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Abstract— This paper considers distributed bandit online
optimization with time-varying coupled inequality constraints.
The global cost and the coupled constraint functions are the
summations of local convex cost and constraint functions,
respectively. The local cost and constraint functions are held
privately and only at the end of each period the constraint
functions are fully revealed, while only the values of cost
functions at queried points are revealed, i.e., in a so called
bandit manner. A distributed bandit online primal-dual algo-
rithm with two queries for the cost functions per period is
proposed. The performance of the algorithm is evaluated using
its expected regret, i.e., the expected difference between the
outcome of the algorithm and the optimal choice in hindsight,
as well as its constraint violation. We show that O(T c) expected
regret and O(T 1−c/2) constraint violation are achieved by the
proposed algorithm, where T is the total number of iterations
and c ∈ [0.5, 1) is a user-defined trade-off parameter. Assuming
Slater’s condition, we show that O(

√
T ) expected regret and

O(
√
T ) constraint violation are achieved. The theoretical results

are illustrated by numerical simulations.

I. INTRODUCTION

Online convex optimization is a promising methodology
for modeling sequential tasks and can be traced back to
the 1990s [1]–[4]. It has important applications in machine
learning and control, see, e.g., [5]–[10]. Bandit online convex
optimization is online convex optimization with so called
bandit feedback meaning that in each period only the values
of the cost functions at some points are revealed, rather than
other information such as the gradient of the cost function.
Gradient information may not be available in many applica-
tions, such as online source localization, online routing in
data networks, and online advertisement placement in web
search [7]. Essentially, bandit online convex optimization
is a derivative-free method to solve convex optimization
problems. Derivative-free methods have an evident advantage
since computing a function value is much simpler than
computing its gradient [11]. Early works of studying bandit
online convex optimization include [12], [13], where the
expected regret is used to measure the performance of the
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algorithms. The expected regret is the expected difference
between the outcome of the algorithm and the optimal choice
in hindsight.

A key step in bandit online convex optimization is to
estimate the gradient of the cost function through querying
the cost function. Various algorithms have been developed
and can be divided into two categories depending on the
number of queries. Algorithms with one query per period
have been proposed in [13]–[22]. Algorithms with two or
more queries per period have been proposed in [22]–[28]
and the expected regret bounds can then be further reduced.

Aforementioned studies did not consider equality or in-
equality constraints. In the literature, there are only few
papers considering bandit online convex optimization with
equality or inequality constraints, although such constraints
are common in applications. The authors of [29] studied
online convex optimization with static inequality constraints
and bandit feedback for constraints. They proposed an al-
gorithm with two queries per period and achieved O(

√
T )

and O(T 3/4) bounds on the expected regret and constraint
violation, respectively. The authors of [30] studied online
convex optimization with time-varying inequality constraints
and bandit feedback for cost functions. Under Slater’s con-
dition, they proposed a class of algorithms with one or two
queries per period.

Most existing bandit online convex optimization studies
are in a centralized setting and only few papers considered
distributed bandit online convex optimization. When cost
functions are strongly convex, the authors of [31] proposed
a consensus-based distributed bandit online algorithm with
one query per period and obtained O(

√
T log(T )) expected

regret. When cost functions are quadratic, the authors of
[32] proposed a consensus-based distributed bandit online
algorithm with two queries per period and obtained O(

√
T )

expected regret when there are set constraints.
This paper studies distributed bandit online convex opti-

mization with time-varying coupled inequality constraints.
The global cost and the coupled constraint functions are
the sum of local convex cost and constraint functions,
respectively. The local cost and constraint functions are held
privately and only at the end of each period the constraint
functions are fully revealed, while the values of the cost
functions are revealed in a bandit manner. Specifically, per
period each agent can sample the value of its local cost
function at two points and can observe the value and the
exact gradient of its local constraint function at one point.
Compared to existing studies, the contributions of this paper
are summarized as follows.



1) We develop a distributed bandit online primal-dual
algorithm, where per period each agent uses two queries
to estimate the gradient of its local cost function. The
proposed algorithm uses different non-increasing stepsize
sequences for the primal and dual updates and a non-
increasing sequence of regularization parameters. Moreover,
it also uses non-increasing shrinkage and exploration se-
quences in the gradient estimation model. These sequences
give some freedom in the expected regret and constraint
violation bounds, as they allow the trade-off between how
fast these two bounds tend to zero. It should be highlighted
that the total number of iterations is not used as a variable in
the algorithm, which is different from most existing bandit
online algorithms.

2) For the proposed algorithm, we show that O(T c)
expected regret and O(T 1−c/2) constraint violation are
achieved, where c ∈ [0.5, 1) is a user-defined trade-off
parameter. Compared with the bandit algorithm in [25],
which achieved O(

√
T ) expected regret under static set con-

straints and centralized computations using the total number
of iterations in the algorithm, we are relaxing all these
assumptions.

3) Assuming Slater’s condition, we show that O(
√
T )

expected regret and O(
√
T ) constraint violation can be

achieved. Although the two-query bandit algorithm in [30]
also achieved the same expected regret and constraint viola-
tion bounds, it is a centralized algorithm and uses the total
number of iterations. Moreover, a slightly stronger Slater’s
condition was assumed in [30].

The rest of this paper is organized as follows. Section II
introduces the preliminaries. Section III gives the problem
formulation. Section IV provides a distributed bandit online
algorithm and presents expected regret and constraint viola-
tion bounds. Section V gives numerical simulations. Finally,
Section VI concludes the paper.
Notations: All inequalities and equalities are understood
componentwise. [n] represents the set {1, . . . , n} for any n ∈
N+. Sp stands for the unit sphere centered around the origin
in Rp under Euclidean norm. col(z1, . . . , zk) represents the
concatenated column vector of vectors zi ∈ Rni , i ∈ [k].
Given two scalar sequences {αt, t ∈ N+} and {βt >
0, t ∈ N+}, αt = O(βt) means that lim supt→∞(αt/βt)
is bounded. For a set K ⊆ Rp, PK(·) denote the projection
operator, i.e., PK(x) = arg miny∈K ‖x− y‖2, ∀x ∈ Rp. For
simplicity, [·]+ is used to denote PK(·) when K = Rp+.

II. PRELIMINARIES

In this section, we present some definitions and assump-
tions related to graph theory and gradient approximation.

A. Graph Theory

Interactions between agents are modeled by a time-varying
directed graph. Specifically, at time t, agents communicate
with other agents according to a directed graph Gt = (V, Et),
where V = [n] is the agent set and Et ⊆ V × V is the edge
set. Let N in

i (Gt) = {j ∈ [n] | (j, i) ∈ Et} and N out
i (Gt) =

{j ∈ [n] | (i, j) ∈ Et} be the sets of in- and out-neighbors,

respectively, of agent i at time t. The mixing matrix Wt ∈
Rn×n at time t fulfills [Wt]ij > 0 if (j, i) ∈ Et or i = j,
and [Wt]ij = 0 otherwise.

The following standard assumption is made on the graph,
see e.g., [33].

Assumption 1. For any t ∈ N+, the graph Gt satisfies the
following conditions: (i) There exists a constant w ∈ (0, 1),
such that [Wt]ij ≥ w if [Wt]ij > 0; (ii) The mixing matrix
Wt is doubly stochastic, i.e.,

∑n
i=1[Wt]ij =

∑n
j=1[Wt]ij =

1, ∀i, j ∈ [n]; (ii) There exists an integer ι > 0 such that
the graph (V,∪l=0,...,ι−1Et+l) is strongly connected.

B. Gradient Approximation

Let f : K → R be a function with K ⊂ Rp. We assume
that K is bounded and has a nonempty interior. Without loss
of generality, we assume that K contains the ball of radius
r(K) centered at the origin and is contained in the ball of
radius R(K), i.e., r(K)Bp ⊆ K ⊆ R(K)Bp. We use the
following gradient estimator

∇̂2f(x) =
p

δ
(f(x+ δu)− f(x))u, ∀x ∈ (1− ξ)K, (1)

where u is a random vector which is uniformly distributed
in the unit sphere Sp, δ ∈ (0, r(K)ξ] is an exploration
parameter, and ξ ∈ (0, 1) is a shrinkage coefficient. The
estimator (1) thus requires to sample the function at two
points, so it is a two-query model. The intuition follows from
directional derivatives [24]. The properties of f̂ can be found
in [34].

III. PROBLEM FORMULATION

Consider a network of n agents indexed by i ∈ [n]. For
each i, let the local decision set Xi ⊆ Rpi be a closed convex
set with pi being a positive integer. Let {fi,t : Xi → R}
and {gi,t : Xi → Rm} be sequences of local convex cost
and constraint functions over time t = 1, 2, . . . , respectively,
where m is a positive integer. At each t, the network’s
objective is to solve the constrained convex optimization
problem

min
xt ∈ X

ft(xt)

s.t. gt(xt) ≤0m, t = 1, 2, . . .
(2)

where X = X1×· · ·×Xn ⊆ Rp with p =
∑n
i=1 pi being the

global decision set, xt = col(x1,t, . . . , xn,t) is the global
decision variable, ft(xt) =

∑n
i=1 fi,t(xi,t) is the global

cost function, and gt(xt) =
∑n
i=1 gi,t(xi,t) is the coupled

constraint function. In order to guarantee that problem (2)
is feasible, we assume that for any T ∈ N+, the set of all
feasible sequences XT = {(x1, . . . , xT ) : xt ∈ X, gt(xt) ≤
0m, t ∈ [T ]} is non-empty. With this standing assumption,
an optimal sequence to (2) always exists.

It is interesting and challenging to consider the problem (2)
in a bandit online setting and propose distributed algorithms
to solve it. For a distributed bandit online algorithm, at
time t, each agent i selects a decision xi,t ∈ Xi. After
the selection, the agent can sample partial information of



its cost function fi,t and constraint function gi,t at some
points. At the same moment, due to the lack of other
agents’ cost and constraint function information, the agents
exchange data (to be determined in the next section) with
their neighbors over a time-varying directed graph. For bandit
online algorithms, expected regret and constraint violation
are commonly used as performance metrics. The expected
regret is the expected accumulation over time of the loss
difference between the decision determined by the algorithm
and the static optimal decision if the sequences of cost
and constraint functions are known in advance. Specifically,
the efficacy of a decision sequence xT = (x1, . . . , xT ) is
characterized by the expected regret

Reg(xT ) =E[

T∑
t=1

ft(xt)]−
T∑
t=1

ft(x
∗
T ),

where x∗T ∈ X such that (x∗T , . . . , x
∗
T ) =

arg minxT∈XT

∑T
t=1 ft(xt) with XT = {(x, . . . , x) : x ∈

X, gt(x) ≤ 0m, t = 1, . . . , T} is the set of feasible static
sequences. In order to guarantee the existence of x∗T , we
assume that for any T ∈ N+, XT is non-empty. Moreover,
the constraint violation measure is

‖[
T∑
t=1

gt(xt)]+‖.

This definition implicitly allows constraint violations at some
times to be compensated by strictly feasible decisions at
other times. This is appropriate for constraints that have a
cumulative nature such as energy budgets enforced through
average power constraints.

In this paper, we consider the problem (2) in the bandit
setting. Specifically, at each period each agent can sample
the value of its local cost function at two points and can
observe the value and the exact gradient of its local constraint
function at one point. In other words, this paper can be
viewed as an extension of the problem considered in [10],
from full information feedback of the cost functions to
bandit feedback. Bandit feedback is suitable to model many
applications, where the gradient information is not available,
such as online source localization, online routing in data
networks, and online advertisement placement [7].

To end this section, we make the following assumptions
on the cost and constraint functions.

Assumption 2. (i) Each set Xi is convex and closed.
Moreover, there exist ri > 0 and Ri > 0 such that
riBpi ⊆ Xi ⊆ RiBpi . (ii) {fi,t} and {gi,t} are convex and
uniformly bounded on Xi, i.e., there exist constants Ff > 0
and Fg > 0 such that |fi,t(x)| ≤ Ff and ‖gi,t(x)‖ ≤ Fg
for all t ∈ N+, i ∈ [n], x ∈ Xi. (iii) {∇fi,t} and {∇gi,t}
exist and they are uniformly bounded on Xi, i.e., there exist
constants Gf > 0 and Gg > 0 such that ‖∇fi,t(x)‖ ≤
Gf and ‖∇gi,t(x)‖ ≤ Gg for all t ∈ N+, i ∈ [n], x ∈ Xi.

Assumption 2 is common in the literature on bandit online
convex optimization, see, e.g., [29], [30].

Assumption 3. (Slater’s condition) There exists a constant
ε > 0 and a vector xs ∈ X, such that gt(xs) ≤ −ε1m, ∀t ∈
N+.

Assumption 3 is slightly weaker than the Assumption (as3)
used in [30] since the later requires xs ∈ (1−ξ)X for a small
ξ > 0.

A. Motivating Example

As a motivating example, consider a power grid with
n power generation units. Each unit i has pi conventional
and renewable power generators. The units can communicate
through the information infrastructure. At stage t, let xi,t ∈
Xi and Xi ⊂ Rpi be the output and the set of feasible
outputs of the generators in unit i, respectively. To generate
the output, each unit i suffers a cost fi,t(xi,t). This local
cost fi,t is usually unknown in advance, since fossil fuel
price is fluctuating and renewable energy is uncertain and
unpredictable. Except the local generator limit constraints
Xi, all units need to cooperatively take into account global
constraints, such as power balance and emission constraints.
The global constraints can be modelled as

∑n
i=1 gi,t(xi,t) ≤

0m, where gi,t is unit i’s local constraint function. The goal
of the units is to reduce the global cost while satisfying the
constraints.

IV. MAIN RESULTS

In this section, we propose a distributed bandit online
primal-dual algorithm to solve the problem (2) and derive
expected regret and constraint violation bounds for this
algorithm. For space purposes, all proofs are omitted, but
can be found in [34].

A. Distributed Bandit Online Primal-Dual Algorithm

The proposed distributed bandit online algorithm is given
in pseudo-code as Algorithm 1. Note that each agent i
maintains three local sequences: the local primal decision
variable sequence {xi,t} ⊆ Xi, the local dual variable
sequence {qi,t} ⊆ Rm+ , and the estimator of the average
of local dual variables {q̃i,t} ⊆ Rm+ . They are initialized by
an arbitrary xi,1 ∈ Xi and qi,1 = q̃i,1 = 0m, and updated
recursively using the update rules (3a)–(3c). In (3b), ai,t
is the updating direction information for the local primal
variable defined as

ai,t = ∇̂2fi,t−1(xi,t−1) + (∇gi,t−1(xi,t−1))>q̃i,t. (4)

The intuition of the update rules (3a)–(3c) is as follows.
The augmented Lagrangian function associated with the
constrained optimization problem with cost function f and
constraint function g is

A(x, µ) = f(x) + µ>g(x)− β

2
‖µ‖2, (5)

where µ ∈ Rm+ is the Lagrange multiplier and β > 0 is
the regularization parameter. A(x, µ) is a convex-concave
function. A standard primal-dual algorithm to find its saddle
point is

xk+1 =PX(xk − α(∇f(xk) + (∇g(xk))>µk)), (6a)



Algorithm 1 Distributed Bandit Online Primal-Dual Descent

1: Input: non-increasing stepsize sequences {αt}, {βt},
and {γt} ⊆ (0, 1]; non-increasing shrinkage coefficients
{ξi,t} ⊆ (0, 1), i ∈ [n]; exploration parameters {δi,t} ⊆
(0, riξi,t], i ∈ [n].

2: Initialize: xi,1 ∈ (1− ξi,1)Xi and qi,1 = 0m, ∀i ∈ [n].
3: for t = 2, . . . , T do
4: for i ∈ [n] in parallel do
5: Select vector ui,t−1 ∈ Spi independently and uni-

formly at random.
6: Sample fi,t−1(xi,t−1 + δi,t−1ui,t−1) and

fi,t−1(xi,t−1) and observe gi,t−1(xi,t−1) and
∇gi,t−1(xi,t−1).

7: Receive [Wt−1]ijqj,t−1 from j ∈ N in
i (Gt−1).

8: Update

q̃i,t =

n∑
j=1

[Wt−1]ijqj,t−1, (3a)

xi,t =P(1−ξi,t)Xi
(xi,t−1 − αtai,t), (3b)

qi,t =[q̃i,t + γt(gi,t−1(xi,t−1)− βtq̃i,t)]+. (3c)

9: Broadcast qi,t to N out
i (Gt).

10: end for
11: end for
12: Output: xT .

µk+1 =[µk + γ(g(xk)− βµk)]+, (6b)

where α > 0 and γ > 0 are the stepsizes used in the primal
and dual updates, respectively. The update rules (3a)–(3c) are
the distributed, online, and gradient-free extensions of (6a)
and (6b). The term −βtq̃i,t in (3c) is derived from penalty
term −β2 ‖µ‖

2 in the augmented Lagrangian function (5) and
it has an important role to guarantee that the dual variable
sequence is not growing too large as shown in the proof of
Lemma 1 given in [34].

In Algorithm 1, the data exchanged between agents is
the local dual variable rather than any information related
to the local primal variable, so our algorithm is well suited
to account for privacy requirements.

B. Expected Regret and Constraint Violation Bounds

The following lemma provides the expected regret and
constraint violation bounds for the general case.

Lemma 1. Suppose Assumptions 1–2 hold. For any T ∈ N+,
let xT be the sequence generated by Algorithm 1. Then,

Reg(xT )

≤
T∑
t=1

E[d1(t)] + C1

T∑
t=1

γt+1 + npG2
f

T∑
t=1

αt+1

+
1

2

T∑
t=1

n∑
i=1

ηtE[‖qi,t‖2] +
2nR2

max

αT+1
, (7a)

‖[
T∑
t=1

gt(xt)]+‖2

≤ d0(T )

{ T∑
t=1

d2(t) + C1

T∑
t=1

γt+1 +
2nR2

max

αT+1

+
1

2

T∑
t=1

n∑
i=1

ηt‖qi,t − q∗‖2 + 2pGfRmaxT

}
, (7b)

where C1 =
3n(2+nτ)F 2

g

1−λ + 2nF 2
g , τ = (1− w/2n2)−2 > 1,

λ = (1−w/2n2)1/ι, ηt = 1
γt+1
− 1
γt
−βt+1 +4G2

gαt+1, and
Rmax = maxi∈[n]{Ri}, and, w and ι are given in Assump-
tion 1, and {Ri} are given in Assumption 2. Furthermore,

d0(T ) =2n(
1

γ1
+

T∑
t=1

(4G2
gαt+1 + βt+1)),

d1(t) =

n∑
i=1

(Gfδi,t +GfRmaxξi,t) + d2(t),

d2(t) =

n∑
i=1

(
2R2

max(ξi,t − ξi,t+1)

αt+1
+GgRmaxξi,t‖q̃i,t+1‖),

and q∗ =
2[
∑T

t=1 gt(xt)]+
d0(T ) ∈ Rm+ .

In (7a) and (7b), only two terms d1(t) and d2(t) depend on
the shrinkage coefficients (ξi,t, i ∈ [n]) and the exploration
parameters (δi,t, i ∈ [n]) which are used to calculate the
gradient estimator. Thus, the two terms are zero if the
accurate gradient is used. In other words, we can regard
d1(t) and d2(t) as the error caused by the inaccuracy of
the gradient estimator. Note that the dependence on the
stepsize sequences (αt, βt, and γt), shrinkage coefficients
(ξi,t, i ∈ [n]), exploration parameters (δi,t, i ∈ [n]), the
number of agents n, and the network connectivity (w and
ι), are all characterized in (7a) and (7b). In order to obtain
sublinear expected regret and constraint violation bounds, the
stepsize sequences, shrinkage coefficients, and exploration
parameters should be properly chosen. Firstly, note that αt
appears in both the denominator and numerator of (7a) and
(7b), so we should let αt = O( 1

tc ) with c ∈ (0, 1) because
otherwise one of the terms that contained αt will grow
linearly or superlinearly. Note that it is not clear whether the
dual sequence is bounded or not, so we should let ηt ≤ 0.
Finally, note that ξi,t and δi,t only appear in the numerator,
so we should let them be as small as possible.

The following theorem characterizes expected regret and
constraint violation bounds based on such selected stepsizes,
shrinkage coefficients, and exploration parameters.

Theorem 1. Suppose Assumptions 1–2 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with

αt =
1

tc
, βt =

4G2
g + 1

tc
, γt =

1

t1−c
,

ξi,t =
1

t+ 1
, δi,t =

ri
t+ 1

, ∀t ∈ N+, (8)

where c ∈ [0.5, 1) is a constant. Then,

Reg(xT ) ≤ C2T
c, (9a)



‖[
T∑
t=1

gt(xt)]+‖ ≤
√
C3T

1−c/2, (9b)

where C2 = 4nGfRmax +C2,1, C2,1 =
2nFgGgRmax

c(4G2
g+1) + C1

c +

np2G2
f

1−c +8nR2
max, C3 = C3,1(2pGfRmax+C2,1), and C3,1 =

2n(1 +
8G2

g+1

1−c ) are constants independent of T .

Remark 1. The parameter c in Theorem 1 is a user-
defined parameter which enables the trade-off between the
expected regret bound and the constraint violation bound.
For example, setting c = 0.5 gives Reg(xT ) = O(

√
T ) and

‖[
∑T
t=1 gt(xt)]+‖ = O(T 3/4). These two bounds are the

same as the bounds achieved in [8], [9]. So in average sense,
Algorithm 1 is as efficient as the algorithms proposed in [8],
[9]. However, [8], [9] are in full-information setting and the
algorithms proposed in them are centralized. Moreover, the
constraint functions considered in [8] are time-invariant.

From (9b), we see that the constraint violation bound is
strictly greater than O(

√
T ) since c < 1. In the following

theorem we show that O(
√
T ) bound on constraint violation

can be achieved if Slater’s condition holds.

Theorem 2. Suppose Assumptions 1–3 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with

αt =
1√
t
, βt =

4G2
g + 1
√
t

, γt =
1√
t
,

ξi,t =
1

t+ 1
, δi,t =

ri
t+ 1

, ∀t ∈ N+. (10)

Then,

Reg(xT ) ≤ C4

√
T , (11a)

‖[
T∑
t=1

gt(xt)]+‖ ≤ 4
√
nB1

√
T , (11b)

where C4 = 4GfRmax +2B1FgGgRmax +2C1 +2np2G2
f +

8nR2
max, B1 = max{ 2nB2

ε , 2
√

4nR2
max + 2B2}, and B2 =

C1 + 2pGfRmax + 2nR2
max +

FgGgRmax

4G2
g+1 are constants inde-

pendent of T .

Remark 2. From (9a) or (11a), we know that, no matter
whether Slater’s condition holds or not, O(

√
T ) expected

regret is achieved by Algorithm 1. It was pointed out in
[6] that O(

√
T ) is a tight bound to regret for online

convex optimization problems in full-information setting,
so in average sense, Algorithm 1 is as efficient as the
optimal online algorithms using full-information. The same
expected regret bound and the same expected regret as well
as constraint violation bounds were also achieved by the
two-query bandit algorithm in [25] and [30], respectively.
However, in [25] static set constraints (rather than time-
varying inequality constraints) were considered and in [30]
a slightly stronger Slater’s condition was assumed (see the
discussion after Assumption 3 for details). Moreover, in [25],
[30] the proposed algorithms are centralized (rather than
distributed) and the total number of iterations needs to be
known in advance to design the algorithm.
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Fig. 1: Comparison of evolutions of the expected regret
Reg(xT )/T .

V. NUMERICAL SIMULATIONS

This section evaluates the performance of Algorithm 1
in solving the power generation example introduced in
Section III-A. The local cost and constraint functions are
denoted

fi,t(xi,t) =x>i,tΠ
>
i,tΠi,txi,t + 〈πi,t, xi,t〉,

gi,t(xi,t) =x>i,tΦ
>
i,tΦi,txi,t + 〈φi,t, xi,t〉+ ci,t,

where Πi,t ∈ Rpi×pi , πi,t ∈ Rpi+ , Φi,t ∈ Rpi×pi , φi,t ∈ Rpi ,
and ci,t ∈ R. At each time t, an undirected graph is used as
the communication graph. Specifically, connections between
vertices are random and the probability of two vertices being
connected is ρ > 0. Moreover, edges (i, i+ 1), i ∈ [n− 1]
are added and [Wt]ij = 1/n if (j, i) ∈ Et and [Wt]ii =
1 −

∑
j∈N in

i (Gt)[Wt]ij . The parameters are set as: n = 50,
m = 1, pi = 6, Xi = [−10, 10]pi , and ρ = 0.2. Each element
of Πi,t, πi,t, Φi,t, φi,t, and ci,t are drawn from the discrete
uniform distribution in [−5, 5], [0, 10], [−5, 5], [−5, 5], and
[−5,−1], respectively. Under above settings, Assumptions 1–
2 hold.

Since there are no other distributed bandit online algo-
rithms to solve the problem of online optimization with
time-varying coupled inequality constraints, we compare our
Algorithm 1 with the centralized two-query bandit algorithm
in [30]. Figs. 1 and 2 show the evolutions of Reg(xT )/T
and ‖[

∑T
t=1 gt(xt)]+‖/T , respectively. The average is taken

over 100 realizations. From Figs. 1 and 2, we see that our
proposed distributed algorithm achieves comparable results
as the centralized algorithm proposed in [30].

VI. CONCLUSIONS

In this paper, we considered a distributed bandit online
convex optimization problem with time-varying coupled in-
equality constraints. We proposed a distributed bandit online
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Fig. 2: Comparison of evolutions of the constraint violation
‖[
∑T
t=1 gt(xt)]+‖/T .

primal-dual algorithm to solve this problem, where a two-
query procedure was used to estimate the gradients of the
cost functions. We showed that sublinear expected regret
and constraint violation can be achieved. We also showed
that the results in this paper can be cast as non-trivial
extensions of existing literature on online optimization and
bandit feedback. An interesting future research directions is
to consider an adaptive choice of the number of queries per
period by different agents.
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