
Learning communication delay patterns
for remotely controlled UAV networks ?

Jaehyun Yoo and Karl H. Johansson

Department of Automatic Control,
School of Electrical Engineering,

KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: {jaehyun,kallej}@kth.se

Abstract: This paper deals with collaborative unmanned aerial vehicles (UAVs) that are
remotely controlled from a cloud server. The main contribution is to apply machine learning
technique to find a pattern of network-induced effects on maneuvers of UAVs, in order to
compensate for time delays and packet losses in remote communication. As machine learning
technique, a Gaussian process (GP) based approach is employed due to its computational
simplicity and flexibility in modelling complex expressions using a small number of parameters.
We combine a deterministic compensation for an enhanced GP model to overcome a problem
of the lack of training data at the beginning of training phase. This is done by defining training
data input as a set of delayed observation and the deterministic compensation term, and by
training the GP on residual between the true state and the input set. The proposed algorithm
is evaluated to collaborative trajectory tracking of two UAVs. Simulations are performed for
various delays and tracking scenarios. It is shown that the better tracking results are achieved
compared to a conventional linear compensation algorithm.

Keywords: Networked robotics, unmanned aerial vehicles, time-delay systems, machine
learning.

1. INTRODUCTION

Small unmanned aerial vehicles (UAVs) have a great po-
tential for remote applications such as traffic monitoring,
inspection of hazard environments, and aerial transporta-
tion [Chao et al. (2008); Quaritsch et al. (2010)]. These ap-
plications become more useful as longer distances between
the UAVs and a central control station are permitted. For
maintaining stable flight performances at long distances,
network-induced influences such as time delays and packet
losses should be compensated, otherwise the UAVs may
even become unstable.

To overcome delays and packet dropouts, many networked
control systems (NCSs) approaches have been developed.
In [Wang et al. (2010); Zhao et al. (2011); Onat et al.
(2011)], predictive control approaches provide a local plant
with a sequence of future control inputs. Then, the local
plant chooses a proper control input corresponding to
current network condition, where the plant is assumed to
follow a linear dynamic model. Similarly, auto aggressive
models in [Hu et al. (2007); Liu et al. (2006); Zuo et al.
(2016)] and mixture of multiple models in [Jeong and
Park (2005); Dong et al. (2010); Zhang et al. (2013)]
are assumed to be known and used to generate control
predictions. However, such models are seldom available
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Fig. 1. Remotely controlled UAVs from a cloud server.

in practice, such as the UAV scenario considered in this
paper.

The main contribution of this paper is to apply a machine
learning technique to compensate for random communica-
tion delays, without requirement of UAV dynamic models.
It does not learn time-delay itself, but learn a pattern of
network-induced effects of UAV maneuvers. This is why
we do not need precise dynamic models. Fig. 1 illustrates
the system considered with remotely controlled UAVs from
a cloud that implements a machine learning algorithm.
Delayed observations sent from the UAVs are used as
training data, and the cloud provides control inputs with
the UAVs.

The machine learning technique we employ is a Gaussian
process (GP) approach which has been recently used
in many applications, due to its flexibility in modelling
complex expressions using a small number of parameters.
GP-based machine learning algorithms have been applied
to aerial vehicles [Ko et al. (2007); Akametalu et al.
(2014)] and sensor networks [Yoo et al. (2011); Osborne
et al. (2008)] because of its computational simplicity. In
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Fig. 2. Overview of networked predictive control with a machine learning compensation for remotely controlled UAVs.

comparison to other machine learning methods such as
support vector machine, neural network, and deep learning
[Li et al. (2015); Lv et al. (2016)], the GP approach is
sometimes more efficient.

Standard GP model assumes that the process underlying
training data is zero-mean. In case of our scenario, the
zero-mean indicates that there is no difference between the
true state and delayed state observation. It may generate
improper control input and cause UAV crash because the
UAVs are sensitive to even small change of control input.
In other words, as long as we do not hold enough amount of
training data (e.g., at the beginning of the training phase),
we cannot help getting the wrong estimates. In order
to overcome this problem, we combine a deterministic
compensation model which is independent of training
data and data-driven modelling to form an enhanced GP
regression model. This is done by defining training data
input as a set of delayed observation and the deterministic
compensation term, and then by training the GP on
residual between the true state and summation of the
delayed observation and the deterministic compensation
term.

The proposed algorithm is evaluated to collaborative tra-
jectory tracking of multiple UAVs. Simulations are per-
formed for various delays and tracking scenarios. It is
shown that the better tracking results are achieved com-
pared to a conventional linear compensation algorithm.
We also analyze how the suggested approach improves the
tracking performances.

The rest of this paper is organized as follows. Section 2
presents the networked UAV system as well as delay
compensation scheme. Section 3 introduces a networked
control scheme based on model predictive control (MPC).
Section 4 describes the machine learning based compen-
sation algorithm, and Section 5 shows simulation results.
Finally, Section 6 is devoted to concluding remarks.

2. NETWORKED UAVS

Fig. 2 describes an overview of the networked predictive
control scheme applied to UAVs. The networked UAVs
are time-sensitive in that they could be easily damaged
if communication delay lasts over a tolerable period. By
applying the control scheme, the UAVs can maintain

persistent control inputs compensating time-varying delay
of the uplink channel. The delay compensation of the
downlink channel can be seen as an estimation problem.
Given delayed observation, the cloud can predict the UAV
state at the current time. We suggest a machine learning
based estimation scheme, which will be introduced in
Section 4.

We first suppose the cloud controller and each UAV are
time-synchronized and data packets are time-stamped.
Second, upper bound of the time-varying network delay
is not larger than N1. Also, the number of the consecutive
data dropouts is less than N2. Therefore, the number of
control predictions Nu is set to Nu = N1 + N2. Next, we
describe the compensation methods for the uplink and the
downlink delays in the following.

2.1 Uplink delay compensation

The cloud sends a sequence of control inputs uq(k + j −
1|k) for j = 1, . . . , Nu, to the q-th UAV at time step k.
The received packet is stored in a buffer at the UAV.
To compensate for the uplink delay, control input (bfl ·
τ qu,ke+1) from the latest control sequence is selected, where
fl is the control frequency, τu,k is the uplink delay, and
b·e denotes the nearest integer. The buffer compares time-
stamps of a newly arrived packet and the existing packet,
and then it keeps the sequence having the latest time-
stamp.

2.2 Downlink delay compensation

Let yq(k|k − τ qd,k) be the full-state observation sent from

the q-th UAV, where τ qd,k is the downlink delay. Given the
delayed observation, we can predict the current state of
the q-th UAV at time step k, by the following equation:

xq(k) = yq(k|k − τ qd,k)

bfl·τq
d,k
e−1∑

j=0

AjqBqu(k − bfl · τ qd,ke − j). (1)

As long as we know the matrices Aq and Bq for all agents
q = 1, · · · , N , equation (1) accurately compensates for
the downlink time delay. However, in this paper, we do
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not require precise dynamic models such as in[Lee et al.
(2009)].

Instead, this paper simplifies the model to Aq = I and
Bq = vI with the identity matrix I and velocity scalar v,
where state and control input are defined as 2-D position
and velocity, respectively. Machine learning supports the
lack of the dynamic model information as well as com-
pensates for the delays, by learning effects of the UAV
maneuvers.

3. MODEL PREDICTIVE CONTROL (MPC)
FOR UAV NETWORKS

MPC is a control strategy that calculates predictions of
current and future control inputs by solving a constrained
optimal control problem over a finite time horizon. By
setting the number time horizon to the sum of the upper
bounds of the delay and the dropout, i.e, Nu = N1 + N2,
the MPC can compensate for the uplink delay.

Suppose that xq ∈ Rn be a state of the q-th UAV among

N UAVs, then the concatenated state x =
(
xT1 , . . . , x

T
N

)T
,

where ·T denotes the transpose. Similarly, we define r ∈
RnN and u ∈ RmN as the reference and the control input
vectors, respectively. Taking the downlink time-delay τd,k
into account, the MPC optimization is given by:

min
u(k+j−1|k), j≥1

Jk =

Np∑
i=1

‖x(k + i)− r(k + i)‖2Q

+

Nu∑
j=1

‖∆u(k + j − 1)‖2R,

subject to

x(k + i) =Ax(k + i− 1) +Bu(k + i− 1),

x(k) = [x̂T1 (k), . . . , x̂TN (k)]T ,

x̂q(k) = f
(
yq(k|k − τ qd,k)

)
for q = 1, . . . , N, (2)

xmin ≤ x(k + i− 1) ≤ xmax,

∆umin ≤∆u(k + j − 1) ≤ ∆umax,

umin ≤ u(k + j − 1) ≤ umax,

i= 1, . . . , Np,

j = 1, . . . , Nu,

where Np and Nu (Np ≥ Nu) are lengths of prediction
and control horizons, respectively. The matrices Q and R
are constant weighting matrices, and the vectors ∆umin,
∆umax, umin, umax, xmin, and xmax are constant constraint
vectors.

The optimization results in the control inputs u∗(k + j −
1|k) over the control horizon j = 1, . . . , Nu. The q-th
control input u∗q(k+j−1|k) is sent to the q-th UAV through
the uplink channel. The MPC optimization runs once the
initial states over all UAVs arrive at the cloud. The initial
state of the q-th UAV in equation (2), i.e. x̂q, is estimated
by a function based on the delayed observation yq, which
is sent through the downlink channel. Because the time
delay τd,k may substantially degrade control performances,
this paper focuses on modelling the function f(·). In

order to obtain more accurate model than a deterministic
compensation such as equation (1), the following section
introduces a machine learning method.

4. DELAY COMPENSATION USING GAUSSIAN
PROCESSES LEARNING

This section describes a downlink delay compensation
method using a GPs. Section 4.1 formalizes the GP algo-
rithm and Section 4.2 applies the GP to the compensation.

4.1 GP learning

GP-based machine learning seeks posterior distributions
over functions g(·) from training data D = {(xi, zi)}li=1
which is a set of l number of training data points drawn
from

zi = g(xi) + ε, (3)

where the noise ε follows the Gaussian distribution
N(0, σ2

GP ) with zero mean and variance σ2
GP . A key idea

underlying GP is the requirement that the function val-
ues at different data points are correlated, where the
covariance between two function values g(xi) and g(xj)
depends on the input values xi and xj . This dependency
can be specified via a kernel function k(xi,xj). Selection
of the kernel function depends on user’s choice. This paper
applies the Gaussian kernel function, given by

k(xi,xj) = θ1exp

(
− ‖ xi − xj ‖2

2θ2

)
, (4)

where θ1 is the signal variance and θ2 is the length scale
that determines how fast the correlation between data
points decreases. The parameters represent the smooth-
ness of the function estimated by the GP. The parameters
can be learned by the conjugate gradient descent method
[Rasmussen (2004)].

The joint distribution over the training outputs z =
[z1, . . . , zl]

T is a function of the training inputs X =
[x1, · · · ,xl] of the form

z ∼ N
(
0,K(X,X) + σ2

GP I
)
, (5)

where K(X,X) is an l × l kernel matrix whose (i, j)-th
element is k(xi,xj) in equation (4). For any set of values
X, one can generate the matrix K and then sample a set
of corresponding targets z.

After the training, at a point of interest point x∗, the
output estimate has a Gaussian distribution with mean
µx∗ and variance σ2

x∗
, given by:

p (g(x∗)|x∗,X, z) = N
(
g(x∗);µx∗ , σ

2
x∗

)
, (6)

and

µx∗ = kT∗
(
K(X,X) + σ2

GP I
)−1

z

σ2
x∗

= k(x∗,x∗)− kT∗
(
K(X,X) + σ2

GP I
)−1

k∗,

where k∗ is the l × 1 vector representing covariances
between x∗ and X.

In addition to the mean value µx∗ , the GP provides the
variance σ2

x∗
at any interest, which is useful for a criterion
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to decide if a learning result is reliable. For example,
[Krause et al. (2008)] studies a sensor network in which
the GP variance is used to determine an optimal sensor
placement. By locating sensor nodes at somewhere having
large variance, it reduces uncertainty of sensor coverage.
In [Berkenkamp et al. (2015)], the GP variance helps
sampling the next position of an aerial robot. Safe control
scheme is achieved by the variance information which does
not allow the robot to act insecure motion.

4.2 Compensation

The GP compensation aims to find a relationship between
the delayed observation y(k|k − τd,k) and the ground
truth state x(k|k). In our strategy, the GP input is
defined as a set of delayed observations and the linear
compensation terms in equation (1). This setup is different
to general setup where an input set of the GP is defined
by the observation only, because the combination with
the linear compensation can give better accuracy than the
conventional GP approach using the raw observation only.

We compensate for the difference between the true state
and the summation of the delayed observation and the
linear compensation, given by:

f (y(k|k − τd,k)) = y(k|k − τd,k) + γk + µ{y(k|k−τd,k),γk},(7)

where γk is the linear compensation term:

γk =

bfl·τd,ke−1∑
j=0

AjBu(k − bfl · τd,ke − j), (8)

and µ{y(k|k−τd,k),γk} is the mean estimate of the GP, where

the training set D = {(xi, zi)}li=1 is defined as:

xi = {yi, γi},
zi = xi − (yi + γi),

where training input xi is a set of the delayed observation
and the linear compensation term. The training output is
the residual between the true state xi and the summation
of the delayed observations and the deterministic compen-
sation term We note that, in the training phase, xi(k|k)
are collected by the UAVs, while yi(k|k − τd,k) and γi are
recorded in the cloud. The training is performed after the
data are collected in the cloud.

We emphasize that the combination of the linear compen-
sation and the data-driven model via the GP is comple-
mentary. According to the GP prior model in equation (5),
the output of a test sample tends to be zero when the
input of the sample is not around the domain of the
existing training data set. The zero output value as the GP
estimate indicates that there is no difference between the
the ground truth and the delayed observation, i.e., no error
of the prediction. It may generate improper control input
and cause UAV crash because the UAVs are sensitive to
even small change of control input. In other words, as long
as we do not hold enough amount of training data (e.g.,
at the beginning of the training phase), we cannot help
getting the wrong estimates. However, because the linear
compensation term γk obtained from the deterministic
model is independent of the training data, the combination
improves the prediction.

0 5 10 15 20 25 30 35

sec

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

m

X reference  (2 m) 
Y reference  (-2 m)
UAV 1, 7(=

u
)=0

UAV 1, 7(=
u
)=0.5

UAV 1, 7(=
u
)=1.0

UAV 1, 7(=
u
)=1.5

UAV 2, 7(=
u
)=0

UAV 2,7(=
u
)=0.5

UAV 2, 7(=
u
)=1.0

UAV 2, 7(=
u
)=1.5

Fig. 3. Step responses of two UAVs according to variation
of the uplink delay τu ∼ N (µ(τu), 0.2)

5. SIMULATION RESULTS

For the simulation study, we consider two nonlinear UAVs
with different tracking performances, using the Matlab
toolbox developed by Corke (1996). We fix attitude con-
trollers of the UAVs in advance. The UAVs are to track the
same reference trajectory simultaneously. Because there
are random communication delay, the tracking perfor-
mance depends on how accurate the delay compensation
is.

The result of the uplink delay compensation described
in Section 3 is shown in Fig. 3, where we command the
reference position (2,-2) to the two UAVs whose initial
positions are (0,0). In this simulation, there is no downlink
delay. As the delay increases from 0 to 1.5 sec, the settling
time and the overshoot response get larger. In all the
following simulations, the uplink delay is fixed to have
Gaussian distribution with mean 0.7 and variance 0.2.

Fig. 4 summarizes the comparison between the linear
compensation and the proposed GP-based compensation
with respect to variation of the downlink delays. Figs. 4(a)
to 4(f) are the results when constant references (2,-2)
are given. The downlink delays are defined as Gaussian
distributions with mean µ(τd) equal to 0.1, 1.5, and 2.5 sec,
while the variance is fixed at 0.2 sec. As the delay increases,
the linear compensation lose the tracking accuracy as
shown in Figs. 4(b) and 4(c). Particularly in Fig. 4(c),
the linear compensation method manages to track the
reference only to 20 sec. After that, one of the UAVs
becomes unstable because it cannot overcome the time
delay. On the other hand, because the GP method learns
situations in regard to the delays, it becomes robust and
maintains accurate performance as shown in Fig 4(f).

Figs. 4(g) to 4(i) illustrate another tracking scenario whose
task is to follow rectangular waypoints in a finite period
of time. In this scenario, the mean and the variance of the
Gaussian delay are set to 2 and 0.2 sec, respectively. The
figures show the trajectories of the first UAV and the com-
parison between the GP-based and the linear compensa-
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(a) Linear compensation, µ(τd) = 0.1 sec
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(b) Linear compensation, µ(τd) = 1.5 sec
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(c) Linear compensation, µ(τd) = 2.5 sec
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(d) GP, µ(τd) = 0.1 sec
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(e) GP, µ(τd) = 1.5 sec
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(f) GP, µ(τd) = 2.5 sec
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(g) UAV 1 trajectory, µ(τd) = 2.5 sec
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Fig. 4. Comparison between the linear compensation and the GP-based compensation with respect to a constant
reference (a)–(f) and waypoints reference (g)–(i), with variations of the downlink delay.

tions. The UAV based on the linear compensation method
cannot reach the reference and it wanders around the way-
points due to inaccurate delay compensation. Meanwhile,
the GP-based control shows better tracking performance
as shown in Fig. 4(i).

Let us discuss how the GP compensation improves the
tracking results. According to equation (7), the GP-based
machine learning method aims to learn the difference
between the delayed observations and the true states. This
can be interpreted as the GP-based compensation tries to
imitate the situation where there is no delay. For example,
the tracking result in Fig. 4(d) (almost no delay) illustrates
the convergence after the short overshoot and undershoot.
We also find similar responses from Figs. 4(e) and 4(f) in
which the GP learning is used. Therefore, as long as the
GP learns a model successfully, the resultant trajectory is
similar to the zero-delay tracking result.

Finally, in order to analyze how many iterations of the
training is necessary for guaranteeing accurate control
performance, Fig. 5 shows the training error defined as
mean absolute deviation (MAD), with respect to the
number of iterations. One iteration lasts for 33 second
and generates 131 training data points. We use the same
simulation setup as in Fig. 4(f). Because the two UAVs
have different tracking performances, each MAD reduces
at different speeds, see Fig. 5. The MAD increases when
the learning system receives new training data points that
are far away from the domain of the existing training
data set. After training those new data points, the error
instantly decreases. Thus, the errors repeatedly increase
and decrease to find a pattern inside the training data
generated from the two UAVs maneuvers. We need about
20 iterations until convergence.
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Fig. 5. Training error MAD with respect to the number of
iterations.

6. CONCLUSION

We considered a scenario of collaborating UAVs with
compensation of random communication time-delays. A
GP-based machine learning approach is used to learn
the network-induced effects, and the combination with
a deterministic model enhances compensation capability.
From simulation results, we see that the tracking results
are improved thanks to the accurate learning. As future
work, we will increase the number of UAVs and develop
realistic field experiments.
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