
Proceedings of Machine Learning Research vol 120:1–10, 2020 2nd Annual Conference on Learning for Dynamics and Control

Lambda-Policy Iteration with Randomization for Contractive Models
with Infinite Policies: Well-Posedness and Convergence

Yuchao Li YUCHAO@KTH.SE

Karl H. Johansson KALLEJ@KTH.SE

Jonas Mårtensson JONAS1@KTH.SE

Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden

Editors: A. Bayen, A. Jadbabaie, G. J. Pappas, P. Parrilo, B. Recht, C. Tomlin, M. Zeilinger

Abstract
Abstract dynamic programming models are used to analyze λ-policy iteration with randomization
algorithms. Particularly, contractive models with infinite policies are considered and it is shown
that well-posedness of the λ-operator plays a central role in the algorithm. The operator is known
to be well-posed for problems with finite states, but our analysis shows that it is also well-defined
for the contractive models with infinite states studied. Similarly, the algorithm we analyze is known
to converge for problems with finite policies, but we identify the conditions required to guarantee
convergence with probability one when the policy space is infinite regardless of the number of
states. Guided by the analysis, we exemplify a data-driven approximated implementation of the
algorithm for estimation of optimal costs of constrained linear and nonlinear control problems.
Numerical results indicate potentials of this method in practice.
Keywords: λ-policy iteration, approximate dynamic programming, reinforcement learning

1. Introduction

Temporal-difference (TD) learning is a prominent class of algorithms widely applied in reinforce-
ment learning (RL). Its first formal treatment is given in Sutton (1988) where a family of algorithms,
collectively known as TD(λ), is analyzed in the context of absorbing Markov processes. By utilizing
the properties of transitional matrices of the process, algorithm convergence guarantees are estab-
lished. Structural relations between RL and dynamic programming (DP) was noted by Watkins
(1989), and foundations for the understanding of RL followed. The monograph by Bertsekas and
Tsitsiklis (1996) puts a broad class of RL algorithms in the context of two principle methods of
DP, viz., value iteration (VI) and policy iteration (PI), and collects a bundle of research outputs
of interests.1 Among those results, the analysis of TD(λ), originally given in Bertsekas and Ioffe
(1996), unveils the underlying DP problem of TD(λ). As is shown, the desired behavior of TD(λ)
is inherited from the parameter λ being a discount factor in the classical DP sense and the infinite
iterates of TD algorithms can be interpreted as an iteration of a compactly defined operator. In ad-
dition, TD(λ) can be embedded into the PI framework, which is then named λ-PI. There has been a
tremendous development in algorithms related to λ-PI, such as Thiery and Scherrer (2010); Scherrer
et al. (2015). A survey can be found in Bertsekas (2012). Most recently, the connection between
TD(λ) and proximal algorithms, which are widely used for solving convex optimization problems,
is discussed in Bertsekas (2018b). In light of such relation, λ-PI with randomization (λ-PIR) was

1. A detailed document of the history can be found in (Sutton and Barto, 2018, Chapter 1).

c© 2020 Y. Li, K.H. Johansson & J. Mårtensson.



LAMBDA PI

proposed in (Bertsekas, 2018a, Chaper 2). The algorithm resembles the one proposed in Yu and
Bertsekas (2015), and offers a scheme to combine the fast computations by proximal algorithms
with the convergence behavior by VI. Apart from these algorithmic properties, the abstract ap-
proach taken for analyzing λ-PIR is also well worth special attention. Although some operators, in
particular the Bellman operator, are often used in algorithmic analysis, they played less of a central
role throughout the development, cf. Tsitsiklis and Van Roy (1997); De Farias and Van Roy (2003);
Wang et al. (2015); Bellemare et al. (2016); Bian and Jiang (2016); Banjac and Lygeros (2019), in
which operator computations are utilized while specific properties of the problem are also taken ad-
vantage of. An exception is the analysis of λ-PIR in (Bertsekas, 2018a, Chaper 2), which has solely
relied on abstract operator properties. There are many advantages of such an approach, e.g., (a) it
can single out the key factor that stands behind the desired behavior of the algorithm; (b) it can shed
new lights on the understanding of some algorithms and help to bring together isolated methods;
(c) it can help to safeguard the desired behaviors when modifying and generalizing algorithms. One
example of this is by Yu et al. (2018), in which the parameter λ is extended to be state-dependent,
while fundamental properties are still guaranteed.

In this paper, we use abstract DP models and extend λ-PIR for finite policy problems (Bertsekas,
2018a, Chapter 2) to contractive models with infinite policies. A policy space can be infinite due
to infinite states, or infinite control over some finite state space. We make the following main
contributions:

(1) We establish the well-posedness of the compact operator that plays a central role in the algo-
rithm (Theorem 3.2). Our result relies solely on the contraction property of the model.

(2) Conditions for convergence of λ-PIR for problems with infinite policies are given (Theo-
rem 4.1). We show that such conditions can be dismissed if the underlying operator exhibits
a linear structure (Corollary 4.2).

The rest of the paper is organized as follows: Section 2 gives a brief account of preliminaries of
contractive models and existing results on λ-PIR. Section 3 presents results on well-posedness of
the λ-PIR algorithm for infinite-state problems. Conditions for convergence of λ-PIR for problems
with infinite policies are given in Section 4. Section 5 explains an approximated implementation of
λ-PIR and shows its application when embedded in the approximate dynamic programming (ADP)
framework. Section 6 concludes the paper.

2. Preliminaries

Here we introduce the concepts and some preliminaries related to contractive models, and the λ-PIR
algorithm. The contents here are mostly taken from Bertsekas (2018a).

2.1. Contractive models

Given a state space X , a control space U , and for each x ∈ X a nonempty control set U(x) ⊂ U ,
we denoteM = {µ |µ(x) ∈ U(x), ∀x ∈ X} and name it as the set of policies whose elements are
denoted by µ. One can see that the setM can be viewed as the Cartesian product

∏
x∈X U(x). We

denote by R(X) the set of functions J : X → R and by E(X) the set of functions J : X → R∗
where R∗ = R ∪ {∞,−∞}. We study the mappings of the form H : X × U ×R(X) → R. For
every µ ∈M, we define Tµ : R(X)→ R(X) as

(TµJ)(x) = H(x, µ(x), J), ∀x ∈ X, (1)

2



LAMBDA PI

and the mapping T : R(X)→ E(X) as

(TJ)(x) = inf
µ∈M

(TµJ)(x), ∀x ∈ X. (2)

In view of the definitions ofM, Tµ, and T , we have

(TJ)(x) = inf
u∈U(x)

H(x, u, J) = inf
µ∈M

H(x, µ(x), J). (3)

Given some positive function v : X → R, we denote by B(X) the set of functions J such that
supx∈X

|J(x)|
v(x) <∞. We define a norm ‖ · ‖ on B(X) as

‖J‖ = sup
x∈X

|J(x)|
v(x)

.

The following lemmas are classical results from functional analysis. The proof of the first can
be found in (Bertsekas, 2018a, Appendix B), while the second is explained in (Szepesvári, 2010,
Appendix A).

Lemma 2.1 B(X) is complete with respect to the metric induced by ‖ · ‖.

Lemma 2.2 Given a sequence {Jk} ⊂ B(X) and J ∈ B(X), if Jk → J in the sense that
limk→∞ ‖Jk − J‖ = 0, then limk→∞ Jk(x) = J(x), ∀x ∈ X .

Remark 2.2.1 The converse of Lemma 2.2 does not necessarily hold, see (Szepesvári, 2010, Ap-
pendix A).

For the mappings H , Tµ and T on B(X), we introduce the following standard assumptions.

Assumption 2.1 (Well-posedness) ∀J ∈ B(X) and ∀µ ∈M, TµJ ∈ B(X) and TJ ∈ B(X).

Assumption 2.2 (Uniform contraction) For some α ∈ (0, 1), it holds that

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖, ∀J, J ′ ∈ B(X), µ ∈M.

One immediate consequence of Assumption 2.2 is that T is also a contraction with the same mod-
ulus α, see (Bertsekas, 2018a, Chapter 1). When Assumptions 2.1 and 2.2 hold, the following
convergence result holds due to the fixed point theory.

Lemma 2.3 (Bertsekas (2018a), Proposition B.1) Let Assumptions 2.1, and 2.2 hold. Then:

(a) There exist unique Jµ, J∗ ∈ B(X) such that TJ∗ = J∗; TµJµ = Jµ, ∀µ ∈M.

(b) For arbitrary J0 ∈ B(X), the sequence {Jk} where Jk+1 = TµJk converges in norm to Jµ.

(c) For arbitrary J0 ∈ B(X), the sequence {Jk} where Jk+1 = TJk converges in norm to J∗.

The above results are the backbones of VI. However, they do not guarantee the effectiveness of
PI, for which we need some additional assumptions.

3



LAMBDA PI

Assumption 2.3 (Monotonicity) ∀J, J ′ ∈ B(X), it holds that J ≤ J ′ implies H(x, u, J) ≤
H(x, u, J ′), ∀x ∈ X, u ∈ U(x), where ≤ indicates point-wise relation.

Assumption 2.4 (Attainability) For all J ∈ B(X), there exists µ ∈M, such that TµJ = TJ .

In fact, only after including Assumption 2.3, in addition to Assumptions 2.1 and 2.2, can J∗ be
interpreted as optimal in the sense that J∗(x) = infµ∈M Jµ(x). Besides, due to the nature ofM
being a Cartesian product of feasible control sets U(x), for arbitrary small ε > 0, we can always
construct an ε-optimal policy µε ∈ M in the sense that Jµε(x) ≤ J∗(x) + ε holds for all x. One
such construction in a more general setting can be found in (Bertsekas and Shreve, 1978, Chapter 2)
and the details of the above discussion can be found in (Bertsekas, 2018a, Propositions 2.1.1, 2.1.2).
Since the infimum in (2) is not always attained, Assumption 2.4 is needed for PI-based methods. In
the subsequent sections, we always assume Assumption 2.1 hold, and therefore do not repeat it in
all the theoretical statements.

2.2. λ-PIR

The following λ-PIR algorithm is introduced in (Bertsekas, 2018a, Chapter 2) in the abstract setting.
Given some λ ∈ [0, 1), consider the mappings T (λ)

µ with domain B(X) and defined point-wise by(
T (λ)
µ J

)
(x) = (1− λ)

∞∑
`=1

λ`−1
(
T `µJ

)
(x), (4)

where T `µ denotes the `-fold composition of the operator Tµ, and we refer to the operator T (λ)
µ as λ

operator in our discussion. Regarding this operator, we make the following mild assumption, which
holds for a broad class of DP problems.

Assumption 2.5 (Commutativeness) For every µ ∈ M, its corresponding λ operator and Tµ
commute, viz., for all J ∈ B(X), it holds that

Tµ
(
T (λ)
µ J

)
= T (λ)

µ (TµJ).

Given Jk ∈ B(X) and pk ∈ (0, 1), then the policy µk and cost approximate Jk+1 is computed as

TµkJk = TJk; Jk+1 =

{
TµkJk, with prob. pk,

T
(λ)

µk
Jk, with prob. 1− pk,

(5)

where the policy improvement step to the left is the same as in classical PI, while the evaluation step
on the right is a randomized mix between VI and TD learning.

We list the central statements related to λ-PIR presented in (Bertsekas, 2018a, Chapter 2), which
include the assumptions needed and convergence behavior of the algorithm. Except the cases in
which U(x) is not singleton for finite number of x, which we refer to as trivial cases,M being finite
implies state space being finite. Therefore, except the trivial cases, with the following finite policy
assumption, the λ operator T (λ)

µ is ensured to be well-posed (see (Bertsekas, 2018b, Proposition
2.1)), and the monotonicity of the underlying operator H is not required for the desired behavior.

Assumption 2.6 (Finiteness) M is finite.

Then, the following result holds.

Theorem 2.4 (Bertsekas (2018a), Section 2.5.3) Let Assumptions 2.2, 2.4, and 2.6 hold. ∀J0 ∈
B(X), the sequence {Jk} generated by λ-PIR (5) converges in norm to J∗ with probability one.

4



LAMBDA PI

3. Well-posedness of T (λ)
µ

We first show a general result, and then show that well-posedness of T (λ)
µ is a consequence of it.

For the more general operator, we prove first the output of the operator is well-defined withinR(x),
viz., point-wise limits do exist in R. Then we show that the output function scaled by the weight
function v(x) is bounded, which means that it is an element of B(X). Then we show the λ operator
T
(λ)
µ is a special case of the proved results. The proofs of the following results and some additional

results can be found in the extended version of this work in Li et al. (2019).

Lemma 3.1 Let the set of mappings Tµ : B(X) → B(X), µ ∈ M, satisfy Assumption 2.2.
Consider the mappings T (w)

µ with domain B(X) defined point-wise by(
T (w)
µ J

)
(x) =

∞∑
`=1

w`(x)
(
T `µJ

)
(x), x ∈ X, J ∈ B(X), (6)

where w`(x) are nonnegative scalars such that for all x ∈ X ,
∑∞

`=1w`(x) = 1. Then the mapping

T
(w)
µ is well-defined; namely, for all x ∈ X , J ∈ B(X), the sequence

{∑n
`=1w`(x)

(
T `µJ

)
(x)
}∞
n=1

converges with a limit in R, viz., T (w)
µ : B(X)→ R(X).

Theorem 3.2 Let the set of mappings Tµ : B(X) → B(X), µ ∈ M, satisfy Assumption 2.2.
Consider the mappings T (w)

µ : B(X) → R(X) defined in Eq. (6). Then the range of T (w)
µ is a

subset of B(X), viz., T (w)
µ : B(X)→ B(X); and T (w)

µ is a contraction.

Corollary 3.3 Let the set of mappings Tµ : B(X) → B(X), µ ∈ M, satisfy Assumption 2.2. The
operator T (λ)

µ defined point-wise by Eq. (4) is well-posed in the sense that T (λ)
µ J ∈ B(x) for all

J ∈ B(x), and T (λ)
µ is a contraction with modulus αλ = α(1− λ)/(1− λα).

4. Convergence of λ-PIR

We summarize the convergence results of λ-PIR under the classical contractive model assumptions.
The proofs are omitted here and can be found in the extended version of this work in Li et al. (2019).

Theorem 4.1 Let Assumptions 2.2, 2.3, 2.4, and 2.5 hold. Given J0 ∈ B(X) such that TJ0 ≤ J0,
the sequence {Jk}∞k=0 generated by algorithm (5) converges in norm to J∗ with probability one.

The following result, as a special case of Theorem 4.1, shows that if H(·, ·, ·) has certain ‘lin-
ear’ structure, the initialization condition TJ0 ≤ J0 required in Theorem 4.1 can be dropped and
the same convergence result still stands. The proof is obtained by applying Theorem 4.1 and the
arguments in Bertsekas and Ioffe (1996) and (Bertsekas and Tsitsiklis, 1996, Chapter 2).

Corollary 4.2 Let H(·, ·, ·) have the form

H(x, u, J) =

∫
X

(
g(x, u, y) + αJ(y)

)
dP(y|x, u) (7)

where g : X × U × X → R, α ∈ (0, 1) and P(·|x, u) is the probability measure conditioned on
(x, u) for certain MDP. Let v(x) = 1 ∀x ∈ X , and Assumptions 2.2, 2.3, 2.4, and 2.5 hold. Given
arbitrary J0 ∈ B(X), the sequence {Jk}∞k=0 generated by algorithm (5) converges in norm to J∗

with probability one.

5



LAMBDA PI

Remark 4.2.1 One key insight given in Bertsekas and Ioffe (1996) is that whenH has ‘linear’ form
similar to (7), a constant shift of the cost function J does not alter the choice of the optimal policy,
which justifies the importance of resembling the ‘shape’, rather than the ‘value’, of the optimal costs
in the approximation schemes. This is evidently explained in (Bertsekas, 2019, Chapter 3).

5. Application to ADP

In this section, we exemplify the proposed algorithm for applications of ADP used to solve on-line
constrained optimal control problems.

5.1. Constrained optimal control and ADP

Algorithm 1: Data-driven λ-PIR
Input: problem data D, algorithm data A, initial

parameter θ0, sample size S
Output: θ, the trained parameter
θ ← θ0

for k ← 1 to K do
Initialize x ∈ Rn×S , v ∈ RS
for s← 1 to S do

x0 ∼ X0, b ∼ Ber(pk)
if b == 1 then

v ← infu∈U(x0)

(
g(x0, u) +

αJ̃(f(x0, u), θ)
)

else
L ∼ Ge(λ), v = 0, x← x0

for `← 0 to L− 1 do
u ∈ arg minu′∈U(x)

(
g(x, u′) +

αJ̃(f(x, u′), θ)
)
,

v ← v + α`g(x, u), x← f(x, u)
end
v ← v + αLJ̃(x, θ)

end
xs = x0, vs = v

end
θ ∈ arg minθ′∈Θ

∑
s∈S |J̃(xs, θ

′)− vs|2
end

Consider optimal control problems with xk+1 =
f(xk, uk), and the abstract operator defined as
H(x, u, J) = g(x, u) + αJ(f(x, u)), where
X ⊂ Rn and U ⊂ Rm are compact sets, and
v(x) = 1 ∀x ∈ X . In addition, we assume the
distribution of x0, denoted as X0, is given. We
denote collectively the problem data as D. As-
sume D fulfills contractive model assumption,
then there exists J∗ ∈ R(X) such that J∗ =
TJ∗. However, it is often intractable to com-
pute J∗. Instead, we aim to obtain J̃ , a good
estimate of J∗. Once J̃ is available, at every in-
stance k, the ADP approach to control the sys-
tem is to solve online a constrained optimiza-
tion problem uk ∈ arg minu∈U(x)H(xk, u, J̃).

The approximation of λ-PIR implementa-
tion comes from two sources. First, the estimate
of J∗ often uses some form of parametric ap-
proximation. In this case, we consider J̃(x, θ),
where θ ∈ Θ is the parameter to be trained.
Second, the T (λ)

µ operation on J̃ can only be
performed approximately.

Here we exemplify an data-driven least
square evaluation implementation. Our imple-
mentation follows closely the projection by Monte Carlo simulation method detailed in (Bertsekas,
2019, Section 5.5). Similar textbook treatment includes (Busoniu et al., 2017, Chapter 5). Denote
J̃(·, θ), Θ, λ, number of training iterations K, and probability sequence {pk}Kk=1, collectively as A.
In addition, denote as Ber(·) the Bernoulli distribution and as Ge(·) the geometric distribution. The
algorithm is summarized in Algorithm 1. At a typical training iteration k, the algorithm starts by
sampling from Ber(pk) to decide by (5) if the cost estimate of this iteration is obtained via applying
Tµk or T (λ)

µk
. For every sample pair (x0, v), the state x0 is drawn from X0, which is part of the

problem data. When the Tµk step is chosen, for all x0’s, their corresponding v’s are set to equal to

(Tµk J̃)(x0), with µk defined by (5). If T (λ)

µk
is selected, an integer ` is drawn from Ge(λ) for every

6



LAMBDA PI

x0, and its corresponding v is set to (T `
µk
J̃)(x0). In total, it collects a size of S sample pairs (x0, v),

and updates the parameter θ by solving a lease square regression problem.

5.2. Numerical examples

We apply the proposed algorithm to train the cost function used in ADP for constrained linear and
nonlinear systems. Both the training and on-line ADP control problems in the examples are identi-
fied as convex and are solved by cvxpy (Diamond and Boyd (2016)). Additional implementation
details and another example are given in the extended version of this work in Li et al. (2019).

Example 5.1 Consider a linear scalar control problem with problem data given as xk+1 = xk −
0.5uk, H(x, u, J) = x2 + u2 + 0.95J(x − 0.5u), J̃(x, θ) = ax2 + b where θ = (a, b), X =
[−100, 100], U = [−1, 1] and Θ = {(a, b) | a ≥ 0}. Similar problems have appeared in Wang
et al. (2015); Banjac and Lygeros (2019). The results are shown in Fig. 1, where the performance
is greatly improved from initial guess of θ after 2 iterations.

0 10 20 30 40 50
k

10

8

6

4

2

0

x k

0
1
2
3

(a) System behavior under ADP controls with
different cost function estimate.

0 10 20 30 40 50
k

4

2

0

2

4

x k

Trained
Untrained
Trained
Untrained

(b) System behavior with trained and untrained
cost function from different initial states.

Figure 1: Closed-loop system behavior under ADP control.

Example 5.2 Consider a torsional pendulum system with states φ ∈ (−π/2, π/2), ω ∈ [−2, 2],
control τ ∈ [−1, 1], and dynamics φ̇ = ω, ω̇ = M−1(−mgl sinφ− γω + τ), where m = 1/3 kg,
l = 3/2 m, M = 4/3ml2, γ = 0.2 and g = 9.8 m/s2. The discrete dynamics, denoted as f(·) and
used for ADP control, is obtained by forward Euler method with sampling time 0.1 s where the state
is x = [φ, ω]T with T denoting transpose operation, and the control is u = τ . Then the problem data
is given as xk+1 = f(xk, uk), H(x, u, J) = xTQx+uTRu+0.95J(f(x, u)), J̃(x, θ) = xTPx+b,
where Q is identity matrix, R = 0.1, θ = (P, b), X ⊂ R2, U = [−1, 1] and Θ = {(P, b) |P � 0}.
Similar example has appeared in Si and Wang (2001); Liu and Wei (2013). We set S = 100, K = 5,
pk = 0.5 for all k, and λ = 0.1 so that the lookahead steps in average is 1/λ = 10. The closed
loop system behavior with initial θ and θ after 5 iterations are shown in Fig. 2 where the continuous
system dynamics is solved by ode45. The control performance is greatly improved.

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0
u(t)

(t)
(t)

t

Va
lu

es

(a) With initial guess of θ.

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0 u(t)
(t)
(t)

t

Va
lu

es

(b) With θ after 5 training iterations.

Figure 2: Closed-loop system behavior under ADP control with untrained and trained θ.

7



LAMBDA PI

Here we show the cost function plots along the axes where ω = 0 and φ = 0, and the cost
estimates converged. Besides, we compared the performance of λ-PIR with approximated imple-
mentation of VI where in (5) the evaluation step is always applying Tµk J̃ , and optimistic policy
iteration (OPI) where the evaluation is performed as T `

µk
J̃ with ` fixed at 1/λ = 10. OPI is an-

alyzed by Scherrer et al. (2015) for finite state case and is known to be closed related to λ-PI. In
λ-PIR, the T (λ)

µk
J̃ step occurred in the 2nd iteration, and one can observe a ‘boost’ towards the

optimal in Fig. 3(a), while VI in Fig. 4(a) is yet to converge in the 5th iteration. On the other hand,
although OPI in Fig. 4(b) behaves quite similarly to λ-PIR, it does require more sampling efforts
compared to λ-PIR. The results here imply that λ-PIR combined the benefits of those two methods.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

20

40

60

80

J

0 train(s)
1 train(s)
2 train(s)
3 train(s)
4 train(s)
5 train(s)

(a) Cost function along the axis ω = 0 after
different training iterations.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

J

0 train(s)
1 train(s)
2 train(s)
3 train(s)
4 train(s)
5 train(s)

(b) Cost function along the axis φ = 0 after
different training iterations.

Figure 3: Cost function estimates along the axes φ = 0 and ω = 0 after different training iterations.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

20

40

60

80

J

0 train(s)
1 train(s)
2 train(s)
3 train(s)
4 train(s)
5 train(s)

(a) Cost function along the axis ω = 0 for VI.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

20

40

60

80

J

0 train(s)
1 train(s)
2 train(s)
3 train(s)
4 train(s)
5 train(s)

(b) Cost function along the axis ω = 0 for OPI.

Figure 4: Cost function estimates of VI and OPI along the axis ω = 0.

6. Conclusions

We presented results related to λ-PIR aided by abstract DP models. The λ-PIR is originally devised
for finite policy problems and our results showed that the algorithm is also well-defined for contrac-
tive models with infinite states and the algorithmic convergence can be ensured for problems with
infinite policies by adding an additional condition, which can be dismissed if the problem exhibits
a linear structure. We exemplified a data-driven approximated implementation of the algorithm to
estimate cost functions for constrained optimal control problems and the obtained estimates resulted
in good closed-loop behavior when embedded in ADP for online control in numerical examples.

Acknowledgments

This work was supported by the Swedish Foundation for Strategic Research, the Swedish Research
Council, and the Knut and Alice Wallenberg Foundation. The authors are grateful to Prof. Dimitri
P. Bertsekas for discussions pointing to abstract DP models and to the connection between λ-PI and
proximal algorithms, and for his suggestions to improve this work. The helpful comments from the
reviewers are also acknowledged.

8



LAMBDA PI

References

Goran Banjac and John Lygeros. A data-driven policy iteration scheme based on linear program-
ming. In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019.

Marc G. Bellemare, Georg Ostrovski, Arthur Guez, Philip S. Thomas, and Rémi Munos. Increasing
the action gap: New operators for reinforcement learning. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

Dimitiri P. Bertsekas and Steven Shreve. Stochastic optimal control: the discrete-time case. Aca-
demic Press, 1978.

Dimitri P. Bertsekas. Lambda-policy iteration: A review and a new implementation. Reinforcement
learning and approximate dynamic programming for feedback control, pages 381–406, 2012.

Dimitri P. Bertsekas. Abstract dynamic programming. Athena Scientific, 2nd edition, 2018a.

Dimitri P. Bertsekas. Proximal algorithms and temporal difference methods for solving fixed point
problems. Computational Optimization and Applications, 70(3):709–736, 2018b.

Dimitri P. Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019.

Dimitri P. Bertsekas and Sergey Ioffe. Temporal differences-based policy iteration and applications
in neuro-dynamic programming. lab. for info. and decision systems report lids-p-2349, 1996.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Sci-
entific Belmont, MA, 1996.

Tao Bian and Zhong-Ping Jiang. Value iteration, adaptive dynamic programming, and optimal
control of nonlinear systems. In 2016 IEEE 55th Conference on Decision and Control (CDC),
pages 3375–3380. IEEE, 2016.

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement learning and
dynamic programming using function approximators. CRC press, 2017.

Daniela Pucci De Farias and Benjamin Van Roy. The linear programming approach to approximate
dynamic programming. Operations research, 51(6):850–865, 2003.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Yuchao Li, Karl H. Johansson, and Jonas Mårtensson. Lambda-policy iteration with randomization
for contractive models with infinite policies: Well posedness and convergence (extended version).
arXiv preprint arXiv:1912.08504, 2019.

Derong Liu and Qinglai Wei. Policy iteration adaptive dynamic programming algorithm for discrete-
time nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 25(3):
621–634, 2013.

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist. Ap-
proximate modified policy iteration and its application to the game of Tetris. Journal of Machine
Learning Research, 16:1629–1676, 2015.

9



LAMBDA PI

Jennie Si and Yu-Tsung Wang. Online learning control by association and reinforcement. IEEE
Transactions on Neural networks, 12(2):264–276, 2001.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelli-
gence and machine learning. Morgan & Claypool Publishers, 2010.

Christophe Thiery and Bruno Scherrer. Least-squares policy iteration: Bias-variance trade-off in
control problems. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 1071–1078, Haifa, Israel, June 2010. Omnipress.

John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-diffference learning with func-
tion approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

Yang Wang, Brendan O’Donoghue, and Stephen Boyd. Approximate dynamic programming via
iterated bellman inequalities. International Journal of Robust and Nonlinear Control, 25(10):
1472–1496, 2015.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, King’s
College, Cambridge, 1989.

Huizhen Yu and Dimitri P. Bertsekas. A mixed value and policy iteration method for stochastic
control with universally measurable policies. Mathematics of Operations Research, 40(4):926–
968, 2015.

Huizhen Yu, A. Rupam Mahmood, and Richard S. Sutton. On generalized Bellman equations and
temporal-difference learning. Journal of Machine Learning Research, 19(1):1864–1912, 2018.

10


	Introduction
	Preliminaries
	Contractive models
	-PIR

	Well-posedness of T()
	Convergence of -PIR
	Application to ADP
	Constrained optimal control and ADP
	Numerical examples

	Conclusions

