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Abstract—Reinforcement learning (RL) is capable of sophisti-
cated motion planning and control for robots in uncertain envi-
ronments. However, state-of-the-art deep RL approaches typically
lack safety guarantees, especially when the robot and environment
models are unknown. To justify widespread deployment, robots
must respect safety constraints without sacrificing performance.
Thus, we propose a Black-box Reachability-based Safety Layer
(BRSL) with three main components: (1) data-driven reachability
analysis for a black-box robot model, (2) a trajectory rollout plan-
ner that predicts future actions and observations using an ensemble
of neural networks trained online, and (3) a differentiable polytope
collision check between the reachable set and obstacles that enables
correcting unsafe actions. In simulation, BRSL outperforms other
state-of-the-art safe RL methods on a Turtlebot 3, a quadrotor, a
trajectory-tracking point mass, and a hexarotor in wind with an
unsafe set adjacent to the area of highest reward.

Index Terms—Reinforcement learning, robot safety, task and
motion planning.

I. INTRODUCTION

IN REINFORCEMENT learning (RL), an agent perceives
and reacts to consecutive states of its environment to maxi-

mize long-term cumulative expected reward [1]. One key chal-
lenge to the widespread deployment of RL in safety-critical
systems is ensuring that an RL agent’s policies are safe, es-
pecially when the system environment or dynamics are a black
box and subject to noise [2], [3]. In this work, we consider RL
for guaranteed-safe navigation of mobile robots, such as au-
tonomous cars or delivery drones, where safety means collision
avoidance. We leverage RL to plan complex action sequences
in concert with data-driven reachability analysis to guarantee
safety for a black-box system.
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A. Related Work

Safe RL aims to learn policies that maximize expected re-
ward on a task while respecting safety constraints during both
learning and deployment [3]. Existing methods can be roughly
classified as objective-based or exploration-based, depending
on how safety is formulated. We first discuss these categories,
then the specific case of mobile robot navigation, which we use
to evaluate our proposed method.

Objective-based methods encourage safety by penalizing con-
straint violations in the objective. This can be done by relating
cumulative reward to the system’s risk, such as the probability
of visiting error states [4]. In practice, this results in an RL
agent attempting to minimize an empirical risk measure (that is,
an approximation of the probability of entering a dangerous or
undesired state). Similarly, one can penalize the probability of
losing reward (by visiting an unsafe state) for a given action [2],
in which case the agent minimizes temporal differences in the
reward and thus also minimizes risk. Another approach is to
restrict policies to be ergodic with high probability, meaning
any state can eventually be reached from any other state [5].
This is a more general problem, which comes at a cost: feasible
safe policies do not always exist, and the algorithms are far
more complex. While these methods can make an agent prefer
safe actions, they cannot guarantee safety during training or
deployment. Another group of objective-based algorithms aims
to modify the Markov Decision Process (MDP) that the RL
agent tries to optimize. Some model safe optimization prob-
lems as maximizing an unknown expected reward function [6].
However, they exploit regularity assumptions on the function
wherein similar decisions are associated with similar rewards.
They also assume the bandit setting, where decisions do not
cause state transitions. Others utilize constrained MDPs [7] to
enforce safety in various RL settings, either online or offline.
Online methods learn by coupling the iteration of numerical
optimization algorithms (such as primal-dual gradient updates)
with data collection [8]–[11]. These algorithms have also been
studied in exploration-based settings [12], [13]. However, they
provide no guarantees on safety during training. On the other
hand, offline schemes separate optimization and data collec-
tion [14], [15]. They conservatively enforce safety constraints
on every policy iteration but are more challenging to scale up.

Exploration-based methods modify the agent’s exploration
process instead of its optimization criterion. Exploration is the
process of learning about unexplored states by trying random
actions or actions that are not expected to yield maximum
reward (for example, an ε-greedy strategy). However, visiting
unexplored states naïvely can harm a robot or its environment.
To avoid this, one can aim to guarantee safety during both
exploration and exploitation, in both training and testing, by
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modifying the exploration strategy to incorporate risk met-
rics [16]. One can also use prior knowledge as an inductive
bias for the exploration process [3], [17]; for example, one
can provide a finite set of demonstrations as guidance on the
task [18]. Other approaches use control theory to guide or
constrain the RL agent’s actions. Most of these approaches
use system models with Lyapunov or control barrier functions
(CBFs) to guarantee safety (or stability) of the system [19]–[21].
One can also combine data-driven approaches with model-free
barrier or intervention functions [22]–[24], or use robust CBFs
to model uncertain parts of a system [25], [26]. Although these
approaches can provide strong guarantees, most assume the
system is control-affine, and need prior knowledge on some
or all of the system model [27]–[29], which may not always
be feasible. Finally, our method is most similar to [30], which
learns a safety signal from data offline, then uses it to adjust an
RL agent’s controls at runtime. This method uses a first-order
safety approximation for fast adjustment, but (as we show) can
be conservative.

Safe navigation is a fundamental challenge in robotics, be-
cause robots typically have uncertain, nonlinear dynamics. Clas-
sical techniques such as A∗ or RRT [31, Ch. 5] have been
proposed to solve the navigation problem without learning. With
these methods, safety has been enforced at different levels of the
planning hierarchy, such as trajectory planning [32], or low-level
control [33]. More recently, however, learning-based methods
have been proposed [27]–[29]. Some safe RL navigation ap-
proaches depend on learning a value function of the expected
time that an agent takes to reach the desired goal [34], [35]. Other
approaches depend on learning the actions of the robot in an
end-to-end manner [36]–[38], meaning that the agent attempts to
convert raw sensor inputs (e.g., camera or LIDAR) into actuator
commands. The key advantage of RL over traditional planners
is in accelerating computation time and solution quality.

B. Proposed Method and Contributions

We propose a Black-box Reachability-based Safety Layer
(BRSL), illustrated in Fig. 1, to enable strict safety guarantees
for RL in an entirely data-driven way, addressing the above
challenges of lacking robot and environment models a priori and
of enforcing safety for uncertain systems. We note that the main
advantage of BRSL is the use of data-driven methods to pro-
vide safety guarantees for black-box system dynamics. BRSL
enforces safety by computing a system’s forward reachable set,
which is the union of all trajectories that the system can realize
within a finite or infinite time when starting from a bounded set
of initial states, subject to a set of possible input signals [39].
Then, if the reachable set does not intersect with unsafe sets,
the system is verified as safe, following similar arguments as
in [32], [33], [40].

Limitations: Our method requires an approximation for the
upper bound of a system’s Lipschitz constant, similar to [29],
[41], [42]. This results in a curse of dimensionality with respect
to number of samples required to approximate the constant;
note other sampling-based approaches scale similarly [28], [29].
Furthermore, we focus on a discrete-time setting, assume our
robot can brake to a stop, and assume accurate perception of the
robot’s surroundings. We leave continuous-time (which can be
addressed with similar reachability methods to ours [28], [40])
and perception uncertainty to future work.

Contributions: We show the following with BRSL:

Fig. 1. Overview of the proposed BRSL method (link to video). Given
data collected offline (in yellow, right), we perform online safe training and
deployment of an RL agent. The RL agent creates trajectory plans for a robot in
a receding-horizon way as follows. Each planning iteration is one clockwise loop
in the green dashed box. First (blue, top left), the agent predicts a possible future
trajectory by rolling out its current policy with an ensemble of neural networks
trained online to model the black-box environment (grey, bottom left). Second
(orange, middle), the candidate plan is adjusted to ensure safety using data-driven
reachability and a constrained, differentiable method of collision-checking our
robot’s reachable sets. We execute a failsafe maneuver if the collision check is
infeasible. Finally, the new safe plan is passed to the robot, and a penalty is
passed to the RL agent for choosing unsafe action.

1) We propose a safety layer by integrating data-driven reach-
ability analysis with a differentiable polytope collision
check and a trajectory rollout planner.

2) We demonstrate BRSL on robot navigation, where it
outperforms a baseline RL agent, Reachability-based
Trajectory Safeguard (RTS) [28], Safe Advantage-based
Intervention for Learning policies with Reinforcement
(SAILR) [24], and Safe Exploration in Continuous Action
Spaces (SECAS) [30]. Our code is online.

Next, in Section II, we provide preliminaries and formulate
our safe RL problem. Sections III and IV discuss and evaluate
the proposed approach. Finally, Section V presents concluding
remarks and discusses future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section presents the notation, set representations, system
dynamics, and reachable set definitions used in this work. We
then pose our safe RL problem.

A. Notation and Set Representations

The n-dimensional real numbers are Rn, the natural numbers
are N, and the integers from n to m are n:m. We denote the
element at row i and column j of matrix A by (A)i,j , column j
of A by (A): ,j , and the element i of vector a by (a)i. An n×m

matrix of ones is 1n×m. For A ∈ Rn×m and x ∈ Rn, we use the
shorthandA− x = A− x11×m. The diag(·) operator places its
arguments block-diagonally in a matrix of zeros. For a pair of
sets A and B, the Minkowski sum is A+B = {a+ b | a ∈
A,b ∈ B}, and the Cartesian product is A×B = {(a,b) | a ∈
A,b ∈ B}.

We represent sets using constrained zonotopes, zonotopes,
and intervals, because they enable efficient Minkowski sum
computation (a key part of reachability analysis) [40] and col-
lision checking via linear programming (critical to safe mo-
tion planning) [43]. A constrained zonotope [43] is a convex
set parameterized by a center c ∈ Rn, generator matrix G ∈
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Rn×ng , constraint matrix A ∈ Rnc×ng , and constraint vector
b ∈ Rnc as

Z(c,G,A,b) = {c+Gz | Az = b, ‖z‖∞ ≤ 1} . (1)

By [43, Thm. 1], every convex, compact polytope is a con-
strained zonotope and vice-versa. For polytopes represented as
an intersection of halfplanes, we convert them to constrained
zonotopes by finding a bounding box, then applying the halfs-
pace intersection property in [44].

A zonotope is a special case of a constrained zonotope without
equality constraints (but with ‖z‖∞ ≤ 1), which we denote
Z(c,G). For Z = Z(c,G) ⊂ Rn and a linear map L, we have
LZ = Z(Lc, LG); we denote −Z = −1Z. The Minkowski
sum of two zonotopes Z1 = Z(c1,G1) and Z2 = Z(c2,G2)
is given by Z1 + Z2 = Z(c1 + c2, [G1,G2]) [40]. For an n-
dimensional interval with lower (resp. upper) bounds l ∈ Rn

(resp. l), we abuse notation to represent it as a zonotope
Z = Z(l, l) ⊂ Rn, with center 1

2 (l+ l) and generator matrix
diag( 12 (l− l)).

B. Robot and Environment

We assume the robot can be described as a discrete-time, non-
linear control system with state xk ∈ X ⊂ Rn at time k ∈ N.
We assume the state space X is compact. The input uk is drawn
from a zonotope Uk ⊆ U at each time k, where U ⊂ Rm is
a zonotope of all possible actions. We denote process noise
by wk ∈ W ⊂ Rn, where W is specified later in Assumption
2. Finally, we denote the black box (i.e., unknown) dynamics
f : X × U ×W → X , for which

xk+1 = f(xk,uk) +wk. (2)

We further assume that f is twice differentiable and Lips-
chitz continuous, meaning there exists a Lipschitz constant
L� such that, if ∀ z1, z2 ∈ Rn+m with zj = (xj ,uj), then
‖f(z1)− f(z2)‖ ≤ L�‖x1 − x2‖. We denote the initial state of
the system as x0, drawn from a compact set X0 ⊂ Rn. Note that
this formulation leads to an MDP.

To enable safety guarantees, we leverage the notion of failsafe
maneuvers from mobile robotics [32], [45].

Assumption 1: We assume the dynamics f are invariant to
translation in position, and the robot can brake to a stop innbrk ∈
N time steps and stay stopped indefinitely. That is, there exists
ubrk ∈ U such that, if the robot is stopped at state xk, and if
xk+1 = f(xk,ubrk), then xk+1 = xk.

Note, many real robots have a braking safety controller
available, similar to the notion of an invariant set [28], [29].
Also, failsafe maneuvers exist even when a robot cannot remain
stationary, such loiter circles for aircraft [46], [47]. We require
that process noise obeys the following assumption for numerical
tractability and robustness guarantees.

Assumption 2: Each wk is drawn uniformly from a noise
zonotope W = Z(cw,Gw) with ng,w generators.

This formulation does not handle discontinuous changes
in noise. However, there exist zonotope-based techniques to
identify a change in W [48], after which one can compute
the system’s reachable set as in the present work. We leave
measurement noise and perception uncertainty to future work.
We also note, in the case of Gaussian or unbounded noise,

one can overapproximate a confidence level set of a probability
distribution using a zonotope [40], [48].

We denote unsafe regions of state space, or obstacles, as
Xobs ⊂ X . We assume obstacles are static but different in each
episode, as the focus of this work is not on predicting other
agents’ motion. Furthermore, reachability-based frameworks
exist to handle other agents’ motion [33], [49], so the present
work can extend to dynamic environments.

We further assume the robot can instantaneously sense all
obstacles (that is, Xobs) and represent them as a union of
constrained zonotopes. In the case of sensing limits, one can
determine a minimum distance within which obstacles must be
detected to ensure safety, given a robot’s maximum speed and
braking distance [32, Section 5].

C. Reachable Sets

We ensure safety by computing our robot’s forward reachable
set (FRS) for a given motion plan, then adjusting the plan so that
the FRS lies outside of obstacles. We define the FRS, henceforth
called the reachable set, as follows:

Definition 1: The reachable set Rk at time step k, subject
to a sequence of inputs uj ∈ Uj ⊂ Rm, noise wj ∈ W ∀ j ∈
{0, . . . , k − 1}, and initial set X0 ∈ Rn, is the set

Rk =

{
xk ∈ Rn

∣∣ xj+1 = f(xj ,uj) +wj , x0 ∈ X0,

uj ∈ Uj , and wj ∈ W, ∀ j = 0, . . . , k − 1
}
. (3)

Recall that we treat the dynamics f as a black box (e.g., a
simulator), which could be nonlinear and difficult to model, but
we still seek to conservatively approximate (that is, overapprox-
imate) the reachable set Rk.

D. Safe RL Problem Formulation

We denote the state of the RL agent at time k by x̂k ∈ RnRL ,
which contains the state xk of the robot plus information such as
sensor measurements and previous actions. At each time k, the
RL agent chooses uk. Recall that Xobs ⊂ Rn denotes obstacles.
For a given task, we construct a reward function ρ : (x̂k,uk) �→
rk ∈ R (examples of ρ are given in Section IV). At time k, let
pk = (uj)

nplan

j=k denote a plan, or sequence of actions, of duration
nplan ∈ N.

Then, our safe RL problem is as follows. We seek to learn
a policy πθ : x̂k �→ uk, represented by a neural network with
parameters θ, that maximizes expected cumulative reward. Note
that the policy can be deterministic or stochastic. Since rolling
out the policy naïvely may lead to collisions, we also seek to
create a safety layer between the policy and the robot (that is, to
ensure Rj ∩Xobs = ∅ for all j ≥ k).

III. BLACK-BOX REACHABILITY-BASED SAFETY LAYER

We unite three components into our BRSL system for
collision-free motion planning without a dynamic model of the
robot or its surroundings a priori. The first component is an
environment model, learned online. To find high reward actions
(i.e., motion plans) for this model, the second component is an
RL agent. Since the agent may create unsafe plans, our third
component is a safety layer that combines data-driven reacha-
bility analysis with differentiable collision checking to enable
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safe trajectory optimization. Theorem 1 summarizes safety via
BRSL.

BRSL is summarized in Algorithm 1. It uses a receding-
horizon strategy to create a new safe plan pk in each kth

receding-horizon motion planning iteration. Consider a single
planning iteration (that is, time step k) (Lines 4–16). Suppose
the RL agent has previously created a safe plan pk−1 (such as
staying stopped indefinitely). At the beginning of the iteration,
BRSL creates a new plan pk by rolling out the RL agent along
with an environment model. Next, BRSL chooses a safe action
by adjusting the rolled-out action sequence (Lines 9–11) such
that the corresponding reachable set (computed with Algorithm
2) is collision-free and ends with a failsafe maneuver. If the
adjustment procedure (as in Algorithm 3) fails to find a safe plan,
then the robot executes the failsafe maneuver. Finally, BRSL
sends the first action in the current safe plan to the robot, gets a
reward, and trains the RL agent and environment model (Lines
12–16). To enable training our environment model online, we
collect data in a replay buffer B at each time k (Line 15). We
note that BRSL can be used during both training and deployment.
That is, the safety layer can operate even for an untrained policy.
Thus, for training, we initialize πθ with random weights.

To proceed, we detail our methods for data-driven reachability
and adjusting unsafe actions.

A. Data-Driven Reachability Analysis

BRSL performs data-driven reachability analysis of a plan
pk = (uj)

nplan

j=k using Algorithm 2, based on [42]. Algorithm 2
overapproximates the reachable set as in (3) by computing a
zonotope R̂j ⊇ Rj for each time step of the current plan.

Our reachability analysis uses noisy trajectory data of the
black-box system model collected offline; we use data collected
online only for training the policy and environment model.
We consider q input-state trajectories of lengths ti ∈ N, i =
1, . . . , q, with total duration ttotal =

∑q
i ti. We denote the data

as (x
(i)
k )tik=0, (u(i)

k )ti−1
k=0 , i = 1, . . . , q. To ease notation for the

various matrix operations needed in Algorithm 2, we collect the
data in matrices:

X− =
[
x
(1)
0 , . . . ,x

(1)
t1−1,x

(2)
0 , . . . ,x

(q)
0 , . . . ,x

(q)
tq−1

]
, (4a)

X+ =
[
x
(1)
1 , . . . ,x

(1)
t1

,x
(2)
1 , . . . ,x

(q)
1 , . . . ,x

(q)
tq

]
, (4b)

U− =
[
u
(1)
0 , . . . ,u

(1)
t1−1,u

(2)
0 , . . . ,u

(q)
0 , . . . ,u

(q)
tq−1

]
. (4c)

Note, the time steps are different in X− and X+ to simplify
considering state transitions corresponding to the actions inU−.
Selecting enough data to sufficiently capture system behavior is
a challenge that depends on the system, though specific sampling
strategies exist for some systems [28].

We must approximate the Lipschitz constant of the dynam-
ics for our reachability analysis, which we do from the data
(X−,X+,U−) with the method in [42, Section 4, Remark 1].
We also require a data covering radius δ such that, for any data
point z1 ∈ X × U , there exists another data point z2 ∈ X × U
for which ‖z1 − z2‖2 ≤ δ. We assume sufficiently many data
points are known a priori to upper-bound L� and lower-bound
δ; and, we assume L� and δ are the same for offline data col-
lection and online operation. Note, prior work assumes similar
bounds [41], [42].

We find that the reachable set becomes conservative (i.e.,
large) if the same L� and δ are used for every dimension,
because the true dynamics are typically scaled differently in each
state dimension. To mitigate this source of conservativeness,
we approximate a different (L�)i and (δ)i for each dimension,
which we then use to compute a Lipschitz zonotope Zε (see
Line 1 of Algorithm 2). Note, this is an improvement over prior
work [42].

B. Adjusting Unsafe Actions

After the RL agent rolls out a plan pk, the safety layer adjusts
it to ensure it is safe. This is done by checking the intersection
of the plan’s reachable sets with unsafe sets. Note, our proposed
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Fig. 2. We move zonotope reachable sets out of intersection (see Algorithm
3) by using the gradient of a collision check, shown in (a), to adjust u0 so the
reachable sets are out of collision as shown in (b).

adjustment procedure does not depend on πθ, only on the unsafe
sets around the robot. The plan is applied to the environment if
all of its actions are safe; otherwise, we search for a safe plan.
One strategy for finding a safe plan is to sample randomly in
the action space [28], but this can be prohibitively expensive in
the large action spaces that arise from choosing control inputs
at multiple time steps. Instead, we use gradient descent to adjust
our plan such that the reachable sets are not in collision, and
such that the plan has a failsafe maneuver.

We adjust unsafe actions using Algorithm 3. If the algorithm
does not complete within the duration of one time step (in
other words, we fix the rate of receding-horizon planning), we
terminate it and continue our previously-found safe plan. Our
method steps through each action in a plan p and performs the
following. First, we compute the reachable set for all remaining
time steps with Algorithm 2 (Line 5). Second, we collision
check the reachable set (Line 6) as detailed below. Third, if the
reachable sets are in a collision, we compute the gradient of the
collision check and perform projected gradient descent (Line 8)
as in fig 2. Finally, if the algorithm converges to a safe plan, we
return it, or else return “unsafe.” Note, the final plan must have
a failsafe maneuver (Line 11).

We collision check reachable and unsafe sets, all repre-
sented as constrained zonotopes, as follows. Consider two
constrained zonotopes, Z1 = Z(c1,G1,A1,b1) and Z2 =
Z(c2,G2,A2,b2). Applying [43, Prop. 1], their intersection
is Z∩ = Z1 ∩ Z2 = Z(c∩,G∩,A∩,b∩), given by

Z∩ = Z
⎛
⎝c1, [G1,0],

⎡
⎣A1 0

0 A2

G1 −G2

⎤
⎦ ,

⎡
⎣ b1

b2

c2 − c1

⎤
⎦
⎞
⎠ . (5)

We check if Z1 ∩ Z2 is empty by solving a linear program, as
per [43, Prop. 2]:

v� = min
z,v

{v | A∩z = b∩ and |z| ≤ v} , (6)

with |z| taken elementwise; Z∩ is nonempty iff v ≤ 1. Note, (6)
is feasible when Z1 and Z2 have feasible constraints.

We use gradient descent to move our reachable sets R̂k

out of collision. Since we use (6) for collision checking, we
differentiate its solution with respect to the problem param-
eters using [50], [51]. Let ĉk denote the center of R̂k. Per
Algorithm 2, R̂k is a function of u0, . . . ,uk−1. Let (z�, v�)
be an optimal solution to (6) when the problem parameters
(i.e., the input constrained zonotopes) are R̂k and an unsafe set.
Collision avoidance requires v� > 1 [43, Prop. 2]. We compute
the gradient ∇uk

v� with respect to the input action (assuming
a constant linearization point) using a chain rule recursion with

i = 0, . . . , nplan given by

∇uh
v� = ∇ĉk

v�∇ĉk−1
ĉk

⎛
⎝j=k−1∏

j=h+2

∇ĉj−1
ĉj

⎞
⎠∇uh

ĉh+1, (7)

with h = k − i. The gradients of ĉk are given by

∇ĉk−1
ĉk = (Mk−1)(1:1+n),(1:1+n), and (8a)

∇uk−1
ĉk = (Mk−1):,(n+1:n+1+m), (8b)

where Mk−1 is computed as in Algorithm 2, Line 2, and n and
m are the state and action dimensions. After using ∇uk

v� for
gradient descent on uk, we project uk to the set of feasible
controls: projUk

(uk) = arg minv∈Uk
{‖uk − v‖22}. The result-

ing controls may be unsafe, so we collision-check the final
reachable sets at the end of Algorithm 3.

C. Analyzing Safety

We conclude this section by formalizing the notion that BRSL
enables safe RL.

Theorem 1: Suppose the assumptions on the robot and envi-
ronment from Section II all hold, and, at time k = 0, the robot
is at safe state. Suppose also that, at each time k > 0, the robot
rolls out a new pk, then adjusts the plan using Algorithm 3.
Then, the robot is guaranteed to be safe at all times k ≥ 0.

Proof: We prove the claim by induction on k. At time 0, the
robot can apply ubrk to stay safe for all time. Assume a safe
plan exists at time k ∈ N. Then, if the output of Algorithm 3 is
unsafe (no new plan found), the robot can continue its previous
safe plan; otherwise, if a new plan is found, the plan is safe for
three reasons. First, the black-box reachability in Algorithm 2 is
guaranteed to contain the true reachable set of the system [42,
Theorem 2], because process noise is bounded by a zonotope
as in Assumption 2. Second, when adjusting an unsafe plan
with Algorithm 3, the zonotope collision check is guaranteed
to always detect collisions [43, Prop. 2] to assess if R̂j ∩Xobs
is empty for each time step j of the plan. Third, Algorithm 3
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Fig. 3. Evaluation Environments.

requires that, after nplan timesteps, the robot is stopped, so the
new plan contains a failsafe manuever, and the robot can safely
apply ubrk for all time j ≥ k + nplan. �

We note that the accuracy of the environment model, trained
online, does not affect safety; Theorem 1 holds as long as the
offline data are representative of the robot’s dynamics at runtime.
We leave updating the data online for future work.

IV. EVALUATION

We evaluate BRSL on two types of environments: safe navi-
gation to a goal (a Turtlebot in Gazebo and a quadrotor platform
in Unreal Engine 4), and path following (a point mass based
on [14], [24] and a hexarotor in wind in Unreal Engine 4).
Fig. 3 shows example environments. All code is run on a desktop
computer with an Intel i5 11600 CPU and a RTX 3060 GPU. Our
code is available online. We aim to assess the following: (a) How
does BRSL compare against other safe RL methods (RTS [28],
SAILR [24], and SECAS [30])? (b) How conservative is BRSL?
(c) Can BRSL run in real time?

Setup We use TD3 [52] as our RL agent, after determining
empirically that it outperforms SAC [53] and DDPG [54]. We
randomly initialize the policy. Since the agent outputs continu-
ous actions, to aid the exploration process, we inject zero-mean
Gaussian noise with a variance of 0.5 that is dampened each
time step. Note that this does not affect safety since our safety
layer adjusts the output of the RL agent.

For each robot, to perform reachability analysis with Algo-
rithm 2, we collect 500 time steps of noisy state/input data (as
per (4)) offline in an empty environment while applying random
control inputs. We found this quantity of data sufficient to ensure
safety empirically; we leave a formal analysis of the minimum
amount of data for future work.

We parameterize the environment model as an ensemble of
neural networks, each modeling a Gaussian distribution over
future states and observations. Each network has 4 layers, with
hidden layers of size 200, and leaky ReLU activations with a
negative slope of 0.01. We use a stochastic model wherein the
ensemble predicts the parameters of a probability distribution,
which is sampled to produce a state as in [55].

Goal-Based Environments: The Turtlebot 3 and the quadrotor
seek to navigate to a random circular goal region Xgoal ⊂ X
while avoiding randomly-generated obstacles Xobs ⊂ X . Each
robot starts in a safe location at the center of the map. Each
task is episodic, ending if the robot reaches the goal, crashes, or
exceeds a time limit. Both robots have uncertain, noisy dynamics
as in (2). We discretize time at 10 Hz.

The Turtlebot’s control inputs are longitudinal velocity in
[0.00,0.25] m/s and angular velocity in [−0.5, 0.5] rad/s (these

are the bounds of Uk). The robot has wheel encoders, plus a
planar lidar that generates 18 range measurements evenly spaced
in a 180◦ arc in front of the robot. The robot requires nbrk = 6
time steps to stop, so we set nplan = 8.

The quadrotor control inputs are commanded velocities up
to 5 m/s in each spatial direction at each time step. We note
that we also experimented with learning low-level rotor speeds
versus high-level velocity commands, and found that the velocity
commands created the fairest testing conditions across all agents.
The robot is equipped with an IMU and a 16-channel lidar which
receives range measurements around the robot in a 50◦ vertical
arc and a 360◦ horizontal arc. The robot has nbrk = 10, so we
set nplan = 11.

Path Following Environments: These experiments assess
BRSL’s conservativeness is by placing the highest reward ad-
jacent to obstacles.

The goal for the point robot is to follow a circular path of radius
r as quickly as possible while constrained to a region smaller
than the target circle. The point robot is a 2-D double integrator
with position and velocity as its state: xk = (xk, yk, ẋk, ẏk).
It has a maximum velocity of 2 m/s, and its control input
is acceleration up to 1 m/s2 in any direction. We use these
dynamics as in [14], [24] to enable a fair test against other
methods that require a robot model. We define a box-shaped safe
set (the complement of the obstacle set) as Xsafe = {xk ∈ X :
|xk| ≤ xmax, |yk| ≤ ymax}, with ‖(xmax, ymax)‖2 < r. We use
a reward that encourages traveling quickly near the unsafe set:
ρ(x̂k,uk) =

(ẋk,ẏk)·(−yk,xk)

1+
∣∣‖(xk,yk)‖2−r

∣∣ .

The hexarotor has the same setup as the quadrotor, but with
the addition of wind as an external disturbance. The goal of the
hexarotor is to pass through 10 checkpoints in a fixed order while
subject to wind (constant speed and direction) and randomly-
placed obstacles. Note, offline data collection was performed
under wind conditions.

Results and Discussion: The results are summarized in Ta-
bles I and II, and in Fig. 4. BRSL outperforms the other methods
in terms of reward and safety, is not overly conservative, and can
operate in real time, despite lacking a model of the robot a priori.
While SAILR and the baseline RL agent achieved higher speeds,
both experienced collisions, unlike BRSL, RTS, and SECAS.
In contrast to RTS, which chooses from a low-dimensional
parameterized plans, BRSL outputs a more flexible sequence
of actions. Furthermore RTS’ planning time increases with
state space dimension due to computing a halfspace represen-
tation of reachable set zonotopes, which grows exponentially
in the number of generators [40]. BRSL avoids this compu-
tation by using (6). Instead, the quantity of data for BRSL
determines the computation time of Mj from Algorithm 2,
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TABLE I
GOAL-BASED EXPERIMENT RESULTS (BEST VALUES IN BOLD)

TABLE II
PATH FOLLOWING RESULTS (BEST VALUES IN BOLD)

Fig. 4. Average reward over time of BRSL, RTS [28], SAILR [24], and a vanilla TD3 baseline for each of our experiments.

used for reachability and adjusting unsafe actions. Therefore,
one can ensure the amount of data allows real time operation;
choosing the data optimally is left to future work. Finally, BRSL
uses zonotopes to exactly represent safety constraints, whereas
SECAS uses a more conservative first-order approximation.
This results in BRSL achieving higher reward with slightly
slower computation time (but still fast enough for real time
operation).

V. CONCLUSION

This letter proposes the Black-box Reachability Safety Layer,
or BRSL, for safe RL without having a system model a priori.
BRSL ensures safety via data-driven reachability analysis and
a novel technique to push reachable sets out of collision. To
enable the RL agent to make dynamics-informed decisions,
BRSL also learns an environment model online, which does not
affect the safety guarantee. The framework was evaluated on
four robot motion planning problems, wherein BRSL respects
safety constraints while achieving a high reward over time in
comparison to state-of-the-art methods. For future work, we will
explore continuous-time settings, reducing the conservativeness
of our reachability analysis, and minimizing the amount of data
needed to guarantee safety.
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