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Abstract
In this paper, we propose a data-driven reachability analysis approach for unknown system dynam-
ics. Reachability analysis is an essential tool for guaranteeing safety properties. However, most
current reachability analysis heavily relies on the existence of a suitable system model, which is
often not directly available in practice. We instead propose a data-driven reachability analysis ap-
proach from noisy data. More specifically, we first provide an algorithm for over-approximating the
reachable set of a linear time-invariant system using matrix zonotopes. Then we introduce an exten-
sion for Lipschitz nonlinear systems. We provide theoretical guarantees in both cases. Numerical
examples show the potential and applicability of the introduced methods.
Keywords: Reachability analysis, data-driven methods, zonotope.

1. Introduction

Reachability analysis computes the reachable set, which is the union of all possible trajectories
that a system can reach within a finite or infinite time when starting from a bounded set of initial
states, subject to a set of possible inputs (Althoff, 2010). Most of the existing reachability analysis
techniques assume the availability of a model. However, systems are becoming more complex,
and data is becoming more readily available. Therefore, we consider the problem of computing
reachable sets directly from noisy data without the need for a model.

Figure 1: We compute the reachable set consistent with noisy input-state data.

The most popular approaches in computing reachable sets are set-propagation and simulation-
based techniques. Set-propagation techniques propagate reachable sets for consecutive time points.
The efficiency of these methods depends on the set representation and the computational technique.
Popular set representations are polyhedra (Asarin et al., 2001; Rakovic et al., 2006), zonotopes (Al-
thoff, 2010; Girard, 2005), (sparse) polynomial zonotopes (Althoff, 2013; Kochdumper and Althoff,
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2019), ellipsoids (Kurzhanski and Varaiya, 2000), support functions (Le Guernic and Girard, 2009,
2010). Zonotopes have favorable properties as they can be represented compactly, and they are
closed under the Minkowski sum and linear mapping. The simulation-based approach in (Donzé
and Maler, 2007) over-approximates the reachable set by a collection of simulation tubes around
trajectories, such that the union of these tubes provides an over-approximation of the reachable set.
Other simulation-based techniques are proposed in (Julius et al., 2007; Duggirala and Viswanathan,
2016; Duggirala et al., 2013; Arcak and Maidens, 2018; Maidens and Arcak, 2014; Lew and Pavone,
2020). Another approach in (Devonport and Arcak, 2020) finds an under-approximation for the
reachable set from data with an unknown system model. However, their approach is only probabilis-
tically accurate, i.e., the more data is sampled, the higher is the probability that the reachable set is
correct. While there hence exist efficient reachability algorithms for a given model and some initial
approaches for reachability analysis directly from data, obtaining a guaranteed over-approximation
of the reachable set from noisy data of an unknown model is still an open problem.

With the rising amount of available data, the interest in data-driven methods for analysis and
control has increased, see for example (Coulson et al., 2019; Van Waarde et al., 2020; Tabuada
et al., 2017; Dai and Sznaier, 2018; Berberich et al., 2020b). In this work, we will specifically make
use of ideas used in (Van Waarde et al., 2020; Koch et al., 2020a,b) and (De Persis and Tesi, 2019;
Berberich et al., 2020a,c; van Waarde et al., 2020) for data-driven analysis and data-driven controller
design, respectively. In these works, the data is generally used to provide a characterization of
all models that are consistent with the data. This characterization is chosen in a way to provide
a computational approach for direct systems analysis and design without explicitly identifying a
model.

Using efficient computational tools from model-based reachability analysis together with recent
development in data-driven systems analysis and control, we propose in this paper a technique to
compute a guaranteed reachable set directly from noisy data as visualized in Figure 1. Providing
such guarantees from noisy data requires the computation of the set, which encloses all models that
are consistent with the noisy data. To this end, we use matrix zonotopes since they can be used in a
computationally efficient way for forward propagation as they are closed under Minkowsky sum and
linear mapping. All used codes to recreate our findings are publicly available1. The contributions
of this paper can be summarized as follows:

• We provide a method using matrix zonotopes to over-approximate the reachable set of an
unknown linear control system from noise-corrupted input-state data (Theorem 2).

• The method is extended to over-approximate the reachable set of Lipschitz nonlinear systems
(Theorem 3).

The rest of the paper is organized as follows: the preliminaries and problem statement are in-
troduced in Section 2. Data-driven reachability analysis for linear systems is proposed in Section 3.
Then, we extend the proposed approach to Lipschitz nonlinear systems in Section 4. The introduced
approaches are applied to numerical examples in Section 5 and Section 6 concludes the paper.

2. Preliminaries and Problem Statement

We start by defining our set representations used in the reachability analysis.

1. https://github.com/aalanwar/Data-Driven-Reachability-Analysis
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Definition 1 (Zonotope (Kühn, 1998)) Given a center cZ ∈ Rn and γZ ∈ N generator vectors in a
generator matrix GZ = [g

(1)
Z , ..., g

(γZ)
Z ] ∈ Rn×γZ , a zonotope is defined as

Z =
{
x ∈ Rn

∣∣∣ x = cZ +

γZ∑
i=1

β(i) g
(i)
Z ,−1 ≤ β(i) ≤ 1

}
. (1)

We use the shorthand notation Z = 〈cZ , GZ〉.

A linear map L is defined as LZ = 〈LcZ , LGZ〉. Given two zonotopes Z1 = 〈cZ1 , GZ1〉 and
Z2 = 〈cZ2 , GZ2〉, the Minkowski sum is: Z1 + Z2 =

〈
cZ1 + cZ2 ,

[
GZ1 GZ2

] 〉
. For simplicity,

we use the notation + instead of ⊕ for Minkowski sum as the type can be determined from the
context. Similarly, we use Z1 − Z2 to denote Z1 +−1Z2. We define the Cartesian product of two
zonotopes Z1 and Z2 by

Z1 ×Z2 =

{[
z1

z2

] ∣∣∣∣z1 ∈ Z1, z2 ∈ Z2

}
=
〈[cZ1

cZ2

]
,

[
GZ1 0

0 GZ2

]〉
. (2)

Definition 2 (Matrix Zonotpe (Althoff, 2010, p.52)) Given a center matrix CM ∈ Rn×T and γM ∈
N generator matrices G̃M = [G

(1)
M , . . . , G

(γM)
M ] ∈ Rn×(T×γM), a matrix zonotope is defined as

M =
{
X ∈ Rn×T

∣∣∣ X = CM +

γM∑
i=1

β(i)G
(i)
M ,−1 ≤ β(i) ≤ 1

}
. (3)

We use the shorthand notationM = 〈CM, G̃M〉.

Definition 3 (Interval Matrix (Althoff, 2010, p. 42)) An interval matrix I specifies the interval of
all possible values for each matrix element between the left limit I and right limit Ī:

I =
[
I, Ī
]
, I

¯
, Ī ∈ Rn×n (4)

The conversion of a matrix zonotope M to an interval matrix is denoted by I =
[
I, Ī
]

by
writing:

[
I, Ī
]

= intervalMatrix(M). Similarly, we write zonotope to convert an interval to a
zonotope.

Consider a discrete-time linear system

x(k + 1) = Ax(k) +Bu(k) + w(k), (5)

where A ∈ Rn×n and B ∈ Rn×m are the system dynamics, w(k) ∈ Zw = 〈cZw , GZw〉 ⊂ Rn
denotes the bounded noise by a noise zonotope Zw, u(k) ∈ Uk ⊂ Rm the input bounded by an
input zonotope Uk, and x(0) ∈ X0 ⊂ Rn the initial state of the system bounded by the initial set
X0. We aim to compute the reachable set when the model of the system in (5) is unknown, but input
and noisy state trajectories are available. More specifically, we consider K input-state trajectories
of different lengths Ti, i = 1, . . . ,K, denoted by {u(i)(k)}Ti−1

k=0 , {x(i)(k)}Tik=0, i = 1, . . . ,K. We
collect the set of all data sequences in the following matrices

X =
[
x(1)(0) . . . x(1)(T1) x(2)(0) . . . x(2)(T2) . . . x(K)(0) . . . x(K)(TK)

]
,

U− =
[
u(1)(0) . . . u(1)(T1 − 1) u(2)(0) . . . u(2)(T2 − 1) . . . u(K)(0) . . . u(K)(TK − 1)

]
.
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Let us further denote

X+ =
[
x(1)(1) . . . x(1)(T1) x(2)(1) . . . x(2)(T2) . . . x(K)(1) . . . x(K)(TK)

]
,

X− =
[
x(1)(0) . . . x(1)(T1−1) x(2)(0) . . . x(2)(T2−1) . . . x(K)(0) . . . x(K)(TK−1)

]
.

The total amount of data points from all available trajectories is denoted by T =
∑K

i=1 Ti and we
denote the set of all available data by D = {U−, X}. Reachability analysis computes the set of
states x which can be reached given a set of uncertain initial states X0 ⊂ Rn containing the initial
state x(0) ∈ X0 and a set of uncertain inputs Uk ⊂ Rm containing the inputs u(k) ∈ Uk.

Definition 4 The reachable setRk afterN time steps, inputs u(k) ∈ Uk ⊂ Rm, ∀k ∈ {0, ..., N−1},
noise w(·) ∈ Zw, and initial set X0 ∈ Rn, is the set of all states trajectories starting in X0 after N
steps:

RN =
{
x(k+1) ∈ Rn

∣∣x(k+1) = Ax(k)+Bu(k) + w(k), x(0) ∈ X0,

u(k) ∈ Uk, w(k) ∈ Zw : ∀k ∈ {0, ..., N−1}
}
. (6)

Let us denote the actual noise in the data by ŵ. From the bounded noise assumption, it follows
directly that the stacked matrix

Ŵ− =
[
ŵ(1)(0) . . . ŵ(1)(T1−1) ŵ(2)(0) . . . ŵ(2)(T2−1) . . . ŵ(K)(0) . . . ŵ(K)(TK−1)

]
is an element of the set Ŵ− ∈Mw whereMw = 〈CMw , [G

(1)
Mw

, . . . , G
(γZwT )
Mw

]〉 is the matrix zono-
tope resulting from the concatenation of multiple noise zonotopes Zw = 〈cZw , g

(1)
Zw

. . . g
(γZw )
Zw

〉
as follows:

CMw =
[
cZw . . . cZw

]
, G

(1+(i−1)T )
Mw

=
[
g

(i)
Zw

0n×(T−1)

]
,

G
(j+(i−1)T )
Mw

=
[
0n×(j−1) g

(i)
Zw

0n×(T−j)

]
, G

(T+(i−1)T )
Mw

=
[
0n×(T−1) g

(i)
Zw

]
.

∀i = {1, . . . , γZw}, j = {2, . . . , T − 1}. We denote the Kronecker product by ⊗. We also denote
the element at row i and column j of matrix A by (A)i,j and column j of A by (A).,j . For vectors,
we denote the element i of vector a by (a)i. We define also for N time steps

F = ∪Nk=0(Rk × Uk). (7)

Finally, we denote all system matrices
[
A B

]
that are consistent with the data D = (U−, X) by

MA,B:

MA,B = {
[
A B

]
| X+ = AX− +BU− +W−, W− ∈Mw}.

3. Reachability Analysis for Linear Systems

Due to the presence of noise, there generally exist multiple matrices
[
A B

]
that are consistent

with the data. To provide reachability analysis guarantees, we need to consider all models that
are consistent with the data. Therefore, we are interested in computing a setMΣ that contains all
possible

[
A B

]
that are consistent with the input-state measurements and the given noise bound.

We apply ideas from (Koch et al., 2020a) to our zonotopic noise descriptions, which yields a matrix
zonotopeMΣ ⊇MA,B paving the way to computationally simple reachability analysis.
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Theorem 1 Given input-state trajectories D = (U−, X) of the system (5) and a matrix H such
that [

X−
U−

]
H = I, (8)

then the matrix zonotope

MΣ = (X+ −Mw)H (9)

contains all matrices
[
A B

]
that are consistent with the data D = (U−, X) and the noise bound,

i.e.,MA,B ⊆MΣ.

Proof For any
[
A B

]
∈MΣ, we know that there exists a W− ∈Mw such that

AX− +BU− = X+ −W−. (10)

EveryW− ∈Mw can be represented by a specific choice of β(i)
W−

,−1 ≤ β(i)
W−
≤ 1, i = 1, . . . , γZT ,

that results in a matrix inside the matrix zonotopeMw:

W− = CMw +

γZT∑
i=1

β
(i)
W−

G
(i)
Mw

. (11)

Multiplying H from the right to both sides in (10) yields

[
A B

]
=

(
X+ − CMw +

γZT∑
i=1

β
(i)
W−

G
(i)
Mw

)
H. (12)

Hence, for all
[
A B

]
∈ MA,B , there exists β(i)

W−
, −1 ≤ β

(i)
W−
≤ 1, i = 1, . . . , T , such that (12)

holds and hence all
[
A B

]
∈MΣ as defined in (9), which concludes the proof.

Remark 1 Condition (8) in Theorem 1 requires that there exists a right-inverse of the matrix
[
X−
U−

]
.

This is equivalent to requiring this matrix to have full row rank, i.e., rank

[
X−
U−

]
= n + m, which

can be easily checked given the available data D. Note that for noise-free measurements, this rank
condition can also be enforced by requiring (5) to be controllable and choosing the input persistently
exciting of order n+ 1 (compare to Willems et al. (2005)).

To guarantee an over-approximate reachable set for the unknown system, we need to consider
the union of reachable sets of all

[
A B

]
that are consistent with the data. We apply the results of

Theorem 1 and do reachability analysis to all systems in the setMΣ. Let Rk denote the reachable
set computed based on the true model and R̂k the reachable set computed based on the noisy data.
We can compute R̂k as an over-approximation ofRk as follows:

5
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Theorem 2 Given input-state trajectories D = (U−, X) of the system in (5) and a matrix H as
defined in (8), then

R̂k+1 =MΣ(R̂k × Uk) + Zw, R̂0 = X0 (13)

contains the model-based reachable set, i.e., R̂k ⊃ Rk.

Proof The reachable set computed based on the model can be found using

Rk+1 =
[
A B

]
(Rk × Uk) + Zw. (14)

Since
[
A B

]
∈ MΣ according to Theorem 1 and both Rk and R̂k start from the same initial set

X0, it holds thatRk+1 ⊂ R̂k+1.

4. Reachability Analysis for Lipschitz Nonlinear Systems

We consider a Lipschitz nonlinear system

x(k + 1) = f(x(k), u(k)) + w(k), (15)

where we assume f to be twice differentiable. A local linearization of (15) is performed by a Taylor

series expansion around the linearization point z? =

[
x?

u?

]
:

f(z) = f(z?) +
∂f(z)

∂z

∣∣∣
z=z?

(z − z?) +
1

2
(z − z?)T ∂

2f(z)

∂z2

∣∣∣
z=z?

(z − z?) + . . . (16)

The infinite Taylor series can be over-approximated by a first-order Taylor series and a remainder
term L(z) (Berz and Hoffstätter, 1998) with

f(z) ∈ f(z?) +
∂f(z)

∂z

∣∣∣
z=z?

(z − z?) + L(z). (17)

In model-based approaches, the term L(z) is usually bounded by the Lagrange remainder (Althoff,
2010)

L(z) =
1

2
(z − z?)T ∂

2f(ζ)

∂z2
(z − z?) with ζ ∈ {z? + α(z − z?)|α ∈ [0, 1]}.

Since the model is assumed to be unknown, we aim to over-approximate L(z) from data. We rewrite
(17) as follows:

f(x, u) = f(x?, u?) +
∂f(x, u)

∂x

∣∣∣
x=x?,u=u?︸ ︷︷ ︸
Ã

(x− x?) +
∂f(x, u)

∂u

∣∣∣
x=x?,u=u?︸ ︷︷ ︸
B̃

(u− u?) + L(x, u),

6
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i.e.,

f(x, u) =
[
f(x?, u?) Ã B̃

]  1
x− x?
u− u?

+ L(x, u). (18)

If a model of the system is available, the Lagrange remainder L(z) can be over-approximated
by an interval which can be converted to a zonotope (Althoff, 2010). In the following, we apply
similar idea from a data-driven viewpoint. More specifically, we conduct data-driven reachability
analysis for nonlinear systems by the following two steps:

1. Obtain an approximate linearized model from the noisy data.

2. Obtain a zonotope that over-approximates the modeling mismatch together with the Lagrange
remainder L(z) for the chosen system.

To obtain an approximate linearized model, we apply a least-squares approach. Without addi-
tional knowledge on L(z) and ŵ(k) ∈ Zw (or Ŵ− ∈ Mw = 〈CMw , G̃Mw〉), a best guess in terms
of a least-square approach is

M̃ = (X+ − CMw)D (19)

where  11×T
X− − 1⊗ x?
U− − 1⊗ u?

D = I, (20)

with the assumption that the right-inverse D exists.
To over-approximate the remainder term L(z) from data, we need to assume that f is Lipschitz

continuous for all z in the reachable set F as defined in (7).

Assumption 1 It holds that f : F → Rn is Lipschitz continuous, i.e., that there is some L? ≥ 0
such that ‖f(z)− f(z′)‖2 ≤ L?‖z − z′‖2 holds for all z, z′ ∈ F .

For data-driven methods of nonlinear systems, Lipschitz continuity is a common assumption (e.g.
Montenbruck and Allgöwer (2016); Novara et al. (2013)). By compactness of Uk, Rk, k =
0, . . . , N , also F is compact. Therefore, the data points D = (U−, X) are relatively dense in

F such that for any z ∈ F there exists a zi =

[
(X−)·,i
(U−)·,i

]
∈ D such that ‖z − zi‖ ≤ δ. The

quantity δ is sometimes referred to as the covering radius or the dispersion. The following theorem
over-approximates the reachable sets of (15).

Theorem 3 Given data D = (U−, X), an over-approximation of the model-based reachable set
R̂k ⊃ Rk of (15) starting from R̂k = X0 can be computed as follows

R̂k+1 = M̃(1× R̂k × Uk) + Zw + ZL + Zε, (21)

7
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with M̃ as defined in (19), and

ZL = zonotope(ZL,ZL) , (ZL)i = argmax
j

(ML)i,j , (ZL)i = argmin
j

(ML)i,j , (22)

[ML,ML] = intervalMatrix(ML), (23)

ML = X+ −Mw − M̃

 11×T
X− − 1⊗ x∗
U− − 1⊗ u∗

 , (24)

Zε = 〈0, diag(L?δ, . . . , L?δ)〉. (25)

Proof We know from (18) that

f(z) = (M̃ + ∆M̃)

[
1

z − z?
]

+ L(z),

where ∆M̃ captures the model mismatch defined by ∆M̃ =
[
f(z?) Ã B̃

]
− M̃ . Hence, we

need to show that ZL + Zε over-approximates the modeling mismatch and the term L(z), i.e.,

∆M̃

[
1

z − z?
]

+ L(z) ∈ ZL + Zε

for all z ∈ F . For all zi ∈ D = (U−, X), we know that for some (Ŵ−)·,i ∈ Zw

(X+)·,i − (Ŵ−)·,i = (M̃ + ∆M̃)

[
1

zi − z?
]

+ L(zi),

which implies

∆M̃

[
1

zi − z?
]

+ L(zi) ∈ (X+)·,i −Zw − M̃
[

1
zi − z?

]
. (26)

In this way, we can over-approximate the model mismatch and the nonlinearity term at one data
point zi ∈ D = (U−, X). Extending right-hand side of (26) to all the available data points in
D = (U−, X) and denoting the result by ML yields (24). We aim next to find one zonotope of
the right-hand side of (26) that is consistent with all the data points. This can be done by first
converting ML to the interval matrix in (23). Then we consider the lower and upper bound and
convert the result to a zonotope ZL in (22). We can hence over-approximate the model mismatch
and the nonlinearity term for all data points zi ∈ D = (U−, X), i = 0, 1, . . . , T , by

f(zi) ∈ M̃
[

1
zi − z?

]
+ ZL.

Given the covering radius δ of our system together with Assumption 1, we know that for every
z ∈ F , there exists a zi ∈ D = (U−, X) such that ‖f(z) − f(zi)‖ ≤ L?‖z − zi‖ ≤ L?δ. This
yields

f(z) ∈ M̃
[

1
zi − z?

]
+ ZL + Zε,

8
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with Zε = 〈0, diag(L?δ, . . . , L?δ)〉.

For an infinite amount of data, i.e., δ → 0, we can see thatZε → 0, i.e., the formalZL then fully
captures the modeling mismatch and the Lagrange reminder. WhileZε is needed for guarantees, still
neglecting this term provides over-approximations of the reachable set in the numerical examples
given sufficient data.
Remark 1 Note that determining L? as well as computing δ is non-trivial in practice. If we assume
that the data is evenly spread out in the compact input set of f , then the following can be a good
approximation of the upper bound on L? and δ:

L̂? = max
zi,zj∈D,i6=j

‖f(zi)− f(zj)‖
‖zi − zj‖

, δ̂ = max
zi∈D

min
zj∈D,j 6=i

‖zi − zj‖.

Other methods to calculate the Lipschitz constant L? can be found in (Montenbruck and Allgöwer,
2016; Novara et al., 2013), and a sampling strategy to obtain a specific δ is introduced in (Mon-
tenbruck and Allgöwer, 2016).
Remark 2 We choose the linearization points as the center of the current input zonotope Uk and
state zonotope R̂k, and we repeat the linearization at each time step k. In model-based reachability
analysis, the optimal linearization point is the center of the current state and input zonotopes as
proved in (Althoff, 2010, Corollary 3.2), which then minimizes the set of Lagrange remainders.
Therefore, choosing the center of the current input and state zonotopes as linearization points is a
natural choice, while the theoretical results are independent of this choice.

5. Evaluation
To demonstrate the usefulness of the presented approach, we consider the reachability analysis of a
five dimensional system which is a discretization of the system used in (Althoff, 2010, p.39) with
sampling time 0.05 sec. The system has the following parameters

A =


0.9323 −0.1890 0 0 0
0.1890 0.9323 0 0 0

0 0 0.8596 0.0430 0
0 0 −0.0430 0.8596 0
0 0 0 0 0.9048

 ,
B =

[
0.0436 0.0533 0.0475 0.0453 0.0476

]T
.

(27)

The initial set is chosen to be X0 = 〈1, 0.1I〉 where 1 and I are vectors of one and the identity ma-
trix, respectively. The input set is Uk = 〈10, 0.25〉. We consider computing the reachable set when
there is random noise sampled from the zonotope Zw = 〈0,

[
0.005 . . . 0.005

]T 〉. We make use
of 65 data points. The zonotopic reachable sets using the model and using the introduced approach
in Theorem 2 are shown in Figure 2. The presented approach guarantees an over-approximation of
all the reachable set of all models with the data, hence over-approximating the reachability set of
the system in (27).

The proposed nonlinear data-driven reachability analysis is applied to a nonlinear continuous
stirred tank reactor (CSTR) simulation model (Bravo et al., 2006). The initial set is a zono-

tope X0 = 〈
[
0.015
−45

]
,

[
0.005 0

0 3

]
〉. The input set Uk = 〈1,

[
0.1 0
0 2

]
〉 and the noise set Zw =

9
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Figure 2: The reachable sets of the system in (27) computed via Theorem 2 from noisy data.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

x
1

-50

-45

-40

-35

-30

-25

-20

-15

-10

x
2

Initial Set

Set from Model

Set from Data

Figure 3: The data-driven and model-based reachable sets of the nonlinear system.

〈0,
[
0.01 0.01

]T 〉. We apply the results from Theorem 3 and neglect the term Zε. The result is
plotted in Figure 3 and shows that the model-based reachable region is correctly over-approximated.

6. Conclusion
We considered the problem of computing the reachable regions directly from noisy data without
a priori model information. Assuming knowledge of a bound on the noise in the data, we first
provided a computationally simple approach to guarantee over-approximation of the reachable set
of an unknown linear system by over-approximating the reachable set of all systems consistent with
the data and the noise bound. Moreover, we consider Lipschitz nonlinear systems, where we first
fitted a linear model and then over-approximated the model mismatch and Lagrange reminder from
data, resulting again in a guaranteed over-approximation of the reachable set.
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