
Learning flows of control systems

Miguel Aguiar, Amritam Das and Karl H. Johansson∗

Abstract

A recurrent neural network architecture is presented to learn the flow of a causal
and time-invariant control system from data. For piecewise constant control in-
puts, we show that the proposed architecture is able to approximate the flow func-
tion by exploiting the system’s causality and time-invariance. The output of the
learned flow function can be queried at any time instant. We demonstrate the gen-
eralisation capabilities of the trained model with respect to the simulation time
horizon and the class of input signals.

1 Introduction

Models play a vital role in designing control systems. For instance, in receding horizon control
(Maciejowski [2002]), the model predicts the future evolution of the state variables and acts as a
constraint in formulating the optimal control problem. With increasing complexity, the curse of
dimensionality limits the usefulness of standard first-principle models. This limitation has moti-
vated research on data-driven approximation of such physical models. Besides fast predictions for
arbitrary initial conditions, in designing control systems, another advantage of many data-driven
methods is the efficient computation of the model’s gradient with respect to initial conditions, pa-
rameters or input signals. To leverage these advantages, in [Li et al., 2021, Geneva and Zabaras,
2022, Lu et al., 2021, Kissas et al., 2022], the focus is on learning the map from initial conditions,
parameters and inputs to the solution of a differential equation.

The problem of approximating physical models from data is also tackled in system identification,
see Schoukens and Ljung [2019] for an overview. Forgione and Piga [2021] have proposed methods
for identifying dynamics of continuous-time control systems using neural ordinary differential equa-
tions (ODEs). However, as the dynamics correspond to the time derivative of the flow, the neural
ODEs must be integrated through an ODE solver to obtain the system trajectories, representing an
extra computational burden both for prediction and for computing gradients. Furthermore, errors in
the learned dynamics will accumulate over time when the dynamics are integrated, and the error in
the simulated trajectory can become unbounded.

To directly learn the flow of an autonomous dynamical system, Biloš et al. [2021] has proposed
an alternative to neural ODEs that avoids the step of using an ODE solver and allows for faster
prediction. This motivates the search for a corresponding learning scheme for controlled dynamical
systems where inputs are present. However, this problem is more difficult since the domain of the
flow of a continuous-time control system is infinite-dimensional.

Hanson and Raginsky [2020] have shown that continuous-time recurrent neural networks are uni-
versal approximators for flow functions of stable continuous-time dynamical systems, where the
approximation quality is uniform over time. But the question of whether learning such a model
from data is suitable in practice is to the best of our knowledge open.

In this paper, we propose a neural network-based architecture for learning flows of controlled dy-
namical systems. We consider the class of piece-wise constant inputs which are practically relevant

∗All authors are with the Division of Decision and Control Systems and with Digital Futures, KTH Royal
Institute of Technology, Stockholm, Sweden. Email: {aguiar, amritam, kallej}@kth.se

DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



since digital controllers typically produce such control inputs. Taking advantage of the causality and
time-invariance properties of the considered class of systems, we show that the flow function can
be efficiently approximated by a recurrent neural network-based architecture. We illustrate using
examples of nonlinear oscillators such as the Van der Pol oscillator, highlighting the generalisation
capabilities of the proposed methodology.

2 Problem formulation

2.1 Considered class of control systems and flow functions

A control system Σ consists of the following quadruple (see Sontag [1998], pp. 26)

Σ = (T ,X ,U, φ), (1)

describing the evolution of state-variables of the dynamical system over a time interval T depending
on its initial condition x ∈ X and input u ∈ U, where U is a set of functions u : T → U . The flow,
dictating this evolution, is defined as a mapping φ : T × X × U → X .

We assume that Σ time-invariant and finite dimensional. In particular, T ⊆ R≥0, X ⊂ Rn and
U ⊂ Rm. We also assume that U is the set of piecewise constant controls2 of period ∆. In other
words, given a sequence {uk}∞k=1 with uk ∈ U , the control input u is defined by

u(t) = uk, (k − 1)∆ ≤ t < k∆, k ∈ N. (2)

We will exploit two properties of the flow: causality which implies that the flow at time T ≥ 0,
φ(T, x, u) depends only on the values of u(t) for 0 ≤ t < T , and continuity in the sense that
t 7→ φ(t, x, u) is continuous for each x, u.

As an example, we can consider the flow function generated by a system of ordinary differential
equations ξ̇(t) = f(ξ(t), u(t)), t ≥ 0 with initial condition x where u is generated by a digital
controller.

2.2 Mathematical formulation of the learning problem

We are interested in learning the flow from data on a time interval [0, T ] with T > ∆. The input
signals u and initial conditions x of interest are assumed to be drawn from probability distributions
Pu on U and Px on X , respectively. Finding an approximated flow φ̂ over a hypothesis class H
amounts to minimising the following loss function

ℓT (φ̂) := E

[
1

T

∫ T

0

∥φ̂(t,X,U)− φ(t,X,U)∥2 dt

]
, (3)

where X ∼ Px and U ∼ Pu are independent. In practice, the data from a control system is typically
available in the following form{({

tik
}
, xi, ui,

{
ξik
})

, k = 1, . . . ,K, i = 1, . . . , N
}
,

for a given K,N ∈ N where ξik = φ(tik, x
i, ui), tik ∈ [0, T ] is an increasing sequence of time

samples, and xi, ui are i.i.d samples from Px and Pu. Thus we define the following empirical loss
function ℓ̂T and search for a minimiser in H:

ℓ̂T (φ̂) :=
1

N

N∑
i=1

1

K

K∑
k=1

∥∥ξik − φ̂(tik, x
i, ui)

∥∥2. (4)

The objective of this paper is to define an hypothesis space H which renders the above problem
tractable and provides an approximation φ̂ of the true flow function φ while preserving causality
and continuity. In the next section, we propose a neural network-based architecture to solve this
problem.

2The approach can be generalised for any class of input signals that admit a finite-dimensional causal pa-
rameterisation.

2



3 Proposed model architecture

Due to causality and the considered class of inputs (2), the flow φ(s, x, u) at a time instant s ≥ 0
depends only on a finite number of the input values {uk}. Thus, at any time during the first control
period [0,∆], only the value of u1 ∈ U and the initial condition x ∈ X are required to define φ.
Therefore, we define Φ : [0, 1]×X × U → X as

Φ(τ, x, u1) := φ(τ∆, x, u),

such that a finite-dimensional vector of parameters (as opposed to functions) directly maps to the
flow. For an arbitrary time instant s > 0, the flow φ(s, x, u) can be computed as follows:

1. Construct a map d∆ : (s, u) 7→ {τk, uk}ks+1
k=1 such that uk is given according to (2) and

ks := ⌊s/∆⌋ , τk :=

1, k ≤ ks
s− ks∆

∆
, k = ks + 1.

2. Define the sequence xk ∈ X for all k = 1, . . . , ks + 1 as

x0 = x,

xk = Φ(τk, xk−1, uk). (5)

As a consequence of these two steps, we obtain xks+1 = φ(s, x, u). Thus, trajectories of φ can be
equivalently represented by the trajectories of a discrete dynamical system with inputs (τk, uk).

To approximate (5), we define the hypothesis class H as a subset of the set of causal and continuous
functions φ̂ : R≥0 ×X × U → X , defined by the composition of three neural networks as illustrated
in Figure 1b.

t

t

u1

u2

u3

u4

0

x0

∆

x1

2∆

x2

3∆

x3

s

x4 = φ(s, x0, u)

τ1∆ τ2∆ τ3∆ τ4∆

(a)

Encoder

x0

RNN

RNN cell

z0

(u1, τ1)

RNN cell

z1

(u2, τ2)

RNN cell

z2

(u3, τ3)

RNN cell

z3

(u4, τ4)

Decoder

τ4z4 + (1− τ4)z3

φ̂(s, x0, u)

(b)

Figure 1: (a) Schematic illustration of true flow function φ for parameters {uk, τk}4k=1. (b) Corre-
sponding model for the approximated flow φ̂. In the approximated model, we first map the initial
condition to a higher dimensional space through a feedforward encoder network. Then, the encoded
state is propagated in time through a recurrent neural network (RNN). Each cell of the RNN sequen-
tially takes (uk, τk) as inputs. The two last hidden states are interpolated and mapped back to X
through another feedforward decoder network.

More precisely, the hypothesis space is defined as

H := {φ̂ : φ̂(s, x, u) = hdec(gz(hRNN(henc(x),d∆(s, u)),d∆(s, u)))} ,

where henc, hdec and hRNN are the maps corresponding to the encoder, decoder and the recurrent
network, respectively. The map gz ensures that the approximated mapping is continuous in time by
interpolating between the two last RNN states.

3



4 Experimental evaluation

We illustrate the proposed method on a Van der Pol oscillator model, see Appendix A for details. The
model is trained on N = 300 trajectories on [0, 15] using the stochastic gradient descent algorithm
Adam with early stopping and a gradient descent scheduler monitoring the validation loss.

The RNN is a single-layer LSTM network with 24 hidden states. The encoder network maps the
initial state x to the initial LSTM hidden and cell states, and is a 3-layer feedforward net with
48 nodes in the hidden layers. The decoder network maps the hidden LSTM state to the flow
value and is a 3-layer feedforward network with 24 nodes in the hidden layers. All networks use
tanh activations. For each trajectory, K = 200 time points tik are sampled using Latin hypercube
sampling.

2

0

2

4

x 1

Prediction
True state

0 2 4 6 8 10 12 14
t

5

0

5

x 2

(a)

20 40 60 80 100
Time horizon

2 × 10 2

3 × 10 2

4 × 10 2

Lo
ss

(b)

Figure 2: (a) Actual (blue, dashed) and predicted (black) trajectories for the Van der Pol model for
initial condition and input drawn from the corresponding distributions. (b) Estimate of ℓt(φ̂) as a
function of t for the Van der Pol model trained with T = 15.

Figure 2a shows a predicted trajectory on [0, 15] for two new pairs of initial conditions and inputs
drawn from Px and Pu, that are unseen during training. Further examples of trajectory prediction
are shown in Appendix B.1. Note that the actual trajectory and the predicted trajectory are nearly
indistinguishable.

The trajectories considered for training have a time horizon of 15 seconds. Due to the recurrent
structure of the model and the stability of the system under consideration, we expect that the pre-
diction performance is maintained for longer prediction horizons. To check this, we compute an
estimate of the mean and variance of ℓt(φ̂) as a function of t, where φ̂ is the model trained on
[0, 15]. To this end, we compute the test loss on a different set of 300 trajectories on [0, t] for a set of
gridded values 15 ≤ t ≤ 100. The result is shown in Figure 2b, where the coloured area represents
the 95% confidence interval approximated using the empirical variance estimate. We observe that ℓt
remains approximately constant as t increases, indicating that the model gives reliable predictions
for t much larger than the value of T used for the training trajectories.

In Appendix B.2 we additionally investigate the generalisation with respect to the input distribution.

5 Concluding remarks

We presented a recurrent neural network architecture to learn the flow of a continuous causal and
time-invariant control system in continuous time from trajectory data. Exploiting causality and
time-invariance, we show that the problem of learning the flow function can be cast as the problem
of learning a discrete dynamical system, motivating the use of an RNN-based architecture. Our
experimental results on the Van der Pol oscillator show that the learned model has good prediction
performance, and furthermore demonstrate that the model is able to generalise to longer prediction
time horizons and new classes of input signals. We envision that our approach can provide an alter-
native to traditional models in control problems, bypassing the need of solving complex dynamics
equations by directly predicting trajectories using our model.

4



References
Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Gün-

nemann. Neural flows: Efficient alternative to neural ODEs. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=XCs9rM255KZ.

Marco Forgione and Dario Piga. Continuous-time system identification with neural networks:
Model structures and fitting criteria. European Journal of Control, 59:69–81, May 2021. doi:
10.1016/j.ejcon.2021.01.008. URL https://doi.org/10.1016/j.ejcon.2021.01.008.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural Net-
works, 146:272–289, 2022. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2021.11.022.
URL https://www.sciencedirect.com/science/article/pii/S0893608021004500.

Joshua Hanson and Maxim Raginsky. Universal simulation of stable dynamical systems by
recurrent neural nets. In Alexandre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A.
Parrilo, Benjamin Recht, Claire Tomlin, and Melanie Zeilinger, editors, Proceedings of
the 2nd Conference on Learning for Dynamics and Control, volume 120 of Proceed-
ings of Machine Learning Research, pages 384–392. PMLR, 10–11 Jun 2020. URL
https://proceedings.mlr.press/v120/hanson20a.html.

Georgios Kissas, Jacob H. Seidman, Leonardo Ferreira Guilhoto, Victor M. Preciado, George J.
Pappas, and Paris Perdikaris. Learning operators with coupled attention. CoRR, abs/2201.01032,
2022. URL https://arxiv.org/abs/2201.01032.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. doi: 10.1038/s42256-021-00302-5.
URL https://doi.org/10.1038/s42256-021-00302-5.

Jan M. Maciejowski. Predictive Control with Constraints. Prentice Hall, England., 2002.

Johan Schoukens and Lennart Ljung. Nonlinear system identification: A user-oriented road map.
IEEE Control Systems, 39(6):28–99, December 2019. doi: 10.1109/mcs.2019.2938121. URL
https://doi.org/10.1109/mcs.2019.2938121.

Eduardo D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems,
pages 25–80. Springer New York, New York, NY, 1998. ISBN 978-1-4612-0577-7.

5



A Van der Pol oscillator

The Van der Pol oscillator is described by the system of ordinary differential equations

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) +
(
1− x1(t)

2
)
µx2(t) + u(t),

(6)

with µ = 1. We take x(0) ∼ N(0, I), i.e. a standard normal distribution. The control input sampling
time is ∆ = 0.1 and the inputs considered are square wave inputs with period 5∆ and amplitudes
sampled i.i.d. from N(0, σ = 5), i.e.

u1+5k ∼ N(0, 5),

uj+5k = u1+5k, j = 2, 3, 4, 5

holds for all k ∈ N. To generate the data used to train the model in Section 4, we integrate (6) with
an RK45 solver.

B Additional experimental results

B.1 Van der Pol prediction results

Figure 3 shows four additional examples of trajectories predicted by the model described in Sec-
tion 4, with x ∼ Px, u ∼ Pu. As in Figure 2a, the predicted trajectory (in black) is nearly indistin-
guishable from the actual trajectory (in blue, dashed).

Figure 4 shows four additional trajectories on the larger prediction horizon T = 100. Recall that
the model used to predict these was trained with trajectories on the time interval [0, 15], confirming
the observation in Figure 2b that the loss function ℓt remains approximately constant even as the
prediction horizon increases well beyond the length of the trajectories considered during training.

2

0

2

4

x 1

Prediction
True state

0 2 4 6 8 10 12 14
t

5

0

5

x 2

2

0

2

x 1

0 2 4 6 8 10 12 14
t

5

0

5

x 2

4

2

0

2

x 1

0 2 4 6 8 10 12 14
t

5

0

x 2

2

0

2

x 1

0 2 4 6 8 10 12 14
t

5

0

5

x 2

Figure 3: Actual and predicted trajectories for the Van der Pol oscillator model

6



2.5

0.0

2.5

x 1

Prediction
True state

0 20 40 60 80 100
t

5

0

5

x 2
2.5

0.0

2.5

x 1

0 20 40 60 80 100
t

5

0

5

10

x 2

2

0

2

4

x 1

0 20 40 60 80 100
t

10

5

0

5

x 2

2

0

2

4

x 1

0 20 40 60 80 100
t

10

5

0

5

x 2

Figure 4: Actual and predicted trajectories for the Van der Pol oscillator model on the longer time
horizon T = 100.

B.2 Generalisation to different input distributions

We additionally investigate the performance of the model trained in section 4 to an input distribution
different from the training distribution Pu. In particular, we consider here a distribution Qu on U
consisting of sinusoidal sequences with random amplitude and frequency, that is,

uk = A sin

(
Ω

2
k∆

)
,

where A ∼ LogNormal(0, 1) and Ω ∼ Uniform(0, 2π). This corresponds to sinusoidal signals with
a maximum frequency of 0.5 Hz.

To verify the performance on this class of inputs, we compute an estimate of ℓT (φ̂;Qu), defined as
in equation (3) with the expectation taken with U ∼ Qu. Figure 5 shows four trajectories with initial
conditions and input signals drawn from Px and Qu, respectively. Figure 6, shows a box plot of the
distribution of the estimate of ℓt computed on 500 trajectories for each of the two input distributions
Pu and Qu. As expected, the mean and variance of the prediction loss for the distribution Qu

are slightly higher than for Pu, but remain reasonably closer to that of Pu. This is confirmed by
Figure 5, where we observe that there is little degradation in prediction performance compared to
the prediction on inputs drawn from Pu.

7



2

0

2
x 1

Prediction
True state

0 10 20 30 40 50
t

2.5

0.0

2.5

x 2

2

0

2

x 1

0 10 20 30 40 50
t

2

0

2

x 2

2

0

2

x 1

0 10 20 30 40 50
t

2.5

0.0

2.5

x 2

2

0

2

x 1

0 10 20 30 40 50
t

2

0

2
x 2

Figure 5: Actual and predicted trajectories for the Van der Pol oscillator model of section 4 with
inputs drawn from the distribution Qu.

Pu Qu

Input distribution

10 3

10 2

10 1

100

101

Lo
ss

Figure 6: Distribution of the loss ℓT (φ̂) with input distributions Pu (blue) and Qu (orange).

8


