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Abstract—The event-triggered model predictive control (MPC)
reduces energy consumption for updating control sequences while
maintaining the originality of the MPC, which copes with hard
constraints on dynamical systems. In the presence of large
uncertainties, however, the standard event-triggered MPC may
generate too frequent event occurrences. To compensate for
unknown uncertainties, this paper applies a statistical learning
to event-triggered MPC. The stability and the feasibility of the
proposed control system are analyzed in regard to the statisti-
cal learning influences, such as the number of training samples,
model complexity, and learning parameters. Accordingly, the
event-triggering policy is established to guarantee the stability.
We evaluate the proposed algorithm for the tracking problem
of a nonholonomic model perturbed by uncertainties. In com-
parison with the standard event-triggered control scheme, the
simulation results of the proposed method show better tracking
performance with less frequent event triggers.

Index Terms—Empirical risk minimization (ERM), event-
triggered control, model predictive control (MPC), statistical
learning.

I. INTRODUCTION

MODEL predictive control (MPC) is a form of optimal
control method that derives its control action by solv-

ing a finite-horizon open-loop optimization problem. Due to
its advantage to cope with hard constraints on state and con-
trol input in the online optimization, MPC has been employed
for many applications, such as automated control systems,
smart grids, networked control system, and communication
technologies [1]–[4].

The MPC may require much computational time as the
optimization operations are executed at every sampling instant.
To improve computational efficiency without sacrificing con-
trol performance, event-triggered MPC methods as an exten-
sion of the MPC have been developed [2], [5]–[9]. While
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maintaining the originality of MPC, it can significantly reduce
computational cost by allowing control updates only when the
events are triggered.

However, event-triggered MPC may suffer from a num-
ber of event-triggered occurrences when large uncertainty
is presented in plant. In this case, uncertainty compensa-
tion for the event-triggered control may prevent deterioration
of control performance [10], [11]. We herein propose an
event-triggered MPC with a statistical machine learning that
learns an uncertainty compensation model. In comparison to
conventional control synthesis combined with learning tech-
niques [12], [13], such as reinforcement learning [13]–[15]
and supervised learning [16]–[18], we provide analysis of the
stability of the closed-loop control system in terms of the
learning influences, such as the number of training samples,
model complexity, and learning parameters. This may help to
develop and evaluate a realistic learning and control applica-
tion with comprehension of the learning influences on a control
object.

As a statistical machine learning algorithm, empirical risk
minimization (ERM) is applied [19] to learn an uncertainty
compensation model. This learning method provides a bound
of the predictive learning error, and this bound can be used to
derive the stability and the feasibility of the proposed control
system. Here, the feasibility refers to the condition that there
exists an MPC optimization solution satisfying all constraints
on the states, the control input, and the learning error bound.

The main contributions of the proposed event-triggered
MPC with a statistical learning can be summarized in the
following.

1) The control system is adaptive to model uncertainty
owing to the learning-based compensator, and is robust
to state estimation error, which is bounded by the ERM
learning. By the ERM learning, the proposed approach
can relax restrictions on uncertainty, such as known
maximum upper bound, which is a typical assumption
in robust MPC [20].

2) Stability and feasibility are analyzed with respect to the
learning influences while most of learning-based control
methods do not address them in control theory perspec-
tive. To our best knowledge, this is the first work to
apply ERM learning to event-triggered control.

The proposed algorithm is evaluated for a tracking problem
of a nonholonomic robot subject to model uncertainty. The
uncertainty is attenuated by ERM algorithm with training data
samples obtained from repetitive control implementations. In
comparison with event-triggered control scheme, the proposed
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Fig. 1. Concepts of (a) original MPC and (b) event-triggered MPC are shown. The original MPC solves the control optimization at every time step and the
actuator chooses the first element of the control input sequence uk . The event-triggered MPC solves optimization only when event-generator triggers an event.
In the period of time between two events, it continues using some parts of the control input sequence uke , which was calculated at the last trigger moment
ke. In this paper, the design of the state estimator is supported by the ERM learning technique.

method shows better tracking performance and more efficient
event-triggering mechanism.

The rest of this paper is organized as follows. Section II
presents the primary of the proposed control system.
Sections III and IV describe the event-triggered MPC com-
bined with the statistical learning. Section V shows the
simulation results and Section VI devotes to the concluding
remarks.

II. PRIMARY RESULT

Fig. 1(a) illustrates the control system architecture of
the normal MPC and Fig. 1(b) shows the event-triggered
MPC mechanism. In the normal MPC strategy, the control
optimization iterates at every time step to generate a new
control sequence. In the event-triggered scheme as shown in
Fig. 1(b), it is able to reduce the control updates by the event
generator, which triggers MPC optimization only when it is
required. The state estimator design is supported by the ERM
learning to compensate for uncertainty.

Section II-A presents system description and introduces the
learning-based estimator to compensate for uncertainty with
description of training data configuration. Section II-B sum-
marizes the event-triggered MPC combined with a learning
approach and its contribution to reduce computational time.

A. System Description and Learning-Based Compensator

We consider the nonlinear deterministic discrete-time
system

xk+1 = f (xk, uk) + w(xk, uk) (1)

where xk ∈ R
d is state at discrete time k, uk ∈ R

m is control
input, and w(xk, uk) ∈ R

d is model uncertainty. The dynamic
model f (xk, uk) is known and the uncertainty w(xk, uk) is
unknown. The state and control input belong to the compact
sets

xk ∈ X , uk ∈ U . (2)

To counteract the unknown disturbance w(xk, uk), a machine
learning technique is used to design the compensator (or
estimator) g(xk, uk) such that

E[|w(xk, uk) − g(xk, uk)|] ≤ ε (3)

where ε > 0 is the upper bound of the prediction error and | · |
denotes the Euclidean norm. The role of the machine learning
is to design the uncertainty estimator g(xk, uk) and to obtain
the bound ε.

To model g(xk, uk), the machine learning technique uses
training set. In this paper, the training dataset is obtained by
implementing repetitive control tasks. With the assumption
that all states are measurable, a training dataset is given by

D = {(Xi, Yi)}n
i=1 (4)

with

Xi = [xT
ki
, uT

ki

]T
(5)

Yi = xT
ki+1 − f (xki , uki) + η (6)

where ki are time indices when samples are collected and η

is the random sampling noise. Based on the training set, the
model g(xk, uk) and the error bound ε are obtained by the
ERM learning algorithm, which is going to be introduced in
Section IV. We note that the applied learning technique does
not refer to online learning that may learn and update g(xk, uk)

during a control operation. In this paper, we do not update
g(xk, uk) during the control operation. We leave the training
set D as a random variable so that g(xk, uk)(≡ g(xk, uk; D)) is
the random function.

B. Event-Triggered MPC With Learning-Based Compensator

MPC solves an optimal control problem (OCP) to generate a
predictive control input sequence. Suppose N is the prediction
horizon length, then the states and control inputs at discrete
time k are formed in vector format

xk = {x̂(k + j|k)}N
j=0, uk = {u(k + j|k)}N−1

j=0 (7)

where the initial estimation x̂(k|k) = xk is given.
The value function of OCP is defined as

J(xk, uk)

:= Exk

⎡

⎣
N−1∑

j=0

Jr
(
x̂(k + j|k), u(k + j|k))+ Jv(x̂(k + N|k))

⎤

⎦

(8)
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where Jr : R
n×R

m → R and Jv : R
n → R are the running and

the terminal cost functions, respectively, and Exk = E[ · |xk] is
the conditional expectation given the initial state xk. Note that
the estimation x̂(k+ j|k) is random variable due to the random
vector g(xk, uk) so that the value function is defined as the
expectation. Given the value function (8), the formulation of
the optimization problem is given by

J∗(xk) = min
u

J(xk, uk) (9)

subject to

x̂(k + j + 1|k) = f
(
x̂(k + j|k), u(k + j|k))

+ g
(
x̂(k + j|k), u(k + j|k)) (10)

u(k + j|k) ∈ U Exk [x̂(k + N|k)] ∈ Xf (11)

Exk [x̂(k + j + 1|k)] ∈ Xj+1

∀j = 0, . . . , N − 1 (12)

where J∗(xk) is the optimal value, and U , Xj+1, and Xf are
the constraint sets. In (10), g(x, u) counteracts the unknown
uncertainty w(x, u) introduced in (1) as the learning-based
compensator function.

The original MPC solves the OCP (9) at every time step and
uses the first control element of the sequence. Meanwhile, the
event-triggered MPC solves the OCP (9) only when the event
generator triggers an event, as described in Fig. 1(b).

The event-triggering condition is established to satisfy the
stability of the control system. General approach to spec-
ify the event-triggering condition for nonlinear systems per-
turbed by uncertainties is based on input-to-state stability
(ISS) [21]–[23]. They require the assumption for a known
upper bound of the uncertainty, where this bound plays piv-
otal role in the control performance of the event-triggering
policy. If the bound is large, the frequency of the event trig-
gers increases. To improve the event-triggering efficiency, we
apply a statistical machine learning technique to obtain a tight
bound by compensation for uncertainty. By applying the statis-
tical learning, our method can relax the restrictions that require
known upper bound or structure of uncertainty, such as con-
stant or harmonic, which is a common assumption in adaptive
control and robust MPC [20].

III. EVENT-TRIGGERED CONTROL FORMULATION

This section devotes to deriving the proposed control law
given the learning estimator in (3). Section III-A defines
Assumptions 1–3 and Lemmas 1–3, which are required for
the proposed control system. Based on those properties,
Sections III-B and III-C present the feasibility and the stability
analyses, respectively.

A. System Assumptions and Properties

Assumption 1: Given the system in (1), it is satisfied that

|f (x1, u) − f (x2, u)| ≤ Lf |x1 − x2|. (13)

The inequality in (13) refers to locally Lipschitz for f (x, u) in
x ∈ X , u ∈ U , where Lf is Lipschitz constant, and X and U
are compact sets defined in (2), and f (0, 0) = 0.

Assumption 2: The cost function Jr(x, u) in (8) is locally
Lipschitz with Lipschitz constant Lr, and its expectation sat-
isfies E[Jr(x, u)] ≥ α|(x, u)|p with the positive integers α > 0
and p ≥ 1.

Assumption 3: A local stabilizing controller h(x) for the
terminal set Xf exists such that E[Jv(f (x, h(x))) − Jv(x)] ≤
−E[Jr(x, h(x))] for ∀x ∈ �. The compact set � is given
� = {x ∈ R

n : E[Jv(x)] ≤ α�} such that � ⊆ XN−m for
m ∈ {1, . . . , N − 1}, with the assumption that the cost func-
tion Jv in (8) is Lipschitz in � with Lipschitz parameter Lv.
The terminal state region Xf in (11) is given Xf = {x ∈
R

n : E[Jv(x)] ≤ αv} for ∀x ∈ � such that f (x, h(x)) ∈ Xf ⊆ �.
Assumption 3 refers to the computation of the terminal set

Xf in (11) when the admissible positively invariant set � is
obtained. Assumptions 1–3 are generally used in the MPC
framework to guarantee the stability property under additive
disturbances as in [21]–[23].

Suppose that e is Euclidean norm of the expected error
such that

e(k + j|k) = E
[|xk+j − x̂(k + j|k)|] (14)

where xk+j is the true state and x̂(k + j|k) is the predicted
state. Then, bound of an expected error can be calculated in
Lemmas 1 and 2.

Lemma 1: The bound of e(k + j|k) is given by

e(k + j|k) ≤ Lj
f − 1

Lf − 1
ε ∀j ≥ 1. (15)

Proof: See Appendix A.
Lemma 2: The bound of the expected error between current

time step k and previous time step k − 1, for all j ≥ 0, is
given by

E[|x̂(k + j|k) − x̂(k + j|k − 1)|] ≤ 2
Lj+1

f − 1

Lf − 1
ε ∀j ≥ 0.

Proof: See Appendix B.
The constraint set Xj in (12) is calculated to guarantee the

invariant set for the closed-loop system, in which an OCP
solution exists

Xj = X � Bj

with Bj =
{

x ∈ R
n : E[|x|] ≤ 2

Lj
f − 1

Lf − 1
ε

}

. (16)

By the Pontryagin difference operation �, the set Xj is
given by

Xj = {x ∈ R
n : x + xb ∈ X ∀xb ∈ Bj

}
. (17)

Lemma 3: If E[x] ∈ Xj and E[y] ∈ R
n satisfies

E
[|x − y|] ≤ 2Lj−m

f

Lm
f − 1

Lf − 1
ε for 0 ≤ m < j (18)

then, E[y] ∈ Xj−m.
Proof: Let z = x − y + ej−m, where E[ej−m] ∈ Bj−m. It is

clear that

E[|z|] ≤ E
[|x − y|]+ E

[|ej−m|]

≤ 2Lj−m
f

Lm
f − 1

Lf − 1
ε + 2

Lj−m
f − 1

Lf − 1
ε
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[by (18) for the left term and (16) for the right]

= 2
Lj

f − 1

Lf − 1
ε.

Therefore, z ∈ Bj. Because E[y + ej−m] = E[z + x] ∈ X , we
can have E[y] ∈ Xj−m.

B. Event-Triggered Control Formulation and Feasibility

Assume that the optimal control sequence at the last time
step k − 1 was calculated

U∗(k − 1) = {u∗(k − 1 + i|k − 1)
}N−1

i=0 (19)

and we hold the corresponding value function J∗(k−1). Given
U∗(k−1), the future input set U(k+m) = {ū(k+ j|k+m)}N−1

j=m
at the next possible event-triggered instants k+m for 0 ≤ m ≤
N − 1, is defined:

1) for j = m, . . . , N − 2

ū(k + j|k + m) = u∗(k + j|k − 1) (20)

2) for j = N − 1, . . . , m + N − 1

ū(k + j|k + m) = h
(
x̂(k + j|k + m)

)
(21)

where h(·) is defined in Assumption 3. Note that without solv-
ing the OCP at k + m, we use U(k + m) not only to check the
stability and the feasibility but also decide an event trigger.

The feasibility analysis for the MPC is needed to guarantee
the existence of a solution satisfying every constraint of the
OCP. In the event-triggered control formulation, the OCP at
k+m for m ∈ {0, 1, . . . , N − 1} is feasible if a solution exists,
given the optimal solution U∗(k − 1) in (19).

Theorem 1: Given the system in (1) with Assumptions 1–3,
the OCP is feasible if the prediction error in (3) is bounded
such that

ε ≤
(
Lf − 1

)
(α� − αv)

2Lv

(
LN

f − 1
) . (22)

Proof: See Appendix C.

C. Stability and Triggering Condition

Stochastic ISS (SISS) is a general concept to analyze the sta-
bility of stochastic nonlinear control systems [24]–[26]. Some
relevant function classes are defined as follows. A function
γ : R+ → R+ belongs to class K if it is a continuous strictly
increasing function with γ (0) = 0. On top of that it belongs to
class K∞ if γ ∈ K when γ (r) ∈ ∞ as r → ∞. Furthermore,
a function β : R+ → R+ is of class KL if β(s, k) is of class
K for each fixed k and it decreases to zero as k → ∞ for each
fixed s ≥ 0.

Definition 1: For system (1), a continuous function
J(k) : R

n → R+ is the SISS Lyapunov function if there exist
ᾱ, α ∈ K∞, ϕ, 	 ∈ KL for all x ∈ R

n \ {0} such that

α(|xk|) ≤ J(k) ≤ ᾱ(|xk|)

J(k) ≤ −ϕ(|xk|) + 	(‖wk‖)

where 
J(k) = Exk [J(k + 1)] − J(k).

Let us define J̄(k + �) for � ∈ {0, 1, . . . , N − 1} as the costs
of the feasible sequence. Then, the difference between J̄(k+�)

and the optimal cost at the last time step J∗(k −1) is given by


J� = E
[
J̄(k + �) − J∗(k − 1)

] = E
[
J̄(k + �)

]− J∗(k − 1).

(23)

Theorem 2: Given the system in (1), Assumptions 1–3, and
the control law from (20) and (21), 
J� is bounded such that:

1) for � = 0


J0 ≤ LZl · e(k|k − 1) + LCl · 2ε − α|xk−1|p (24)

2) for 1 ≤ � ≤ N − 1


J� ≤
{

LZj

Lj
f − 1

Lf − 1
+ 2 · LCj

}

· ε − α

�∑

i=0

|xk+�−i|p (25)

where

LZ�
= LvL(N−1−�)

f + Lr

L(N−1−�)
f − 1

Lf − 1
(26)

LC�
= Lv

L(N−1−�)
f − 1

Lf − 1

+ Lr

Lf − 1

{
N−2−�∑

i=0

L�
f − (N − 2 − �)

}

. (27)

The parameters Lf , Lr, and Lv are defined in Assumptions 1–3,
respectively. According to SISS described in Definition 1, the
optimal cost is the SISS-Lyapunov function so that the closed-
loop system is stochastic stable.

Proof: See Appendix D.
Finally, the event-triggering policy is constructed to keep

the stability by subjecting 
J� to decrease such that


J�+1 ≤ 
J�. (28)

Under the rule of (28), the following theorem specifies the
event-triggering condition.

Theorem 3: Given the system in (1), Assumptions 1–3, and
the solution of OCP at the last time step k − 1, the event-
triggering condition is as follows:

1) for � = 0

LZl · e(k|k − 1) + 2LClε ≤ σ · α|xk−1|p (29)

2) for 1 ≤ � ≤ N − 1
(

LZ�

L�
f − 1

Lf − 1
+ 2LC�

)

· ε ≤ σ · α

�∑

i=0

|xk−i+�|p (30)

and
(

LZ�

L�
f − 1

Lf − 1
+ 2LC�

− LZ�−1

L�−1
f − 1

Lf − 1
− 2LC�−1

)

· ε

≤ σ · α|xk|p (31)

where LZ�
and LC�

are defined in (26) and (27), respectively,
and 0 < σ < 1.

Proof: See Appendix E.
As a result, solving a new OCP is implemented at k + �

if (29) or (30) and (31) is violated at k + �. Otherwise, a new
OCP is solved at k + N. Based on this event-triggered policy,
the control system maintains the SISS.
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IV. STATISTICAL MACHINE LEARNING

This section describes a statistical learning algorithm to
achieve two goals: 1) designing the disturbance predictor
g(xk, uk) in (3) and 2) obtaining the error bound ε in (3).

A. Learning Formulation

Equation (3) can be restated as follows:

E
[|w(xk, uk) − g(xk, uk)|

] ≤
√

E
[|w(xk, uk) − g(xk, uk)|2

]

=
√

E

[(
wk1 − ĝk1

)2]+ · · · + E

[(
wkd − ĝkd

)2]

≤ √b1 + b2 + · · · + bd := ε (32)

where w(xk, uk) = [wk1, . . . , wkd]T and g(xk, uk) =
[ĝk1, . . . , ĝkd]T .

Each prediction ĝkl for l = 1, . . . , d is obtained by lth
regressor, and corresponding error bl can be obtained such
that

E

[(
wkl − ĝkl

)2] ≤ bl. (33)

It is noted that the prediction problem by this learning is
categorized as a regression problem because ĝkl ∈ R. Each
regressor ĝkl for l = 1, . . . , d are obtained independently. For
simplicity, we omit all the subscripts k, l in (33) in the rest of
this section.

Given training dataset D = {(Xi, Yi)}n
i=1 for X ∈ χ ⊂

R
d+m, Y ∈ Y ⊂ R defined in (4), it aims to obtain a prediction

model g : χ → Y by minimizing the empirical risk R̂(g)

given by

R̂(g) := E[l(g(X), Y)|g] (34)

with a loss function l : Y × Y → R. To obtain the prediction
model, the penalized ERM is applied [19].

Definition 2 (Penalized Empirical Risk Minimizer):
Suppose that C(g, n, δ) is a penalty function in which n is the
number of training samples, g ∈ G is a candidate prediction
model, and δ ∈ (0, 1). Then, the penalized ERM problem is
defined by

ĝ = argmin
g∈G

(
R̂(g) + C(g, n, δ)

)
. (35)

Definition 3 (Expected Risk Bound): Suppose that the loss
function l : Y × Y → [0, B] is bounded and infg∈G R(g) is
the Bayes risk for prediction models g ∈ G. Then, the upper
bound of the expected empirical is as follows:

E[R(ĝ)] − inf
g∈G

R(g) ≤ δ + C(g, n, δ)

≤ δ + B

√
log (1/δ) + c(g)

2n
(36)

for δ ∈ (0, 1). The function c(g) in (36) represents
model complexity of g(·), which satisfies the condition∑

g∈G exp−c(g) ≤ 1, which will be defined in (42).
From (36), we can ensure the bound of the prediction error

after we obtain the predictor by (35).

Algorithm 1 Event-Triggered MPC With Statistical Learning
Require: Parameter configuration satisfying

Assumptions 1, 2 and 3, given the control system
in (1) and (9).

Learning:
Input: Training dataset D = {Xi, Yi}n

i=1 in (4)
{Xi = [xT

ki
, uT

ki
]T , Yi = [xT

ki+1 − f (xki , uki) + η] in (5)}.
Output: ω̂ in (37) and ε in (32).

1: Compute ω̂ by solving (43).
2: Obtain the error bound ε by (46).

Event-triggered Control:
Input: State measurement xk.
Output: Control signal uk.
Initialize: Solve the initial MPC in (9), obtain the control

sequence U∗(k) in (19), and apply the first control element
of the sequence.

3: repeat
4: Check triggering condition based on (29), (30) and (31).
5: if the triggering condition is violated then compute (9),

update a new control sequence (19), and apply the first
control element of the sequence.

6: else if time exceeds the prediction horizon k + N then
compute (9), update a new (19), and use the first control
signal.

7: else select the control input whose time index is
matched with the current time, from the last calculated
control sequence.

8: end if
9: until end of control

B. ERM Learning

We define a prediction model such that

g(X) = E[Y|X, ω] = ωTKX (37)

where the learning parameter ω ∈ R
n is to be estimated and

the Gaussian kernel vector KX ∈ R
n is given by

KXi = exp

(

− (Xi − X)2

2σ 2
k

)

(38)

where KXi ∈ R is the ith element of KX , and Xi is the ith
sample in the training set defined in (4).

It is assumed that the likelihood of the prediction model (37)
is the form of Gaussian distribution such that

P(Y|X, ω) = 1
√

2πσ 2
1

exp

(

− (ωTKX − Y)2

2σ 2
1

)

(39)

and the prior of ω follows Gaussian distribution:

P(ω) = 1
√

2πσ 2
2

exp

(

−ωTω

2σ 2
2

)

. (40)

Accordingly, the empirical risk in (34) is as follows:

R̂(g) = 1

n

n∑

i=1

l(g(xi), Yi) = −1

n

n∑

i=1

log P(Yi|Xi, ω)

= 1

2σ 2
1 n

n∑

i=1

(
ωTKXi − Yi

)2 + 1

2
log 2πσ 2

1 . (41)
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(a) (b)

(c) (d)

Fig. 2. Comparison of MPC and event-triggered MPC without learning, where (a) and (c) tracking results, and (b) and (d) control inputs. In (c), the arrows
denote the event-triggered instants to update control inputs.

When the model complexity c(g) in (36) is defined by

c(g) = 1

2

(

log(2πσ 2
2 ) + ωTω

σ 2
2

)

(42)

the optimization problem for the ERM in (35) is as follows:

ω̂ = argmin
ω

⎛

⎜
⎜
⎝

1

2σ 2
1 n

n∑

i=1

(
ωTKXi − Yi

)2

+ B

√√√√
1
2 log

(
2πσ 2

2

)+ 1
2

ωTω

σ 2
2

+ log (1/δ)

2n

⎞

⎟⎟
⎠.

(43)

To solve (43), a numerical optimization algorithm is required.
In this paper, gradient descent method [27] is used.

By inserting (42) into (36), the error bound of the estimator
ε in (32) can be calculated. The risk error becomes equivalent
to the prediction error when the kernel function in (37) is
applied, such that

E[R(ĝ)] − inf
g∈G

R(g) = E

[
(w − ĝ)2

]
(44)

where w is the target of the predictor ĝ in (32).

Herein, we summarize the learning procedure. Suppose
that we have d learning models with the learned ω̂l for
l = 1, . . . , d. Then, given a test data Xk = [xT

k , uT
k ]T in the

control phase, the lth estimator computes

ĝkl(xk, uk; D) = ω̂T
l KXk . (45)

Also, the bound in (32) is calculated as

E
[|w(xk, uk) − g(xk, uk)|

]

≤

√√√√√√√

d∑

i=1

⎛

⎜⎜
⎝B

√√
√√

1
2 log

(
2πσ 2

2

)+ 1
2

ω̂T
i ω̂i

σ 2
2

+ log (1/δ)

2n
+ δ

⎞

⎟⎟
⎠

:= ε (46)

with δ = (1/
√

n). Algorithm 1 shows the pseudocode of the
proposed event-triggered MPC with the ERM learning.

V. SIMULATION RESULTS

We consider a tracking problem of the following nonholo-
nomic system subject to model uncertainty:

xk+1 = xk + (1 + C)vkT cos θk (47)

yk+1 = yk + (1 + C)vkT sin θk (48)

θk+1 = θk + �kT. (49)
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(a) (b)

(c) (d)

Fig. 3. Simulation results of the (a), (b) standard event-triggered MPC and (c), (d) learning-based event-triggered MPC.

The uncertainty in (32) is defined as wk1 = CvkT cos θk

and wk2 = CvkT sin θk with C = 2.5. The control input is
uk = [vk,�k] and the state variable is xk = [xk, yk, θk]T , which
is composed of the two-dimensional position of the robot
(xk, yk) and the orientation θk. The state and control input are
constrained by |xk|, |yk| < 10 and |vk|, |�k| < 2, respectively.
Given the reference r = (5, 8, (3/4)π), the cost functions are
defined as Jr = (x − r)T(x − r) + uTu and Jv = xTx, respec-
tively. On top of that time steps N = 25, the time interval
T = 0.2 s, the initial position (x0, y0, θ0) = (0, 0, 0) are used.
To obtain the training data, we implement repetitive control
implementations with learning model updates. For example,
Fig. 2(c) is one control implementation during 60 time steps,
from which we collect one set of training data samples. We
collect total seven training datasets, including 420 data points
from the seven implementations for simulation study. At the
initial learning, the control set is made by the event-triggered
MPC without the learning. After that the proposed event-
triggered MPC control implementations and the updates of the
uncertainty compensator by the ERM learning are repeated to
produce the training data until the seventh iteration.

Fig. 2(a) and (b) shows the control performance of the
normal MPC, and Fig. 2(c) and (d) are the results of the
event-triggered MPC. Their tracking performances are simi-
lar, but the event-triggered MPC uses only 25 control updates,
which are illustrated by the arrows in Fig. 2(c). We can evalu-
ate that the event-triggered method reduces the computational
time to update control inputs without sacrificing tracking

performance. However, we found that the normal MPC and
the event-triggered MPC do not compensate for the uncer-
tainties at all. In both cases, the uncertainties are dismissed
by updating the control inputs as frequent as the uncertain-
ties do not deteriorate the tracking performances. We found
that the uncertainties caused a significant tracking error of
the standard event-triggered MPC, as shown in Fig. 3, when
we change the parameter values to reduce the event-triggered
period.

To investigate the performance variation with respect to the
change in the event-triggered period, we vary the parameter
α with the fixed σ = 0.9 in (29)–(31), where α and σ are
the major components to adjust the event-triggered period.
Fig. 2(c) is the result when α = 4.2, which is the best track-
ing result when applying the standard event-triggered MPC.
Fig. 3 shows the tracking results according to increment in α to
hold a longer event period. The standard event-triggered MPC
yields the results of unstable tracking performances by the
uncertainties in both cases of α = 4.5 in Fig. 3(a) and α = 4.7
in Fig. 3(b). Meanwhile, the proposed learning-based event-
triggered MPC method gives the accurate tracking result when
α = 4.5 in Fig. 3(c) as much as the best tracking performance
of the normal MPC in Fig. 2(a). Even when α = 4.7 in
Fig. 3(d), it yields only the 11 trigger instants while maintain-
ing a fine tracking performance. Consequently, the developed
method achieves the outstanding improvement of the control
performance as well as the reduction of trigger instants than
the compared one owing to the learning capability.
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(a)

(b)

Fig. 4. Control input comparison between the event-triggered MPC and
the proposed method. (a) Control input of the event-triggered MPC, which is
generated from the simulation of Fig. 3(a). (b) Control input of the learning-
based event-triggered MPC, used from Fig. 3(c).

Fig. 4(a) and (b) are the control inputs generated from
the simulation results in Fig. 3(a) and (c), respectively. As
shown, the standard event-triggered MPC generates the oscil-
latory control signals, while the proposed method shows the
convergence of the control signals.

VI. CONCLUSION

We presented a new event-triggered MPC by applying a
statistical learning method. ERM with kernel regression was
used to predict the system state subject to model uncer-
tainties. Owing to the learning, the control system became
adaptive to the uncertainties and robust to state estimation
errors. Further, the error bound analysis related the learning
characteristics to the event-triggered policy, and the stability
and feasibility of the control system were analyzed. From the
simulation results, we validated the computational efficiency
and accuracy of the proposed control algorithm.

APPENDIX A
PROOF OF LEMMA 1

Given Lipschitz assumption in Assumptions 1, the following
recursion can be obtained:

·j = 1

E
[|xk+1 − x̂(k + 1|k)|]

= E
[|xk+1 − f (xk, uk) − g(xk, uk)|

] (
since x̂(k|k) = xk

)

= E
[|w(xk, uk) − g(xk, uk)|

] ≤ ε (by (32))

·j = 2

E
[|xk+2 − x̂(k + 2|k)|]

≤ E
[|f (xk+1, uk+1) − f (x̂(k + 1|k), uk+1)|

]

+ E
[|w(xk+1, uk+1) − g(x̂(k + 1|k), uk+1)|

]
(by (13))

≤ Lf · E
[|xk+1 − x̂(k + 1|k)|]+ ε

≤ ε · (Lf + 1)

· j

E
[|xk+j − x̂(k + j|k)|]

≤ Lj−1
f · ε + Lj−2

f · ε + · · · + L0
f · ε

≤ Lj−1
f · e(k + 1|k) + Lj−1

f − 1

Lf − 1
· ε ≤ Lj

f − 1

Lf − 1
· ε.

APPENDIX B
PROOF OF LEMMA 2

Similar to Lemma 1, we can obtain the following recursion:

· j = 0 (50)

E
[|x̂(k|k) − x̂(k|k − 1)

]
:= e(k|k − 1)

·j = 1 (51)

E
[|x̂(k + 1|k) − x̂(k + 1|k − 1)

]

≤ Lf · E
[|x̂(k|k) − x̂(k|k − 1)|](by (13))

+ 2E
[|g(x̂(k|k), uk

)− wk|
]

≤ Lf ε + 2ε

·j = 2 (52)

E
[|x̂(k + 2|k) − x̂(k + 2|k − 1)|]

≤ L2
f ε + 2L1

f ε + 2L0
f ε

· j (53)

E
[|x̂(k + j|k) − x̂(k + j|k − 1)|]

≤ Lj
f e(k|k − 1) + 2

Lj
f − 1

Lf − 1
ε (54)

≤ Lj
f ε + 2

Lj
f − 1

Lf − 1
ε ≤

(

Lj
f + Lj

f − 1

Lf − 1

)

· 2ε

= Lj+1
f − 1

Lf − 1
· 2ε. (55)

APPENDIX C
PROOF OF THEOREM 1

Suppose that we are given the optimal control input
U∗(k − 1) at the last time step k − 1 in (19) and the cost
J∗(k − 1). The next OCP is possibly determined at one of the
instants k + m, with 0 ≤ m < N − 1. The OCP can be deter-
mined feasible at any k + m if there is a solution of (9) based
on the control law in (20) and (21).

1) ū(k + j|k + m) ∈ U: This is clear condition from the
control law in (20) and (21).

2) E[x̄(k + j|k + m)] ∈ Xj−m for j = m + 1, . . . ,N − 1: Since
ū(k + �|k + m) = u∗(k + �|k − 1) for � = m, . . . , N − 2, and
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by Lemma 2, we can obtain the following inequality:

E
[|x̄(k + j|k + m) − x̂∗(k + j|k − 1)|] ≤ Lj−m

f

Lm
f − 1

Lf − 1
· 2ε.

(56)

Because E[x̂∗(k + j|k − 1)] ∈ Xj in the left term of (56) and
by Lemma 3, it is clear that E[x̄(k + j|k + m)] ∈ Xj−m.

3) x̄(k + m + N|k + m) ∈ Xf : First, E[x̄(k + N|k + m)] ∈ �

is going to be proved. Similar to (56), we obtain

E
[|x̄(k + N|k + m) − x̂∗(k + N|k − 1)|] ≤ LN−m

f

Lm
f − 1

Lf − 1
· 2ε.

(57)

Also, from the Lipschitz assumption on the terminal cost func-
tion Jv in Assumption 3 and by (57), the following inequalities
are given:

E
[|Jv(x̄(k + N|k + m)) − Jv

(
x̂∗(k + N|k − 1)

)|]

≤ LvLN−m
f

Lm
f − 1

Lf − 1
· 2ε

and

E[(Jvx̄(k + N|k + m))]

≤ E
[
J : v

(
x̂∗(k + N|k − 1)

)]+ LvLN−m
f

Lm
f − 1

Lf − 1
· 2ε

(
by the fact that E

[|x − y|] = E[x] − E
[
y
]

for x, y ∈ R > 0
)

≤ αv + LvLN−m
f

Lm
f − 1

Lf − 1
· 2ε (by Assumption 3)

≤ αv + Lv

LN
f − 1

Lf − 1
· 2ε ≤ α� (by Assumption 3).

Therefore, E[x̄(k + N|k + m)] ∈ �.
Second, we prove E[x̄(k +N +m|k +m)] ∈ � by recursion.

It is clear that

E[Jv(x̄(k + N + 1|k + m))] ≤ E[Jv(x̄(k + N|k + m))]. (58)

Also, by Assumption 3, we can get

E[Jv(x̄(k + N|k + m))] ≤ α� (59)

which yields E[x̄(k+N +1|k+m)] ∈ �. The recursion derives
E[x̄(k+N +m−1|k+m)] ∈ �, and thus E[x̄(k+N +m|k+m)]
∈ Xf .

4) E[x̄(k+ j|k+m)] ∈ Xj−m for j = N, N +1, . . . ,N +m−1:
By Assumption 3, it can be confirmed that E[x̄(k + N|k +
m)] ∈ � ⊆ XN−m, E[x̄(k + N + 1|k + m)] ∈ � ⊆ XN−m+1,
. . . , E[x̄(k + N + m − 1|k + m)] ∈ � ⊆ XN−1. Therefore,
E[x̄(k + j|k + m)] ∈ Xj−m for j = N + 1, . . . , N + m − 1.

APPENDIX D
PROOF OF THEOREM 2

For � = 0, (23) is given by


J0 = E
[
J̄(k) − J∗(k − 1)

]

= E

[
N−2∑

i=0

{Jr(x̄(k + i|k), ū(k + i|k)) (60)

− Jr
(
x̂(k + i|k − 1), u∗(k + i|k − 1)

)}
(61)

+ Jr(x̄(k + N − 1|k), h(x̄(k + N − 1|k))) (62)

+ Jv(x̄(k + N|k)) − Jv(x̄(k + N − 1|k)) (63)

+ Jv(x̄(k + N − 1|k)) − Jv
(
x̂(k + N − 1|k − 1)

)

(64)

− Jr(xk−1, uk−1)

]

. (65)

From the definition in (20) and (21), ū(k + i|k) = u∗(k +
i|k − 1). By Lemma 2 and Assumption 2, the bound of (60)
and (61) can be formulated

E[Jr(x̄(k + i|k), ū(k + i|k))
− Jr

(
x̂(k + i|k − 1), u∗(k + i|k − 1)

)]

≤ Lr|E[x̄(k + i|k)] − E
[
x̂(k + i|k − 1)|] (by Assumption 2)

≤ LrLi
f e(k|k − 1) + 2ε

Li
f − 1

Lf − 1
(by (54)).

Consequently, the bound of summation of (60) and (61) is
given by

E

[
N−1∑

i=0

Jr(x̄(k + i|k), ū(k + i|k))

− Jr
(
x̂(k + i|k − 1), u∗(k + i|k − 1)

)
]

≤ Lr ·
[

LN−1
f − 1

Lf − 1
e(k|k − 1) + 2ε

Lf − 1

{
N−2∑

i=0

Li
f − (N − 2)

}]

.

The bound of (63) and (64) is given by

E
[
Jv(x̄(k + N − 1|k)) − Jv

(
x̂(k + N − 1|k − 1)

)]

≤ Lv · E[|x̄(k + N − 1|k)] − x̂(k + N − 1|k − 1)|]
(by Assumption 3)

≤ Lv ·
{

LN−1
f e(k|k − 1) + 2ε

LN−1
f − 1

Lf − 1

}

(by (54)).

From Assumption 2, the bound of (65) is as follows:

E
[
Jr(xk−1, uk−1)

] ≥ α|(xk−1, uk−1)|p ≥ α|xk−1|p.
And upper bound of (62) becomes zero due to Assumption 3.
As a result, 
J0 is bounded by


J0 ≤ LZ0 · e(k|k − 1) + LC0 · 2ε − α|xk−1|w (66)

with LZ0 = Lv · LN−1
f + Lr · [(L(N−1)

f − 1)/(Lf − 1)] and LC0 =
Lv[(L(N−1)

f −1)/(Lf −1)]+[Lr/(Lf −1)] {∑N−2
i=0 Li

f −(N −2)}.
For �=1, 
J1 becomes


J1 = E
[
J̄(k + 1)

]− J∗(k − 1)

= E

[
N−3∑

i=0

{Jr(x̄(k + i + 1|k), ū(k + i + 1|k))

− Jr
(
x̂(k + i + 1|k − 1), u∗(k + i + 1|k − 1)

)}

+ Jr(x̄(k + N − 1|k + 1), h(x̄(k + N − 1|k + 1))

+ Jv(x̄(k + N|k + 1)) − Jv(x̄(k + N − 1|k + 1))

+ Jr(x̄(k + N|k + 1), h(x̄(k + N|k + 1)))
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+ Jv(x̄(k + N + 1|k + 1)) − Jv(x̄(k + N|k + 1))

+ Jv(x̄(k + N − 1|k + 1))

− Jv
(
x̂(k + N − 1|k − 1)

)

− Jr(xk−1, uk−1) − Jr(xk, uk)

]

.

Similar to the case � = 0, we can obtain the bound of the
cost terms. We omit the overlapped procedure. As a result,

J1 is bounded by


J1 ≤ LZ1 · e(k + 1|k − 1) + LC1 · 2ε − α|xk−1|p − α|xk|p
(67)

with LZ1 = Lv · LN−2
f + Lr · [(L(N−2)

f − 1)/(Lf − 1)] and LC1 =
Lv[(L(N−2)

f −1)/(Lf −1)]+ [Lr/(Lf −1)]{∑N−3
i=0 Li

f − (N −3)}.
Note that the error e(k + 1|k − 1) is given by Lemma 1. By
substituting (15) in Lemma 1 into (67), we can get


J� ≤ LZ�
· L�

f − 1

Lf − 1
· ε + 2εLC�

− α

�∑

i=0

|xk+�−i|p

=
{

LZ�

L�
f − 1

Lf − 1
+ 2LC�

}

· ε − α

�∑

i=0

|xk+�−i|p (68)

where

LZ�
= LvL(N−1−�)

f + Lr

L(N−1−�)
f − 1

Lf − 1

LC�
= Lv

L(N−1−�)
f − 1

Lf − 1

+ Lr

Lf − 1

{
N−2−�∑

i=0

Li
f − (N − 2 − �)

}

.

APPENDIX E
PROOF OF THEOREM 3

The stability of the closed-loop control system is ensured
by strictly decreasing 
J� given by


J�+1 ≤ 
J�. (69)

To derive the condition (69), we can use bound property. First,
bound of 
J�+1 is given by

J∗
N(k + � + 1) − J∗

N(k − 1) ≤ 
J�+1

≤ LZ�
e(k + �|k − 1) + 2LC�

ε − α

�∑

i=0

|xk−i+�|p (70)

< LZ�
e(k + �|k − 1) + 2LC�

ε − σ · α

�∑

i=0

|xk−i+�|p (71)

where (70) and (71) are obtained by (25) and introduction of
new variable σ satisfying 0 < σ < 1. Similarly, the bound of

Jj is as follows:

J∗
N(k + �) − J∗

N(k − 1) ≤ 
J�

≤ LZ�−1 e(k + � − 1|k − 1) + 2LC�−1ε − α

�−1∑

i=0

|xk−i+�|p

< LZ�−1e(k + � − 1|k − 1) + 2LC�−1ε − σ · α

�−1∑

i=0

|xk−i+�|p.

Because J∗
N(k + � + 1) ≤ J∗

N(k + �), it is guaranteed that

J∗
N(k + � + 1) − J∗

N(k + �) ≤ 
J�+1 − 
J�. (72)

Finally, in order to satisfy (69), the upper bound of 
J�+1
should be smaller than the bound of 
J�, given by

LZ�
e(k + �|k − 1) + 2LC�

ε − σ · α

�∑

i=0

|xk−i+�|p

≤ LZ�−1 e(k + � − 1|k − 1) + 2LC�−1ε − σ · α

�−1∑

i=0

|xk−i+�|p.
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