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Abstract: We study unconstrained and constrained linear quadratic problems and investigate
the suboptimality of the model predictive control (MPC) method applied to such problems.
Considering MPC as an approximate scheme for solving the related fixed point equations, we
derive performance bounds for the closed-loop system under MPC. Our analysis, as well as
numerical examples, suggests new ways of choosing the terminal cost and terminal constraints,
which are not related to the solution of the Riccati equation of the original problem. The
resulting method can have a larger feasible region, and cause hardly any loss of performance in
terms of the closed-loop cost over an infinite horizon.
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1. INTRODUCTION

Model predictive control (MPC) is a well-established
scheme for constrained optimal control problems with
continuous state and control spaces. In its most widely
adopted form (Scokaert and Rawlings, 1998) a system
model is used to predict its performance over some fi-
nite number of stages, and a terminal cost is added to
account for the trajectory beyond this prediction hori-
zon. Moreover, an additional constraint is imposed on
the state at which the prediction ends. Suitably designed
terminal cost and constraint lead to desirable properties
(Mayne et al., 2000). A recent monograph (Bertsekas,
2022b) shows that this structure of MPC is quite similar to
the algorithms applied in the high-profile successes in the
field of reinforcement learning (Silver et al., 2017). It has
also developed a conceptual framework centered around
dynamic programming (DP), which is useful for analyzing
the performance of MPC.

In this work, we apply the tools introduced in (Bertsekas,
2022b), and investigate the impact of the terminal cost on
the performance of MPC measured by the closed-loop cost
accumulated over infinite stages. Using unconstrained and
constrained linear quadratic regulation (LQR) problems as
a vehicle, we derive performance bounds of MPC applied
to those problems compared against optimal control. The
insights gained from our analysis suggest new designs
of those terminal ingredients, which likely make MPC
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feasible for a larger set of states, while cause little to no
degradation in its performance.

For the LQR problem, a performance bound of MPC is
given (Bitmead et al., 1985). It relies on the monotonicity
property, which holds well beyond the problem considered
here, as discussed in (Bertsekas, 1975, 1977). A subopti-
mality analysis that is similar in purpose to our study is
reported in (Grune and Rantzer, 2008). It relies in part on
a relaxed form of DP introduced in (Rantzer, 2006). Our
work makes different assumptions, and leads to new design
choices of the terminal ingredients, and may be regarded
as complementary to that of (Grune and Rantzer, 2008).

Unlike MPC where the performance bound analysis is
relatively rare, bounds are pervasive in the study of
Markovian decision problems (MDP), with some classical
results presented in (Denardo, 1967). (Bertsekas, 2022b)
takes an abstract approach that unifies the MDP and
the problems addressed by MPC. It regards MPC as
approximation in value space, where the approximation
refers to the fact that terminal ingredients act together to
approximate the real optimal cost. It also points out that
the typical bounds in MDP may be too conservative to
reflect the true performance, which we confirm by deriving
better bounds for MPC.

Another concept that is related to our study is the in-
vestigation of regret in dynamical systems. Regret is a
non-asymptotic performance metric for optimal control
problems involving uncertainty. Given a controller, regret
is measured by comparing its associated cost over a finite
number of stages with that of a known policy with full
or partial knowledge of the uncertainty. The regret of an
MPC controller for unconstrained problems with process
noise has been analyzed in (Yu et al., 2020), for cases where



the terminal cost is related to the solution of the Riccati
equation. Other related work includes (Muthirayan et al.,
2021) and (Wabersich and Zeilinger, 2020). Although the
major challenge addressed by these works comes from
uncertainty or partial information, the results echo our
conclusion that much of the credit for good performance
goes to the MPC structure itself. This provides an alterna-
tive perspective for our work and may point to a direction
of extensions of the results reported here.

In summary, this paper makes the following contributions:

(1) We derive performance bounds for MPC applied to
unconstrained and constrained LQR problems, as well
as nonlinear systems;

(2) We propose a new design for the terminal ingredients,
which likely leads to a larger region where MPC is
feasible;

(3) We conduct numerical studies that verify our theo-
retical analysis.

2. PERFORMANCE BOUNDS FOR THE LINEAR
QUADRATIC PROBLEM

2.1 Preliminaries

We consider discrete-time optimal control problems with
system dynamics

xk+1 = Axk +Buk, k = 0, 1, . . . , (1)

and k-th stage cost defined

x′
kQxk + u′

kRuk, (2)

where prime denotes transposition, R > 0, 1 Q ≥ 0, (A,B)
stablizable, and (A,

√
Q) detectable. The optimal feedback

law [with respect to cost (2) accumulated over an infinite
number of stages] is then given by

L∗x = −(B′K∗B +R)−1B′K∗Ax, (3)

where K∗ is the unique positive definite solution fulfilling
the algebraic equation

K∗ = A′(K∗ −K∗B(B′K∗B +R)−1B′K∗)A+Q. (4)

For this problem, we introduce the Bellman operator F
defined for some symmetric matrices as

F (K) = A′(K −KB(B′KB +R)−1B′K
)
A+Q. (5)

The ℓ-fold composition of the operator F is denoted by
F ℓ. In addition, given a policy µ(x) = Lx, we define the
L-Bellman operator as

FL(K) = (A+BL)′K(A+BL) +Q+ L′RL. (6)

Similarly, the ℓ-fold composition of the operator FL is
denoted by F ℓ

L. A matrix A will be called a stability matrix
if all of its eigenvalues are less than one in absolute value.
Let Sn denote the space of n×n real symmetric matrices.
For the operators F and FL, the following classical results
hold.

Proposition 1. (a) Let K1,K2 ∈ Sn so that 0 ≤ K1 ≤
K2. Then we have that FL(K1) ≤ FL(K2) and
F (K1) ≤ F (K2).

(b) The equation K = F (K) admits a unique positive
definite solution K∗. Moreover, F k(K) → K∗ as
k → ∞ for K ∈ Sn so that K ≥ 0.

1 If X and Y are symmetric positive semidefinite matrices, then the
notation X > Y (X ≥ Y ) means that the matrix X − Y is positive
(semi)definite.

(c) Let L be an m by n matrix such that (A + BL) is
a stability matrix. Then the equation K = FL(K)
admits a unique positive definite solution KL. More-
over, F k

L(K) → KL as k → ∞ for K ∈ Sn so that
K ≥ 0.

2.2 Region of Decreasing

We will focus on a special set of symmetric matrices, which
we call the region of decreasing. It is defined as

D =
{
K ∈ Sn

∣∣F (K) ≤ K
}
. (7)

This set of matrices plays an important role in the design
of model predictive control, which is a consequence of the
definition. The following result can be proved by applying
Theorems 10.4 and 10.6 from (Bitmead and Gevers, 1991).

Proposition 2. For all K ∈ D, F k(K) ∈ D for all k;
moreover, K ≥ K∗ ∈ D.

Given a matrix K ∈ D and a positive integer ℓ, we are
interested in solving the problem via the following scheme:

min
{uk}ℓ−1

k=0

x′
ℓKxℓ +

ℓ−1∑
k=0

x′
kQxk + u′

kRuk

s. t. xk+1 = Axk +Buk, k = 0, ..., ℓ− 1,

x0 = x

(8)

for all x. If the minimum is attained at (ũ0, ũ1, . . . , ũℓ−1),
the scheme defines a policy µ̃ by setting µ̃(x) = ũ0; finite

horizon LQR intuition shows that there exists a L̃ such
that µ̃(x) = L̃x. If we apply the Bellman operator and L-
Bellman operator introduced in (5) and (6) respectively,

the policy µ̃(x) = L̃x can be defined as

FL̃

(
F ℓ−1(K)

)
= F ℓ(K). (9)

Under our assumption, for K ∈ D, the resulting closed-
loop system (A+BL̃) is stable. This is proved in (Bitmead
and Gevers, 1991, Theorem 10.19), and its generalization
and connection to performance bound is given in (Bert-
sekas, 2022b, Section 3.3). Then there exists a unique
positive semidefinite solution to the equation FL̃(K) = K,
which we denote as KL̃. In the rest of this section, we
investigate the suboptimality of the scheme (8), which
is measured through the difference between the infinite
horizon cost obtained by the resulting policy L̃ (encoded
through the matrix KL̃) and the optimal infinite horizon
cost (encoded through the matrix K∗).

To investigate the properties of K, we introduce some
additional notation. ∥M∥ stands for the induced 2-norm
of the matrix M . Following (Bertsekas, 2022a, p. 382) we
denote by ∥M∥s a special weighted Euclidean norm such

that ∥A + BL̃∥s =
√
ρ < 1 for some ρ ∈ (0, 1). For those

two norms, there exist some positive constants c1 and c2
such that

c1∥M∥ ≤ ∥M∥s ≤ c2∥M∥ (10)

holds for all n by n matrices M . An analytical formula
for computing c1 and c2 is given in the Appendix A of the
extended version of this work (Li et al., 2022). Both norms
have the submultiplicative property. In addition, we define
positive integers α and βℓ by α = min{∥A + BL∗∥2, 1},
and βℓ = min{∥(A+BL∗)ℓ−1∥2, 1}, where ℓ is the horizon
length in (8). Then by the submultiplicative property of
the norm, we have that βℓ ≤ αℓ−1. The norm ∥ · ∥ also



connects to positive semidefiniteness through the following
lemma.

Lemma 3. Let K1 and K2 be symmetric matrices such
that K1 ≥ K2 ≥ 0. Then ∥K1∥ ≥ ∥K2∥.

Now we are ready to state our first result. 2

Proposition 4. For all K ∈ D and all integers i,

∥F i(K)−K∗∥ ≤ αi∥K −K∗∥. (11)

Moreover, if j satisfies i = (ℓ− 1)j, then

∥F i(K)−K∗∥ ≤ βj
ℓ∥K −K∗∥ ≤ αi∥K −K∗∥. (12)

2.3 Performance Bound via Contraction

From the above results we can obtain a performance bound
for KL̃ by exploiting the contraction properties of the
operators F and FL̃.

Proposition 5. Let K ∈ D and µ̃(x) = L̃x defined as in
(9). Then we have that

∥KL̃ −K∗∥ ≤ c2
c1(1− ρ)

(ρ+
c2
c1

α)βℓ∥K −K∗∥. (13)

Remark 6. Our proof has followed closely the approach
for establishing the classical error bound for the MDP, cf.
(Bertsekas, 2022a, Prop.2.2,1). In particular, if c1 = c2 and
α = ρ, then the bound established above can be obtained
via applying Prop. 2.1.1(e) and Prop. 2.2.1 in (Bertsekas,
2022a, Prop.2.2,1), and the inequality (13) reduces to the
known result in Prop. 2.2.1. This bound indicates that
by selecting K close to K∗, the MPC policy obtained by
solving (8) will perform close to the optimal policy in the
infinite horizon.

2.4 Performance Bounds via Monotonicity and Newton
Step Interpretation

Alternative bounds can be obtained based on monotonicity
and the Newton step interpretation. We first derive the
bound that relies solely on the monotonicity, and then
provide an additional bound that is obtained by combining
the two properties.

Proposition 7. Let K ∈ D and µ̃(x) = L̃x defined as in
(9). Then we have that

∥KL̃ −K∗∥ ≤ αβℓ∥K −K∗∥. (14)

Remark 8. Note that by definition c2 ≥ c1, and focusing
on the last term of (13), we see that the bound in Prop. 7
is always tighter than the one in Prop. 5. This is consistent
with what is noted in (Bertsekas, 2022b, Appendix A.3).
Still, the result given in Prop. 5 resembles the classical
performance bound in MDP, and holds true for K where
K ̸∈ D, while the bound in Prop. 7 only holds for K ∈ D.

Apart from the monotonicity properties of the operators
F and FL̃, the Newton step interpretation of computing
KL̃ can also be brought to bear for establishing another
bound on the suboptimality of KL̃. For completeness, a
slight generalization of the following lemma adopted from
(Hewer, 1971, Theorem 2) and its proof are provided in
the Appendix B of the extended version (Li et al., 2022).

2 In the interest of space, all the proofs are neglected and can be
found in the extended version of this work (Li et al., 2022).

Lemma 9. Let K ∈ D and µ̃(x) = L̃x defined as in (9).
Then there exists γ > 0 such that

∥KL̃ −K∗∥ ≤ γ∥F ℓ−1(K)−K∗∥2. (15)

An explicit formula for γ is provided in Appendix B of (Li
et al., 2022). Combining Lemma 9 and Prop. 4 leads to
the following bound.

Proposition 10. Let K ∈ D and µ̃(x) = L̃x defined as in
(9). Then there exists γ > 0 such that

∥KL̃ −K∗∥ ≤ γβ2
ℓ ∥K −K∗∥2. (16)

Remark 11. The quadratic term ∥K −K∗∥2 in (16) man-
ifests the nature of scheme (8) as a step of the Newton’s
method for solving (4). In addition, if γβℓ∥K−K∗∥/α < 1,
then the bound based on Newton step interpretation is
tighter than the bound provided by Prop. 7. This is likely
to happen if the value ℓ is large, which in turn makes the
value βℓ small.

Remark 12. Since the bound is built upon Lemma 9 and
Prop. 4, it is more conservative than the bound given in
Lemma 9. Still, it connects the matrixK (which is a design
parameter), the optimal policy µ∗ (through the parameter
βℓ) and the performance of KL̃.

3. PERFORMANCE BOUND FOR CONSTRAINED
PROBLEMS

Let us now consider problems involving both state and
control constraints. For the same stationary dynamics (1)

and stage cost (2), there are state constraint X̂ ⊂ X = ℜn

and control constraint U ⊂ ℜm. We assume that both X̂
and U are compact and convex, and contain the origin in
their interior.

The problem can be modeled as an optimal control prob-
lem involving stationary dynamics (1) and stage cost

g(xk, uk) = x′
kQxk + u′

kRuk + δX̂(xk), (17)

where δX̂ is an indicator function that maps xk to 0 if

xk ∈ X̂, and ∞ otherwise. We consider stationary policies
µ, which are functions mapping X to U .

The cost function of a policy µ, denoted by Jµ, maps X
to [0,∞], and is defined at any initial state x0 ∈ X, as

Jµ(x0) =

∞∑
k=0

g(xk, µ(xk)), (18)

subject to xk+1 = Axk + Bµ(xk), k = 0, 1, . . . . The
optimal cost function J∗ is defined pointwise as

J∗(x0) = inf
uk∈U, k=0,1,...

xk+1=Axk+Buk, k=0,1,...

∞∑
k=0

g(xk, uk). (19)

A stationary policy µ∗ is called optimal if Jµ∗(x) =
J∗(x), ∀x ∈ X. It has the property that

µ∗(x) ∈ min
u∈U

{g(x, u) + J∗(Ax+Bu)}, (20)

if the minimum in (20) can be attained. For the problem
considered here, it may be shown that there is a stationary
optimal policy. A brief discussion regarding the existence
of a stationary optimal policy is provided in Appendix C
of (Li et al., 2022).



Similar to the scheme in (8), we may apply MPC of the
following form to solve the problem

min
{uk}ℓ−1

k=0

x′
ℓKxℓ +

ℓ−1∑
k=0

x′
kQxk + u′

kRuk

s. t. xk+1 = Axk +Buk, k = 0, ..., ℓ− 1,

xk ∈ X̂, k = 0, ..., ℓ− 1,

uk ∈ U, k = 0, ..., ℓ− 1,

xℓ ∈ S ⊂ X̂, x0 = x,

(21)

where K is a suitably designed matrix, and S is a suit-
ably designed set. If the minimum of (21) is attained at
(ũ0, ũ1, . . . , ũℓ−1), then the scheme defines a suboptimal
policy by setting µ̃(x) = ũ0. As in the unconstrained
case, we would like to investigate the suboptimality of µ̃,
depending on the choice of K and S, where suboptimality
of the policy µ̃ is measured by Jµ̃ − J∗.

Due the presence of state constraint X̂ and control con-
straint U , the analysis given in Section 2 does not apply as
it is. Still, by suitably modifying the relevant definitions, a
similar qualitative analysis remains valid. In particular, we
denote by E+(X) the set of all functions J : X 7→ [0,∞]. A
mapping that plays the key role in our development is the
Bellman operator T : E+(X) 7→ E+(X), defined pointwise
as

(TJ)(x) = inf
u∈U

{g(x, u) + J(Ax+Bu)}. (22)

This operator is well-posed in view of the nonnegativity
(17) of the stage cost. In addition, we denote as T ℓ the
ℓ-fold composition of T with itself, with the convention
that T 0J = J . For every fixed policy µ, we also introduce
the µ-operator Tµ : E+(X) 7→ E+(X), which is defined
pointwise as

(TµJ)(x) = g
(
x, µ(x)

)
+ J

(
Ax+Bµ(x)

)
. (23)

The operators T and Tµ are generalizations of F and FL.
Their relations are extensively discussed in (Bertsekas,
2022b, Chapter 4).

Given a positive semidifnite matrix K and a set S, we can
define a function J ∈ E+(X) associated with K and S as

J(x) = x′Kx+ δS(x). (24)

Using the operator notations (22), (23), as well as the
function J defined in (24), the policy µ̃ defined by the
scheme (21) can be written succinctly as(

Tµ̃(T
ℓ−1J)

)
(x) = (T ℓJ)(x), x ∈ X, (25)

which is a generalization of (9).

For the constrained problem, we can also define the region
of decreasing, denoted as D(X). It is given as a set of
functions as

D(X) = {J ∈ E+(X) | (TJ)(x) ≤ J(x), ∀x ∈ X}. (26)

3.1 Performance Bounds via Monotonicity and Newton
Step Interpretation

For the constrained problem, a result based on contraction,
as in Section 2.3 may not be applicable. However, for
suitably designed function J , results that parallel Prop. 7
can be established. The proof of the result is given in
Appendix D of the extended version of this work (Li et al.,
2022).

Proposition 13. Let J ∈ D(X) and µ̃ defined via (25).
Then

Jµ̃(x0)− J∗(x0) ≤ (T ℓJ)(x0)− J∗(x0) ≤ J(xℓ)− J∗(xℓ),
(27)

for all x0 ∈ X with xk+1 = f
(
xk, µ

∗(xk)
)
, k = 0, . . . , ℓ−1.

In addition, if Ĵ ∈ E+(X) such that Ĵ(x0) ≤ J∗(x0) for
all x0 ∈ X, then

Jµ̃(x0)−J∗(x0) ≤ (T ℓ
µ∗J)(x0)−(T ℓ

µ∗ Ĵ)(x0) = J(xℓ)−Ĵ(xℓ),
(28)

for all x0 ∈ X with xk+1 = f
(
xk, µ

∗(xk)
)
, k = 0, . . . , ℓ−1.

Remark 14. A close examination of the proof shows that
the above bounds hold well beyond the constrained linear
systems discussed here. If a stationary optimal policy µ∗

exists, the performance bounds hold for the case where
control constraints are state dependent, i.e., u ∈ U(x), or
problems involving nonlinear, as well as hybrid systems.
In fact, the tools applied here have been used to analyze
MPC for hybrid systems in (Baoti et al., 2006).

A Newton’s step interpretation of Jµ̃ similar to that of
Prop. 10 can also be established. We refer to (Bertsekas,
2022b, Chapter 5) for details.

3.2 New Designs for the Terminal Costs and Constraints

For the MPC scheme of the form (21), a common choice for
K has been K∗ given in (4), i.e., the optimal cost function
x′K∗x for the unconstrained LQR problem. The rationale
for such a choice is that the corresponding µ̃ would be
optimal when x is near the origin, thus the performance of
µ̃ over all feasible x should also be near optimal. However,
in the presence of control constraints and if the matrix L∗

defined in (3) is large, the associated terminal constraint
S in (21) can be small, which means the subset of X
from where the scheme (21) is feasible (or equivalently,
the support of Jµ̃) is small.

On the other hand, our analysis suggests that a choice of
K that is near K∗ may not be necessary. In fact, one may
prefer a much larger K if its associated set S can be larger.
A plausible choice that may lead to larger S is the solution
of the equation

K = A′(K −KB(B′KB + ζR)−1B′K
)
A+Q, (29)

where ζ ≫ 1. Such a matrix K belongs to the region of
decreasing, and it is likely that the corresponding S is
enlarged. This is confirmed in our numerical examples.

We note that a large terminal cost is also advocated in
(Limón et al., 2006), where the terminal constraint is
removed. Our study here has deployed different analytical
tools and focuses on the classical form with both terminal
cost and constraint. Still, it suggested that a terminal cost
that corresponds to a smaller control would be preferred.

4. NUMERICAL STUDIES

In this section, we provide numerical examples to demon-
strate the differences between the bounds established in
the preceding sections and the actual performance. It is
observed that the actual performance is often much better
than the bounds suggest, further corroborating our main
point that it is not necessary to design the terminal cost
close to optimal at the expense of reduced support of Jµ̃.



4.1 Numerical Study Results for LQR

Example 15. (Bellman curve for a scalar system). We con-
sider a scalar system. The purpose is to illustrate the
performance bound (14) based on monotonicity and the
Newton step interpretation, as shown in Fig. 15. The
system parameters are A = 2, B = 0.5, Q = 1, R = 10.
We set ℓ = 1 so that K = K. In this case, we have
∥KL̃−K∗∥ ≈ 3.3, the bounds (13), (14) and (16) are given
as 534.5, 14.4 and 43.0 respectively. The interpretation of
Newton’s step is evident by noting that KL̃ is obtained by

constructing a tangent line of F (K) at F (K).

120 140 160 180 200
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Fig. 1. The Bellman function F , the L∗-Bellman function
FL∗ , the performance bound (14), as well as the
Newton step interpretation of MPC applied to the
scalar LQR problem with ℓ = 1. It can be seen that
K∗ ≤ KL̃ ≤ F (K) ≤ FL∗(K).

Example 16. (Conservativeness of bounds). We consider a
two dimensional double integrator and a four dimensional
example from (Kapasouris et al., 1988). The problem data
of those examples are listed in Appendix E of (Li et al.,
2022). The matrices K in (8) are computed by solving (29)
with ζ = 50. Their magnitudes as well as their relations
to the corresponding K∗ are listed in Table 1.

Table 1. Matrix K

Problem ∥K∥/∥K∗∥ ∥K −K∗∥
2-D 2.5 9.9
4-D 4.3 486

The actual optimality gap ∥KL̃ −K∗∥ and various perfor-
mance bounds for those two systems with different ℓ are
listed in Table 2. It is clear that the actual performance is
much better than what the performance bounds suggest.
In addition, the bound (13) is always inferior than (14)
and (16), which is consistent with our analysis.

Table 2. Performance bounds with different ℓ

Problem ℓ ∥KL̃ −K∗∥ (13) (14) (16)

2-D 3 10−3 < 1010 9.8 553
2-D 10 < 10−13 < 105 < 10−4 < 10−7

4-D 3 2.8 1052 486 < 1010

4-D 10 < 10−3 > 1053 404 < 1010

4-D 20 < 10−7 < 1053 248 < 109

4.2 Numerical Study Results for Constrained LQR

Here we investigate the performance of the scheme (21)
when both state and control constraints are present. We

introduce constraints to the two- and four-dimensional
problems studied in Example 16. In particular, in Exam-
ple 17, we demonstrate that with our choice of K, the
support of Jµ̃ can be enlarged, while there is hardly any
loss of optimality.

Example 17. (Enlarging the feasible region). We consider
the constrained version of the two-dimensional system
investigated in Example 16. We use the same K as in
Example 16 and set ℓ = 3. The sets S designed according
to K and K∗ are shown in Fig. 2. The feasible regions of
the MPC with those terminal constraints are illustrated in
the extended version (Li et al., 2022).

Fig. 2. Illustration of terminal sets S designed for K and
K∗ respectively. It can be seen that for our choice of
K, which is larger thanK∗, its corresponding terminal
set S is much larger.

If we vary the parameter ζ in (29), the resulting K would
change as well. The following table shows the ratio of the
respective terminal set volumes VK and VK⋆ for K and K⋆

with different values of ζ in (29).

Table 3. Ratio of terminal set volumes with
different ζ

ζ 5 15 25 35

VK/VK⋆ 1.23 1.56 1.65 1.63

The suboptimality of the MPC scheme with our choice of
K (with ζ = 50) and the optimal (approximated in the
study by setting ℓ = 100) is given in Fig. 3. It can be seen
that despite a K that is much larger-than K∗, the closed
loop system hardly loses any performance.

Example 18. (Performance loss). Finally, we investigate
the constrained version of the system studied in Exam-
ple 16. Using the terminal matrix K applied there and
setting ℓ = 2, we show the optimality gap Jµ̃(x) − J∗(x)
along a trajectory, which is driven by the policy µ̃, starting
from x0. The result is shown in Fig. 4. To put the values in
context, the optimal cost from x0 is J∗(x0) ≈ 293. Thus,
the performance is practically optimal.

5. CONCLUSION

We considered the performance of MPC applied to uncon-
strained and constrained LQR problems measured by the
closed-loop cost accumulated over an infinite horizon. We
derived performance bounds that connect the performance
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Fig. 3. Illustration of the value |Jµ̃(x)−J∗(x)|/|J∗(x)| (in
percent) with our choice of K. It can be seen that
there is hardly any loss of optimality. Consistent with
our analysis, the largest loss occurs when x is near the
origin. Still, a mere 0.35% loss of cost in comparison
with optimal is occurred.
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Fig. 4. Illustration of the value Jµ̃(xk)−J∗(xk) where the
system is driven under the policy µ̃. The optimal cost
from x0 is about 293, which means the policy µ̃ is
practically optimal.

of MPC with its terminal cost as well as the true optimal
policy of the problems. The derived bounds apply to prob-
lems beyond the scope of linear systems and suggest new
design of terminal cost and constraint that is not related to
the optimal cost of the problem. Numerical studies showed
that the new design leads to larger region from which MPC
is feasible, while cost little to none performance.

REFERENCES

Baoti, M., Christophersen, F.J., and Morari, M. (2006).
Constrained optimal control of hybrid systems with
a linear performance index. IEEE Transactions on
Automatic Control, 51(12), 1903–1919.

Bertsekas, D. (2022a). Abstract dynamic programming.
Athena Scientific.

Bertsekas, D. (2022b). Lessons from AlphaZero for Op-
timal, Model Predictive, and Adaptive Control. Athena
Scientific.

Bertsekas, D.P. (1975). Monotone mappings in dynamic
programming. In 1975 IEEE Conference on Decision
and Control including the 14th Symposium on Adaptive
Processes, 20–25. IEEE.

Bertsekas, D.P. (1977). Monotone mappings with appli-
cation in dynamic programming. SIAM Journal on
Control and Optimization, 15(3), 438–464.

Bitmead, R.R. and Gevers, M. (1991). Riccati differ-
ence and differential equations: Convergence, mono-
tonicity and stability. In The Riccati Equation, 263–291.
Springer.

Bitmead, R.R., Gevers, M.R., Petersen, I.R., and Kaye,
R.J. (1985). Monotonicity and stabilizability-properties
of solutions of the riccati difference equation: Propo-
sitions, lemmas, theorems, fallacious conjectures and
counterexamples. Systems & Control Letters, 5(5), 309–
315.

Denardo, E.V. (1967). Contraction mappings in the theory
underlying dynamic programming. Siam Review, 9(2),
165–177.

Grune, L. and Rantzer, A. (2008). On the infinite horizon
performance of receding horizon controllers. IEEE
Transactions on Automatic Control, 53(9), 2100–2111.

Hewer, G. (1971). An iterative technique for the compu-
tation of the steady state gains for the discrete optimal
regulator. IEEE Transactions on Automatic Control,
16(4), 382–384.

Kapasouris, P., Athans, M., and Stein, G. (1988). De-
sign of feedback control systems for stable plants with
saturating actuators. Technical report, Massachusetts
Institute of Technology, Laboratory for Information.

Li, Y., Karapetyan, A., Lygeros, J., Johansson, K.H., and
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