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Abstract— In a recent paper [1], a modified DeGroot-
Friedkin model was proposed to study the evolution of the
social-confidence levels of individuals in a reflected appraisal
mechanism in which a network of n individuals consecutively
discuss a sequence of issues. The individuals update their
self-confidence levels on one issue in finite time steps, via
communicating with their neighbors, instead of waiting until
the discussion on the previous issue reaches a consensus, while
the neighbor relationships are described by a static relative
interaction matrix. This paper studies the same modified
DeGroot-Friedkin model, but with time-varying interactions
which are characterized by a sequence of doubly stochastic
matrices. It is shown that, under appropriate assumptions,
the n individuals’ self-confidence levels will all converge to 1

n
exponentially fast. An explicit expression of the convergence
rate is provided.

I. INTRODUCTION

Opinion dynamics have a long history in social sciences,
dating back to the classical DeGroot model [2], which is
probably the most well-known model for opinion dynamics
and closely related to consensus processes [3], [4]. Recently,
there has been considerable attention in understanding how
an individual’s opinion evolves over time, and various new
models have been proposed for opinion dynamics. Notable
among them are the Friedkin-Johnsen model [5], [6], the
Hegselmann-Krause model [7]–[9], the DeGroot-Friedkin
model [1], [10]–[12], and the Altafini model [13]–[17].

The DeGroot-Friedkin model [10] considers the situations
when a group of individuals discusses a sequence of issues,
and studies the evolution of the self-confidence levels of indi-
viduals, i.e., how confident an individual is for its opinions on
the sequence of issues. The evolution consists of two stages,
where in the first stage, individuals update their opinions for
a particular issue according to the classical DeGroot model,
and in the second stage, the self-confidence levels for the
next issue are governed by the reflected appraisal mechanism
proposed in [18]. The DeGroot-Friedkin model provides a
nice interpretation for the evolution of self-confidence levels,
though the model is somewhat centralized in the sense
that each individual needs to compute the normalized left
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eigenvector of the dominant eigenvalue of a network-wide
update matrix, and requires sufficiently long time discussion
for each issue in the sequence.

Recently, a modified DeGroot-Friedkin model was pro-
posed in [1] which provides a time-efficient, distributed
implementation of the original DeGroot-Friedkin model.
The modified model allows individuals to update their self-
confidence levels by only interacting with their neighbors,
and the update of self-confidence levels to take place in
finite time without waiting for the opinion process to reach
a consensus on any particular issue. It has been shown in [1]
that for the case when the relative interaction matrix is static
and doubly stochastic, all individuals’ self-confidence levels
converge to 1

n , where n is the number of individuals in the
network, which implies that a democratic state is reached. It
is worth noting that the analysis of the modified DeGroot-
Friedkin model with a fixed stochastic relative interaction
matrix is still an open problem.

In a realistic social network, the interaction among the
individuals often changes over time. With this in mind, this
paper aims to study the modified DeGroot-Friedkin model
with time-varying interactions which are characterized by a
sequence of doubly stochastic relative interaction matrices.
We show that, under a certain joint connectivity condition
and a uniform lower boundedness condition on the nonzero
elements of the interaction matrices, the convergence of the
system to a democratic state occurs even if the relative
interaction matrix is not fixed. More importantly, we prove
that the convergence is exponentially fast, and provide an
explicit expression of the convergence rate.

The remainder of this paper is organized as follows. Some
notations are introduced in Section I-A. In Section II, the
modified DeGroot-Friedkin model is introduced. The main
results of the paper are presented in Section III, whose
analysis and proofs are given in Section IV. The paper ends
with some concluding remarks in Section V.

A. Notations

For a fixed positive integer n, we use V to denote the set
{1, . . . , n}. We use ∆n to denote the simplex {x ∈ IRn :
xi ≥ 0, i ∈ V,

∑n
i=1 xi = 1}. For each i ∈ V , we use ei to

denote the vector in IRn whose ith element equals 1 and all
the other elements equal 0. We use I to denote the identity
matrix with an appropriate dimension and use 1 to denote
the all-one vector with an appropriate dimension. A row-
stochastic matrix is a nonnegative matrix with each row sum
equal to 1. A matrix is column-stochastic if its transpose is
a row-stochastic matrix. A matrix is called doubly stochastic
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if it is both row-stochastic and column-stochastic. For any
two real vectors x, y ∈ IRn, we write x ≥ y if xi ≥ yi for
all i ∈ V and x > y if xi > yi for all i ∈ V . We use diag(x)
to denote the diagonal matrix with the ith entry being xi.
For a scalar a ∈ IR, we use bac to denote the largest integer
that is no larger than a. For a directed graph G = (V, E), if
(i, j) ∈ E , the vertex j is called an out-neighbor of vertex
i and i is an in-neighbor of j. The out-neighbor set of i is
denoted by N−i (i) = {j|(i, j) ∈ E} and the in-neighbor set
of i is denoted by N+

i (i) = {j|(j, i) ∈ E}.

II. THE MODIFIED DEGROOT-FRIEDKIN MODEL

Consider a network consisting of n individuals labeled 1
through n. The individuals in this network discuss a sequence
of issues denoted by s ∈ {0, 1, 2, . . . }. The interactions
among the n individuals are characterized by a directed graph
G = (V, E). A directed edge (i, j) is in G if individual i can
communicate with j and will take j’s opinion into account
when updating her opinion. For each issue s, each individual
updates her opinion according to the DeGroot model [2] as

yi(s, t+ 1) = wii(s)yi(s, t) +

n∑
j=1,j 6=i

wij(s)yj(s, t), (1)

or in a matrix form

y(s, t+ 1) = W (s)y(s, t), (2)

where yi(s, t) ∈ IR is the opinion of individual i at time
t about issue s, y(s, t) = [y1(s, t), . . . , yn(s, t)]T , and
W (s) = (wij(s))n×n is called the influence matrix and is
row-stochastic. The diagonal element wii(s) of W (s) is the
self-weight of individual i assigned to her own opinion at the
previous step t on issue s and wij(s) is the weight individual
i accords to the opinion of individual j. wij(s) = 0 if (i, j)
is not an edge of the graph G.

In [10], the self-weight wii(s) is simply denoted by xi(s)
and the off-diagonal elements wij(s) are decomposed as
wij(s) = (1− xi(s))cij . The matrix C = (cij)n×n is called
the relative interaction matrix, in which cii = 0 for all i ∈ V
and cij is the relative weight that individual i assigns to her
out-neighbor j. It should be clear that C is a row-stochastic
matrix since the total weights i assigns to her out-neighbors
are 1− xi(s) on issue s. Then, the influence matrix can be
written as

W (x(s)) = diag(x(s)) + (I − diag(x(s))C, (3)

and the opinion dynamics (1) becomes

yi(s, t+ 1) = xi(s)yi(s, t) +

n∑
j=1,j 6=i

(1− xi(s))cijyj(s, t),

(4)
or in a matrix form

y(s, t+ 1) = W (x(s))y(s, t). (5)

Suppose that the relative interaction matrix C is irre-
ducible, i.e., the interaction graph G is strongly connected.
Then, the matrix W (x(s)) is also irreducible from (3).

By the Perron-Frobenius Theorem, there exists a unique
positive normalized vector, denoted by u(x(s)), such that
limt→∞W (x(s))t = 1u(x(s))T . The vector u(x(s)) is the
normalized left eigenvector of W (x(s)) corresponding to
the eigenvalue 1 and is called the dominant left eigenvector.
Then, the limit of the opinion in (5) is given by

lim
t→∞

y(s, t) = lim
t→∞

W (x(s))ty(s, 0) = u(x(s))T y(s, 0)1.

(6)
The consensus opinion u(x(s))T y(s, 0) of the network on
issue s is a convex combination of the initial opinions of
the individuals. The coefficient ui(x(s)) is regarded as the
relative control of this individual over the final outcome on
issue s and is referred to as the social power of the ith
individual [10].

In [10], Jia et al. proposed the DeGroot-Friedkin model
to study the social power evolution in the reflected appraisal
mechanism. In this mechanism, each individual’s self-weight
is updated as xi(s + 1) = ui(x(s)) after the discussion on
issue s has reached a consensus, i.e., it is set to her relative
control over the final outcome on the previous issue. The
DeGroot-Friedkin model can be described by

x(s+ 1) = u(x(s)), (7)

In the above model (7), the convergence of the opinion
y(s, t) on issue s is asymptotic and may take finitely many
or infinite steps for the individuals to reach a consensus.
However, individual self-weights may update before the
opinion consensus has been achieved on the previous issue.
It is therefore desirable to know the self-weight for the next
issue without waiting for the convergence of the opinions.
A distributed way to estimate the social power of each
individual has been proposed in [10] and based on this a
modified DeGroot-Friedkin model has been proposed in [1].

Let pi(s, t) be the perceived social power of individual
i for issue s at time t. Assume that each individual knows
the interpersonal weight her neighbors accord to her. Then,
the perceived social power pi(s, t) can be updated in a
distributive way as

pi(s, t+ 1) = wii(s)pi(s, t) +

n∑
j=1,j 6=i

wji(s)pj(s, t), (8)

or equivalently,

pi(s, t+ 1) = xi(s)pi(s, t) +

n∑
j=1,j 6=i

(1− xj(s))cjipj(s, t).

(9)
Suppose that the self-weights of individuals on issue s are
updated at time t = T . Then,

xi(s+ 1) = pi(s, T ).

In [1], the case when T = 1 was considered and the update
equation of xi(s) was then given by

xi(s+ 1) = x2i (s) +

n∑
j=1,j 6=i

(1− xj(s))xj(s)cji. (10)
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In this paper, we consider system (10) and in addition
we consider the case when the interaction graph G changes
over issues. This results in a time-varying relative interaction
matrix.

Note that since T = 1, individuals discuss a new issue at
each time step. As a result, the index s, which was standing
for an issue, now can also be regarded as an index of time
steps.

We use G(s) and C(s) to denote the dependence on time
of the interaction graph and the relative interaction matrix,
respectively. The model we consider in this paper is written
as

xi(s+ 1) = x2i (s) +

n∑
j=1,j 6=i

(1− xj(s))xj(s)cji(s), (11)

or in matrix form

x(s+ 1) = X(s)x(s) + C(s)T (I −X(s))x(s), (12)

where x(s) = [x1(s), . . . , xn(s)]T and X(s) = diag(x(s))
is a diagonal matrix. Let A(s) = X(s) +C(s)T (I −X(s)).
The system (12) can be written as

x(s+ 1) = A(s)x(s). (13)

We will focus on the case when C(s) is a doubly stochastic
matrix for each s, and study the limiting behavior of the
system. The results and analysis will reveal how the self-
confidence levels of the individuals evolve in a network as the
discussion on issues proceeds, and how much social power
each individual in the network will ultimately gain.

III. MAIN RESULTS

To state the main results of this paper, we need the
following assumptions and definitions.

Assumption 1: For each s, C(s) is a doubly stochastic
matrix with diagonal elements equal to zero, and there exists
a constant γ > 0 such that for any i, j ∈ V , if cij(s) > 0,
then cij(s) ≥ γ.

Assumption 2: There exists an integer B ≥ 1 such that
the union graph ∪(k+1)B−1

s=kB G(s) is strongly connected for
all nonnegative integers k.

Let h(s) = mini∈V xi(s), H(s) = maxi∈V xi(s), and
V (s) = H(s) − h(s). Then, V (s) is a measure of the
difference between the extreme values of the self-confidence
levels in the network. The sequences h(s) and H(s) have
the following property.

Lemma 1: [1] Suppose that C(s), s ≥ 0, are doubly
stochastic matrices with diagonal elements equal to zero.
Then, h(s) is a nondecreasing sequence and H(s) is a
nonincreasing sequence.

From the above lemma, V (s) is a nonincreasing function
of s, and V (s) = 0 if and only if H(s) = h(s). Since
1Tx(s) = 1Tx(0) for all s, if x(0) ∈ ∆n, then V (s) = 0
implies that x(s) = 1

n1. The following theorem describes
the limiting behavior of the system (12).

Theorem 1: Suppose that n ≥ 3 and Assumptions 1 and
2 hold. If x(0) ∈ ∆n\{e1, . . . , en} and x(0) has m nonzero

entries, then lims→∞ xi(s) = 1
n for all i ∈ V, and the

convergence is exponentially fast:

V (s) ≤
(

1− (γα(2α)B−1)n−1
)b s−(n−m)B

(n−1)B c
V (0), (14)

for all integers s ≥ 0, where α = h((n−m)B) > 0.
The proof of the theorem is given in the next section.
Remark 1: Theorem 1 shows that when the relative in-

teraction matrix C(s) is doubly stochastic, then under some
connectivity condition and uniform lower boundedness con-
dition, the self-confidence levels of the individuals in the
network reach the same value at 1

n exponentially fast, which
corresponds to a democratic state [10]. Therefore, the indi-
viduals have equal weights on deciding the final outcome on
the issue eventually.

Remark 2: In [1], the asymptotic convergence to 1
n1 has

been established for the case of a static relative interaction
matrix. The inequality (14) in Theorem 1 explicitly estab-
lishes the convergence rate of the system (12) to 1

n1 via
quantitatively analyzing the evolution of V (s).

IV. ANALYSIS

In this section, we provide a complete analysis of the
system (12) and the proofs of the main results. We begin
with several fundamental properties of the system (12) that
have been established in [1]. Some of them are still valid for
the case of a time-varying relative interaction matrix.

Lemma 2: If C(s) are row-stochastic matrices for all s ≥
0, then the average of self-confidence levels is preserved, i.e.,
1Tx(s) = 1Tx(s+ 1).

Lemma 3: If C(s) are row-stochastic matrices for all s ≥
0, then ei, i ∈ V , are equilibria of system (12). In addition,
if C(s) are doubly stochastic, the vector 1

n1 is a nontrivial
equilibrium of system (12).

Proofs of Lemmas 2 and 3 proceed using arguments simi-
lar to those as in proofs of Lemma 1, Lemma 2, and Theorem
2 in [1], and thus are omitted due to space limitations, and
will be included in an expanded version of the paper.

Lemma 4: If C(s) are row-stochastic matrices for all s ≥
0, then the following statements of system (12) hold:

1) If xi(s) > 0, then aii(s) > 0 and xi(s + 1) > 0; if
xi(s) = 0, then aii(s) = 0.

2) If x(s) > 0, then x(s+ 1) > 0.
3) If C(s) is irreducible, then A(s) is irreducible.
Item 2) of Lemma 4 proves that when the initial state

x(0) is in the interior of the simplex ∆n, the state x(s) will
remain in the interior for all s. The next lemma says that
whenever the initial state x(0) 6= ei, i ∈ V , the state will
enter the interior of the simplex ∆n in finite steps.

Lemma 5: Assume that Assumptions 1 and 2 hold. If
x(0) ∈ ∆n\{e1, . . . , en} and has m nonzero entries, then
x((n−m)B) > 0.

We now present a key lemma regarding the property of
the function f(x) = x−x2, which will be very useful in our
later discussion.

Lemma 6: Suppose that α ∈ IRn, α ≥ 0,
∑n

k=1 αk = 1,
and x ∈ IRn, x ≥ 0,

∑n
k=1 xk = 1. Then, there exists a
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constant

v ∈ I =

[
min
k∈V
αk 6=0

{xk},max
k∈V
αk 6=0

{xk}

]
such that v ≤

∑n
k=1 αkxk and

v − v2 =

n∑
k=1

αk(xk − x2k). (15)

The proofs of Lemmas 4, 5 and 6 are omitted due to space
limitations and will be included in an expanded version of
the paper.

In [1], the stability of the equilibrium 1
n1 has been proven

via checking the evolution of H(s) qualitatively for a fixed
relative interaction matrix C. In what follows, we will look at
the evolution of H(s) quantitatively and provide an explicit
upper bound for H(s), and thus the convergence speed can
be derived in terms of the decrease of V (s).

Lemma 7: Suppose n ≥ 3. Assume that Assumptions 1
and 2 hold. If x(T ) > 0 and x(T ) ∈ ∆n, then the following
inequality holds:

V (T + (n− 1)B) ≤
(

1− (γh(T )(2h(T ))B−1)n−1
)
V (T ).

(16)
Proof: Note that h(s) is a nondecreasing sequence and

H(s) is a nonincreasing sequence from Lemma 1. We bound
H(T +(n−1)B) from above so that the inequality (16) can
be established. We divide the proof into four steps.

Step 1. Let V0 = {i ∈ V|xi(T ) = h(T )}. For any i0 ∈ V0,

xi0(T + 1) = x2i0(T ) +

n∑
j=1,j 6=i

cji0(T )(1− xj(T ))xj(T ).

Since C(T ) is a doubly stochastic matrix,
∑n

j=1 cji(T ) =
1 for all i. The vector x(T ) satisfies that x(T ) > 0 and∑n

j=1 xj(T ) = 1. Applying Lemma 6, one has that there
exists a constant

vi0(T ) ∈

[
min

j∈N+
i0

(T )
{xj(T )}, max

j∈N+
i0

(T )
{xj(T )}

]
(17)

such that
n∑

j=1

cji0(T )(1− xj(T ))xj(T ) = vi0(T )− v2i0(T ).

Hence,

xi0(T + 1) = x2i0(T ) + vi0(T )− v2i0(T )

=
(
xi0(T ) + vi0(T )

)
xi0(T )

+
(

1− xi0(T )− vi0(T )
)
vi0(T ). (18)

From (17) and
∑n

i=1 xi(T ) = 1, one has that h(T ) ≤
vi0(T ) ≤ H(T ) and

0 ≤ xi0(T ) + vi0(T ) ≤ xi0(T ) + max
j∈N+

i0
(T )
{xj(T )} ≤ 1.

Therefore, xi0(T+1) is a convex combination of xi0(T ) and
vi0(T ). In view of the fact that xi0(T ) = h(T ), one has

xi0(T ) + vi0(T ) ≥ 2h(T ). (19)

Combining with (18) yields

xi0(T + 1) ≤
(
xi0(T ) + vi0(T )

)
h(T )

+
(

1− xi0(T )− vi0(T )
)
H(T )

≤ 2h(T )h(T ) +
(

1− 2h(T )
)
H(T ).

One further calculates xi0(T + 2) as

xi0(T + 2) = x2i0(T + 1)

+

n∑
j=1

cji0(T + 1)(1− xj(T + 1))xj(T + 1)

=
(
xi0(T + 1) + vi0(T + 1)

)
xi0(T + 1)

+
(

1− xi0(T + 1)− vi0(T + 1)
)
vi0(T + 1),

for some

vi0(T + 1) ∈[
min

j∈N+
i0

(T+1)
{xj(T + 1)}, max

j∈N+
i0

(T+1)
{xj(T + 1)}

]
.

Note that h(s) is a nondecreasing sequence and H(s) is a
nonincreasing sequence from Lemma 1. Similar to (19), one
has that

2h(T ) ≤ xi0(T + 1) + vi0(T + 1) ≤ h(T ) +H(T ).

It follows that

xi0(T + 2) ≤ 2h(T )
(

2h(T )h(T ) +
(

1− 2h(T )
)
H(T )

)
+
(

1− 2h(T )
)
H(T )

=
(

2h(T )
)2
h(T ) +

(
1− (2h(T ))2

)
H(T ).

Recursively, we obtain that

xi0(T +k) ≤
(

2h(T )
)k
h(T )+

(
1−(2h(T ))k

)
H(T ) (20)

for all nonnegative integers k.
Step 2. Define

t1 = min{s ≥ T |cji(s) > 0, for some j ∈ V0, i ∈ V\V0},
V1 = {i ∈ V\V0|cji(t1) > 0, for some j ∈ V0}.

From Assumption 2, t1 is well defined and satisfies that T ≤
t1 ≤ T + B − 1. For any i ∈ V0, the relation (20) implies
that

xi(t1) ≤
(

2h(T )
)t1−T

h(T ) +
(

1− (2h(T ))t1−T
)
H(T ).

(21)
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For any i1 ∈ V1, it follows from Lemma 6 that

xi1(t1 + 1) = x2i1(t1) +

n∑
j=1,j 6=i

cji1(t1)(1− xj(t1))xj(t1)

=
(
xi1(t1) + vi1(t1)

)
xi1(t1)

+
(

1− xi1(t1)− vi1(t1)
)
vi1(t1)

≤
(
xi1(t1) + vi1(t1)

)
H(T )

+
(

1− xi1(t1)− vi1(t1)
)
vi1(t1), (22)

where

vi1(t1) ∈

[
min

j∈N+
i1

(t1)
{xj(t1)}, max

j∈N+
i1

(t1)
{xj(t1)}

]
and satisfies that

vi1(t1) ≤
∑

k∈N+
i1

(t1)

cki1(t1)xk(t1). (23)

From the definition of V1, there exists some i0 ∈ V0 such
that ci0i1(t1) > 0. It then follows from (23) that

vi1(t1) ≤
∑

k∈N+
i1

(t1)

cki1(t1)xk(t1)

≤ ci0i1(t1)xi0(t1) + (1− ci0i1(t1))H(t1)

≤ γ
((

2h(T )
)t1−T

h(T )

+
(

1− (2h(T ))t1−T
)
H(T )

)
+ (1− γ)H(T )

= γ
(

2h(T )
)t1−T

h(T ) +
(

1− γ(2h(T ))t1−T
)
H(T ),

where the third inequality makes use of Assumption 1 that
ci0i1(t1) ≥ γ, the inequality (21) and the fact that H(t1) ≤
H(T ).

Since

vi1(t1) ∈

[
min

j∈N+
i1

(t1)
{xj(t1)}, max

j∈N+
i1

(t1)
{xj(t1)}

]
,

vi1(t1) ≥ h(T ). By Lemma 2,
∑n

k=1 xk(t1) = 1. Since
n ≥ 3 and x(s) > 0 for all integers s ≥ T , we have

xi1(t1) + vi1(t1) ≤ xi1(t1) + max
k∈N+

i1

xk(t1)

≤ 1− h(t1) ≤ 1− h(T ).

It follows from (22) that

xi1(t1 + 1) ≤ h(T )vi1(t1) +
(

1− h(T )
)
H(T )

≤ γh(T )
(

2h(T )
)t1−T

h(T )

+
(

1− γh(T )(2h(T ))t1−T
)
H(T ).

Next we provide a bound on the state xi1(t1 + 2). One
has that

xi1(t1 + 2) =
(
xi1(t1 + 1) + vi0(t1 + 1)

)
xi1(t1 + 1)

+
(

1− xi1(t1 + 1)− vi1(t1 + 1)
)
vi1(t1 + 1),

for some

vi1(t1 + 1) ∈

[
min

j∈N+
i1

(t1+1)

{xj(t1 + 1)}, max
j∈N+

i1
(t1+1)

{xj(t1 + 1)}

]
.

The following inequality holds:

xi0(t1 + 1) + vi0(t1 + 1) ≥ 2h(T ).

Applying this inequality, one has that

xi1(t1 + 2) ≤ γh(T )
(

2h(T )
)t1−T+1

h(T )

+
(

1− γh(T )(2h(T ))t1−T+1
)
H(T ).

Recursively, one can show that for any nonnegative integers
k, the following inequality holds

xi1(t1 + 1 + k) ≤ γh(T )
(

2h(T )
)t1−T+k

h(T )

+
(

1− γh(T )(2h(T ))t1−T+k
)
H(T ).

(24)

This inequality holds for all i1 ∈ V1. Furthermore, since
γ ≤ 1, the relation (20) implies that the above inequality also
holds for i1 ∈ V0. Hence, (24) is true for all i1 ∈ V0 ∪ V1.

Step 3. Define

t2 = min{s ≥ t1 + 1|cji(s) > 0, for some
j ∈ V0 ∪ V1, i ∈ V\(V0 ∪ V1)},

V2 = {i ∈ V\(V0 ∪ V1)|cji(t2) > 0, for some j ∈ V0 ∪ V1}.

t2 is well defined and satisfies t1 + 1 ≤ t2 ≤ t1 + B from
Assumption 2. For any i2 ∈ V3 and any nonnegative integers
k, similar to the calculations in step 2, one can establish an
upper bound on xi2(t2 + 1 + k) as

xi2(t2 + 1 + k) ≤
(
γh(T )

)2(
2h(T )

)t2−T−1+k

h(T )

+
(

1− (γh(T ))2(2h(T ))t2−T−1+k
)
H(T ).

(25)

The above inequality also holds for i2 ∈ V0 ∪V1 in view of
(24).

Step 4. Continuing this process, we can define a time
sequence t0, t1, . . . , tp, with t0 = T − 1 and a sequence
of sets V0, . . . ,Vp as

tk+1 = min{s ≥ tk + 1|cji(s) > 0, for some

j ∈ ∪kl=0Vl, i ∈ V\ ∪kl=0 Vl},
Vk+1 = {i ∈ V\ ∪kl=0 Vl|cji(tk+1) > 0, for some j ∈ ∪kl=0Vl},

for 0 ≤ k ≤ p − 1, such that V = ∪pi=0Vi. ti satisfies
ti +1 ≤ ti+1 ≤ ti +B for i = 0, . . . , p−1 from Assumption
2. For all i ∈ V and any k ≥ 0, we have the following
inequality

xi(tp + 1 + k) ≤
(
γh(T )

)p(
2h(T )

)tp−T−(p−1)+k

h(T )

+
(

1− (γh(T ))p(2h(T ))tp−T−(p−1)+k
)
H(T ).

(26)
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In particular,

H(tp + 1) ≤
(
γh(T )

)p(
2h(T )

)tp−T−(p−1)
h(T )

+
(

1− (γh(T ))p(2h(T ))tp−T−(p−1)
)
H(T ). (27)

It is obvious that p ≤ n− 1. Since t0 ≤ t1 ≤ t0 +B − 1
and ti + 1 ≤ ti+1 ≤ ti + B − 1 for i = 1, . . . , p − 1,
tp ≤ T + pB− 1. Since γh(T ) < 1 and 2h(T ) < 1, one has
(γh(T ))p ≥ (γh(T ))n−1 and

(2h(T ))tp−T−(p−1) ≥ (2h(T ))p(B−1) ≥ (2h(T ))(n−1)(B−1).

Combining with the inequality (27) yields

H(T + (n− 1)B)

≤H(tp + 1 + k)

≤
(
γh(T )

)n−1(
2h(T )

)(n−1)(B−1)
h(T )

+
(

1− (γh(T ))n−1(2h(T ))(n−1)(B−1)
)
H(T ).

Therefore, the contraction of V (T + (n − 1)B) can be
calculated as

V (T + (n− 1)B)

=H(T + (n− 1)B)− h(T + (n− 1)B)

≤H(T + (n− 1)B)− h(T )

=
(

1− (γh(T ))n−1(2h(T ))(n−1)(B−1)
)
V (T ).

This completes the proof.
We are now in a position to prove the main theorem.
Proof of Theorem 1: Applying Lemma 7, one has

V ((n−m)B + k)

≤
(

1− (γα(2α)(B−1))n−1
)b k

(n−1)B
c
V ((n−m)B),

for all nonnegative integers k. The fact that V ((n−m)B) ≤
V (0) gives us (14) for s ≥ (n−m)B.

For 0 ≤ s < (n −m)B, (14) holds since V (s) ≤ V (0)

and
(

1− (γα(2α)B−1)n−1
)b s−(n−m)B

(n−1)B c
> 1. �

Note that Theorem 1 also shows that 1
n1 is the unique

nontrivial equilibrium of system (12).
For a time-invariant irreducible matrix, i.e., C(s) = C for

all s, and C irreducible, Assumption 2 is naturally satisfied
with B = 1. We immediately have a corollary from Lemma
5, which is item (iii) of Lemma 3 in [1].

Corollary 1: Suppose that C(s) = C for all s and C is
an irreducible, row-stochastic matrix with diagonal entries
all equal to 0. If x(0) ∈ ∆n\{e1, . . . , en} has m nonzero
elements, then x(n−m) > 0.

The convergence result and convergence rate for the time-
invariant case can be obtained as follows.

Proposition 1: Suppose that n ≥ 3 and C(s) = C for all
s where C is an irreducible doubly stochastic matrix with
diagonal entries all equal to 0. If x(0) ∈ ∆n\{e1, . . . , en}
and x(0) has m nonzero entries, then lims→∞ xi(s) = 1

n for
all i ∈ V, and the convergence is exponentially fast:

V (s) ≤
(

1− γn−1αn−1
)b s−(n−m)

n−1 c
V (0), (28)

for all integers s ≥ n−m, where α = h(n−m) > 0.

V. CONCLUSION

In this paper, we have revisited the modified DeGroot-
Friedkin model introduced in [1], with a time-varying relative
interaction matrix. We have shown that if the matrix is dou-
bly stochastic at all time instances, then the individuals’ self-
confidence levels will reach a democratic state exponentially
fast. An explicit expression of the convergence rate has also
been provided. Analysis of more general cases when the
relative interaction matrix is row-stochastic, is a subject of
future work, which was studied earlier in a continuous-time
setting [19].
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