≤i≤N

Ji[β, λi(W1)] = max
{
−β,

√
−β(1 − λi(W1))

}
. (20)

On the interval β ∈ [β∗

N , 0), Ji[β, λi(W1)] are given in (12) for
i = 2, . . . ,N . It can be shown that the derivative of Ji[β, λi(W1)]
with respect to λi(W1), given in (17), is positive for β < 0. Thus
J2[β, λ2(W1)] ≥ Ji[β, λi(W1)] for i = 3, . . . ,N , on the interval
β ∈ [β∗

N , 0). We conclude that on the interval β ∈ [β∗

N , 0),

max
i=1,...,N

Ji[β, λi(W1)]

= max
{

− β,
1
2

(
(1 − β)λ2(W1)

+

√
(1 − β)2λ2

2(W1) + 4β(1 − λ2(W1))
)}

.

(21)

On the interval β ∈ (β∗

2 , β
∗

N ), JN [β, λN (W1)] =
√

−β(1 − λN (W1)) and J2[β, λ2(W1)] is given by (12) with i = 2.
For Ji[β, λi(W1)], i = 3, . . . ,N −1, they are given by either (12) or
(13). Since Ji[β, λi(W1)] in (12) is an increasing function of λi(W1)
and

√
−β(1 − λi(W1)) is a decreasing function of λi(W1), on the

interval β ∈ (β∗

2 , β
∗

N ), one has

max
i=1,...,N

Ji[β, λi(W1)]

= max
{

− β,
√

−β(1 − λN (W1)),
1
2

(
(1 − β)λ2(W1)

+

√
(1 − β)2λ2

2(W1) + 4β(1 − λ2(W1))
)}

.

(22)

We examine −β , JN [β, λN (W1)] and J2[β, λ2(W1)] given in
(22) as functions of β . It is easy to see that when β ∈ [λN (W1) −

1, 0), −β ≤
√

−β(1 − λN (W1)); when β ∈ (−1, λN (W1) − 1),
−β >

√
−β(1 − λN (W1)).

When λ2(W1) ∈ [2 −
√
2,

√
5−1
2 ], 1−2λ2(W1)

1−λ2(W1)
≤

−λ2(W1)
2−λ2(W1)

. It can
be verified that J2[β, λ2(W1)] ≥ −β if β ∈ [

1−2λ2(W1)
1−λ2(W1)

, 0), and

J2[β, λ2(W1)] ≤ −β if β ∈

(
−1, 1−2λ2(W1)

1−λ2(W1)

)
.

We conclude that if λN (W1) ≥
1−2λ2(W1)
1−λ2(W1)

+ 1, then

max
i=1,...,N

Ji[β, λi(W1)]

=

⎧⎪⎪⎨⎪⎪⎩
−β, β ∈

(
−1,

1 − 2λ2(W1)
1 − λ2(W1)

]
,

J2[β, λ2(W1)], β ∈

(
1 − 2λ2(W1)
1 − λ2(W1)

, 0
)

.

(23)

It is clear that if β =
1−2λ2(W1)
1−λ2(W1)

, maxi=1,...,NJi[β, λi(W1)] achieves
the smallest value which is less than λ2(W1). Thus β̄ =

1−2λ2(W1)
1−λ2(W1)

is the optimal value on the interval β ∈ (−1, 1) when λ2(W1) ∈[
2 −

√
2,

√
5−1
2

]
.

If λN (W1) <
1−2λ2(W1)
1−λ2(W1)

+ 1, then

max
i=1,...,N

Ji[β, λi(W1)]

=

⎧⎨⎩
−β, β ∈ (−1, λN (W1) − 1],

JN [β, λN (W1)], β ∈ (λN (W1) − 1, β̃],

J2[β, λ2(W1)], β ∈ (β̃, 0),
(24)

where β̃ is given by solving the equation JN [β, λN (W1)] =

J2[β, λ2(W1)]. This gives the value of β̃ in (16) (see Box III). It
follows that the optimal β̄ is given by β̃ .

When λ2(W1) ∈ [0, 2 −
√
2), 1−2λ2(W1)

1−λ2(W1)
>

−λ2(W1)
2−λ2(W1)

. It can
be verified that J2[β, λ2(W1)] ≥ −β if β ∈ [

−λ2(W1)
2−λ2(W1)

, 0), and

J2[β, λ2(W1)] ≤ −β if β ∈

(
−1, −λ2(W1)

2−λ2(W1)

)
. Since λN − 1 ≤

1−
√
2 ≤

−λ2(W1)
2−λ2(W1)

, thus we conclude that maxi=1,...,NJi[β, λi(W1)]
is the same as in (24). The optimal value of β that achieves the
fastest convergence rate is given by β̄ = β̃ in (16) (see Box III).
The proof is thus completed. □

Remark 4. The optimal selection of β depends on the values of
λ2(W1) and λN (W1). Note that I − W1 is a Laplacian matrix and
1 − λ1(W1), . . . , 1 − λN (W1) are the eigenvalues of I − W1. Dis-
tributed algorithms exist to estimate the eigenvalues of a Laplacian
matrix (Franceschelli, Gasparri, Giua, & Seatzu, 2013). Therefore
the optimal value of β can be calculated in a distributed way.

5. Numerical examples

Our theoretical analysis has been focused on the case when
G(2) is the complement of G(1), where the optimal values of β

and ρ(Φ(β) − J) can be computed analytically. In this section,
we perform numerical studies for the case when G(2) is not the
complement of G(1).

Assume that the primary network G(1) is an Erdös–Rényi ran-
dom graph, where the presence of a possible edge between a pair
of distinct vertices is independentwith probability p. For each p, we
generate 6 graphs with the number of nodes being 30, 60, 90, 120,
150, and 180. For p = 0.2, first assume that G(2) is the complement
of G(1) and Assumption 2 holds. Fig. 1(a) depicts the eigenvalues
λ2(W1) andρ(Φ(β̄)−J)with β̄ given in (15) (see Box II); the optimal
parameter β̄ for each network is shown in Fig. 1(b). We also plot
the corresponding optimal values of ρ(Φ(β) − J) for the case of
W2 = I , where Eq. (2) becomes

y(t + 1) =

[
(1 − β)W1 βI

I 0

]
y(t). (25)

The above equation corresponds to the algorithm studied in Ore-
shkin et al. (2010), Sarlette (2014) and Yang, Freeman, and Lynch
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Fig. 1. (a) shows the eigenvalues λ2(W1), ρ(Φ(β̄) − J) and the optimal values of ρ(Φ(β) − J) forW2 = I and (b) shows the corresponding optimal values of β .

Fig. 2. p = 0.2, the dots with circles indicate the values of ρ(Φ(β)− J) with optimal
choices ofβ , and the dotswith down triangles indicateρ(Φ(β̄)−J)with β̄ calculated
when G(2) is the complement of G(1) .

(2006)which introduces onememory register in each node to store
its outdated state in order to accelerate the convergence speed. It
can be seen from Fig. 1(b) that the optimal parameter β for the case
of the matrix W2 = I is negative, while it takes positive values for
the case when G(2) is the complement of G(1).

Next, assume that an edge between a pair of distinct vertices in
G(2) exists independently with probability q. We consider four dif-
ferent values of q, i.e., q = 0.2, 0.4, 0.6, 0.8. For each q, the optimal
values of ρ(Φ(β)− J) with optimal choices of β are plotted in Fig. 2,
which are indicated with circles for different networks. It is clear
that β̄ , which is derived for the case when G(2) is the complement
of G(1), will not give us the optimal values of ρ(Φ(β) − J) in this
case. To see the difference between the corresponding values of

ρ(Φ(β̄) − J) and the optimal values of ρ(Φ(β) − J), ρ(Φ(β̄) − J)
are calculated and indicated in Fig. 2 with down triangles. It can be
seen that though taking β = β̄ does not provide us the optimal
value of ρ(Φ(β) − J), the difference between these two values are
small when the probability q is no less than 0.4. When the network
size becomes large and the probability q is small, ρ(Φ(β̄)− J) is not
a good approximation of the optimal value of ρ(Φ(β) − J).

We plot two other cases of p = 0.1 and p = 0.3, which are
illustrated in Fig. 3(a) and (b), respectively. It can be seen thatwhen
p is small (p = 0.1 and q ≤ 0.6), or when p is relatively large and q
is large (p = 0.3 and q ≥ 0.6), ρ(Φ(β̄) − J) is close to the optimal
value of ρ(Φ(β)− J); while when p is relatively large and q is small
(p = 0.3, q ≤ 0.4), the difference between ρ(Φ(β̄) − J) and the
optimal value of ρ(Φ(β) − J) becomes large as the network size
grows.

6. Conclusions

A simple algorithm has been proposed to reach an average
consensus in a network by making a tradeoff between current and
delayed neighbor information. It has been shown that as long as
a nontrivial fraction is used of this information, consensus can be
reached. The optimal way of making use of the information for
the case when the secondary network is the complement of the
primary network was also given. These results have shown the
necessity and the optimal way of reaching consensus using both
current and delayed information. Numerical examples have shown
that when the secondary network is not the complement of the
primary network, the optimal value β̄ , obtained for the case when
the secondary network is the complement of the primary network,
can lead to ρ(Φ(β̄) − J) close to the optimal one in some cases.

Fig. 3. Similar plots to Fig. 2 with (a) p = 0.1 and (b) p = 0.3.
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