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Abstract— Accommodation of a situation when a prior map
is not available in an indoor localization system is valuable to
cost-effective operations by removing a need for map drawing
and map updating. This paper suggests a trajectory learning
method using crowdsourced measurements in order to support
the absence of map. A localization framework based on a particle
filter is formalized by machine-learning-based feature extraction
and Gaussian process (GP) regression. The feature extraction
algorithm reduces dimensionality of sparse measurement vector,
and it is applied to detect floor level and designated landmarks.
Also, the combination of the feature extraction and the GP
regression is used for modeling nonlinear relationship between
location and measurement. By this combination, locations of
Wi-Fi access points are not required to be known. From the field
experimental results, we confirm that the detections of floor level
and landmarks are accurate, the learned trajectories are close
to the true map, and positioning accuracy is improved thanks to
the learning-aided localization.

Index Terms— Crowdsourced measurement, feature extraction,
Gaussian process (GP) regression, indoor localization, trajectory
learning.

I. INTRODUCTION

INDOOR localization increasingly becomes of interest due
to the need for the location information where GPS is not

available. Prevalence of wireless access points (APs) built in
many buildings and public spaces helps developing received
signal strength (RSS)-based indoor localizations using portable
devices [1]–[4], with the advantage that installation of addi-
tional positioning device, such as ultrawideband [5]–[7], is not
necessary.

The main contribution of this paper is to address a situation
when a prior map is not available and how to update the change
of map without employing a trainer to collect a new database.
Given Wi-Fi RSS measurement only, we suggest a trajectory
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learning method that generates alternative representation of the
space instead of geometric map information.

In [8], a trajectory learning algorithm was introduced for
Wi-Fi RSS-based indoor localization. During the sampling
process, start and end points of a trajectory sample were
recognized by extracting Wi-Fi RSS features. After, some
representative trajectories are learned by a combination of
dynamic time warping and Kalman smoother.

This paper extends the previous work [8] to more realistic
localization situation, with the following improvements. First,
an extension has been made from a single floor to multiple
floors. As well as the landmark detection, the floor detection is
done with feature extraction by combination of linear discrim-
inant analysis (LDA) and principal component analysis (PCA).
Given a classification model by the LDA and PCA, the
k-nearest neighbors (k-NNs) is used for floor detection.

Second, we do not require AP locations. The known
AP location is common assumption in RSSi-based indoor
localization. However, realizing locations of large amount of
AP is difficult and unrealistic in multifloor building. In this
paper, the localization framework is formalized by a particle
filter whose two major components are likelihood and prior
distributions [9]–[11]. The prior distribution is modeled from
the learned trajectories via the developed trajectory learn-
ing algorithm. The likelihood distribution is modeled by a
Gaussian process (GP) regression, which has been popular
in recent localization literature [12]–[14] due to its flexibility
in representing complex relationships using a small number
of parameters [15], [16]. In previous works that used GP
as a part of localization architecture, however, AP locations
were assumed to be known, which are not suitable for our
situation of unknown prior map. In this paper, the combination
of the feature extraction and the GP learning plays the role of
removing the need for AP locations.

The suggested localization system is evaluated in the mul-
tifloor office building. The participants are not given any
guideline to carry a smartphone, for example, not to swing
the smartphone. From the experimental results, we confirm
that the detections of floor level and landmark are accurate and
the learned trajectories are close to the true map. The particle
filter, which connects each part of the feature extraction,
the trajectory learning, and the GP regression, improves the
positioning accuracy up to average 1.4 m thanks to the accurate
learning performances, in comparison with the results without
the learning.
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Fig. 1. Indoor localization architecture based on feature extraction, positioning, and trajectory learning.

This paper is organized as follows. Section II describes
the related works and Section III formalizes a localization
framework based on a particle filter. Section IV introduces the
trajectory learning algorithm. In Section V, the combination of
GP regression and feature extraction is presented. Section VI
presents the experimental results. Sections VII and VIII are
devoted to further discussion and concluding remarks.

II. RELATED WORKS

This paper considers a Wi-Fi-based indoor localization
using smartphone, where true map is unavailable. Fig. 1
shows our indoor localization framework in which each part
of feature extraction, trajectory learning, and positioning is
connected. This section overviews the related works to feature
extraction from Wi-Fi RSS measurements in Section II-A, and
localization without a prior map in Section II-B.

A. Feature Extraction From Wi-Fi RSS

Dimensionality of a Wi-Fi RSS vector is decided after
recognizing how many different signal identities are included
in the training data. High-dimensional Wi-Fi measurement
set disturbs realtime operations for smartphone. Besides,
many elements in the raw observation set have meaningless
(or empty) values, because each AP cannot cover entire indoor
area. Therefore, a feature extraction from the raw Wi-Fi RSS
set is paramount for localization.

LDA and PCA are both fundamental feature extraction
techniques by eliminating worthless elements from original
data set. A difference of the LDA and PCA is that PCA
uses unlabeled training data (Wi-Fi RSSs only) and the LDA
uses labeled training data that are defined as a set of Wi-Fi
RSSs and corresponding labels, such as floor level, landmark
index, and position, as shown in Fig. 1. Because the LDA
tends to cause overfitting problem, the combination with the

PCA can improve accuracy by using additional unlabeled
data [17]. Moreover, it can address efficiency, because large
amount of unlabeled data can be collected without costly
effort. Despite a small amount of labeled training data, the
combination of the LDA and PCA (or semisupervised dis-
criminant analysis) demonstrates accurate feature extraction
performances [18]–[20].

In this paper, a role of the feature extraction algorithm using
the semisupervised discriminant analysis is threefold. First,
dimensionality of the raw RSS vector is incredibly reduced.
Second, the feature extraction with respect to different floors
and different landmarks enables us to detect (or classify) floor
level and landmarks, to encourage localization performance.
The dimensionality reduction and the feature extraction are
implemented simultaneously, which is described in Section IV.
Third, in Section V, the feature extraction algorithm is
combined with a GP regression to overcome the unknown
AP locations.

B. Localization Without a Prior Map

Accommodation of the situation without a prior map for
indoor localization is valuable, because it can keep privacy of
users and service providers, and can remove a need for costly
map drawing. The works [4], [21] employ inertial measure-
ment unit sensors for smartphone localization. However, for
achieving accurate velocity estimation, a smartphone needs to
be kept fixed without rotating. Also, the estimation of heading
direction may be biased due to indoor ferrous material and
accumulated gyro error. In [22] and [23], RSS propagation
models are assumed to be so accurate for localization without
map information. However, signal propagation characteristics
significantly varies in an indoor area due to the multipath fad-
ing problem caused by walls and structure in indoor environ-
ments. In [24] and [25], they rely on visual sensors that need
to always face forward, which is also a restricted posture, and
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thus impractical regarding to crowdsourcing. These restrictions
on smartphone-based localization prohibit to apply standard
simultaneous localization and mapping techniques [26]–[28],
because they should match discrete entities, such as wall and
obstacle, by using precise sensors, such as sonar or laser range
finders and cameras.

Instead of building geometric map, our approach is to
learn a feature-based map by the combination of the feature
extraction and the localization scheme. We suggest a localiza-
tion using crowdsourcing from which we can collect massive
amount of qualified training samples without costly efforts.
Those obtained samples are trained to find hidden intended
trajectories by the developed trajectory learning algorithm.
The learned trajectories become an alternative map, and the
algorithm is made by dynamic time warping and Kalman
smoothing, which originate from the demonstration learning
algorithms [29], [30].

III. PROBLEM FORMULATION

This section formalizes indoor localization using Wi-Fi
RSSs that are measurements between a smartphone and wire-
less APs. The Wi-Fi RSSs collected from indoor environments
are nonlinear and noisy by interference of other signals, walls,
and obstacles. Furthermore, by assumption of the unknown
map information, we do not know real locations of APs.
To deal with those problems, machine-learning-based models
are presented. In this paper, a particle filter is adopted to
formalize the indoor localization framework because of its
flexibility to connect the learned models.

Let us define xt as location and yt as Wi-Fi RSS data set
at discrete time step t . Given the history of observations y1:t ,
the purpose of the particle filter is to estimate posterior prob-
abilistic density function (pdf), p(xt |y1:t ). Using the particle
filter with sequential importance sampling [31], the posterior
pdf is obtained by a finite set of weighted particles. Let
{xi

t , w
i
t }Np

i=1 be a set of Np number of particles and weights,

where the weights are normalized, such that
∑Np

i=1 wi
t = 1.

Each xi
t represents the hypothetical state of the true state with

the corresponding probabilistic value wi
t . The pdf is given by

p(xt |y1:t ) ≈
Np∑

i=1

wi
t δ (xt − xi

t ) (1)

where δ(·) is the Dirac delta function. Then, the estimated
state can be obtained by

x̂t =
Np∑

i=1

wi
t xi

t . (2)

The weights can be obtained in the following:
wi

t = wi
t−1 · p

(
yt |xi

t

)

where the initial weight is given w0 = 1/Np . The likelihood
p(yt |xi

t ) that represents the relationship between location and
RSS observation will be specifically formulated in Section V.

On the other hand, the particles are sampled by the follow-
ing prior probability:

xi
t ∼ p

(
xt |xi

t−1

)
. (3)

In general localization situation, the prior is modeled by

p(xt |xt−1) = Pdis
t · Pmap

t (4)

where

Pdis
t = N (‖ xt − xt−1 ‖; v�t, σv�t) (5)

where N represents the normal distribution and �t is the
discrete time interval, and

Pmap
t =

{
0 if a particle crossed a wall

1 if a particle did not cross a wall.
(6)

The prior functions Pdis
t and Pmap

t keep the localized trajectory
smooth and inside reachable area, respectively. Here, we tackle
the practical problems about an application of conventional
prior functions Pdis and Pmap. The probability Pdis needs an
accurate velocity measurement v of a user. However, obtaining
accurate velocity requires restrictive condition. For example,
an attitude for carrying a smartphone has to be kept fixed
without rotating, such as foot-mounted pedestrian tracking [4].
This is not practical, because most people swing a smartphone
when walking. Instead of Pdis, we apply the Hodrick–Prescott
filter [32] to suggest the distribution Php that does not require
velocity estimation, given by

Php
t = N (‖ xt − xt−2 − 2xt−1 ‖2; 0, σv). (7)

Php
t can obtain a smoothed-curve representation of a time-

series trajectory, without velocity information.
Also, because the accuracy of indoor localization consider-

ably relies on the true map Pmap
t , it is dramatically decreased

when the map is unavailable. Our contribution is to generate
an alternative function Pcl

t that can replace Pmap
t by learning

paths on map. The suggested prior is given by

p(xt |xt−1) = Php
t · Pcl

t . (8)

Therefore, the contributions to build the particle filter can
be summarized in modeling two distributions of the prior Pcl

t
(8) and the likelihood p(yt |xt ) (3). Each one will be presented
in Sections IV and V, respectively.

IV. TRAJECTORY LEARNING

This section presents a trajectory learning algorithm using
crowdsourced measurements, which will be a part of the
prior function Pcl

t [readers can see its definition in (28)
beforehand].

Given Wi-Fi RSSs as sensory measurements, we suggest a
machine learning technique to find the patterns of the Wi-Fi
RSSs on some designated landmarks and different floors. First,
in Section IV-A, we address how to collect trajectory samples
from a crowd. Given Wi-Fi RSSs as sensory measurements,
we suggest a machine learning technique to find the patterns of
the Wi-Fi RSSs on some designated landmarks and different
floors. Second, Section IV-B presents how to learn represen-
tative trajectory from the samples, which eventually serves as
an alternative representation of the space instead of geometric
map information.
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A. Sampling Trajectory With Feature Extraction

In a training phase, a trainer should designate landmarks
and floors. Then, the trainer collects Wi-FiRSS measurements
and assigns labels to them with floor level and landmark index.
In order to extract features of those RSSs with respect to the
floors and landmarks, this paper suggests a combination of the
LDA and PCA.

The LDA and PCA are fundamental dimensionality-
reduction algorithms to eliminate uncesessary elements from
the original data set, by solving the eigenvalue problem. Let
y = [y1, . . . , yd ]T ∈ Rd be a vector of raw RSSs obtained
from d Wi-Fi APs and z ∈ Rr (1 ≤ r ≤ d) be a transformed
vector, where r is the reduced dimensionality. It aims to find
a transformation matrix T ∈ Rd×r such that

z = T T y (9)

where ·T represents the transpose. The calculation of the
transformation matrix involves an optimization problem
given by

T̂ = argmaxT [tr(T T BT (T T CT )−1)] (10)

where B and C are the quantities that we want to increase
and decrease, respectively, and tr(·) represents the matrix
trace. The matrices B and C can be expressed in a pairwise
form [17]. The PCA defines the matrices as

BPCA = 1

2

u∑

i, j=1

Wij (yi − y j )(yi − y j )
T (11)

CPCA = I (12)

with Wij = 1/u. The matrix I is the identity matrix and u is
the number of unlabeled data.

The LDA defines the matrices as

BLDA = 1

2

l∑

i, j=1

W B
ij (yi − y j )(yi − y j )

T (13)

CLDA = 1

2

l∑

i, j=1

W C
ij (yi − y j )(yi − y j )

T (14)

with

W B
ij =

⎧
⎪⎨

⎪⎩

1

l
− 1

lc
if wi = w j

1

l
if wi �= w j

(15)

W C
ij =

{
1
lc

if wi = w j

0 if wi �= w j
(16)

where l is the number of the labeled data and lc is the number
of the labeled samples involved in class c, such that

∑
c lc = l.

The labels wi can be, for instance, a floor level or a landmark
index in this paper.

We note that the conventional BLDA and CLDA

values [17]–[19] do not involve the unlabeled data. In order
to coordinate the unlabeled data to the LDA, we modify them

in the following:

B̄LDA = 1

2

l+u∑

i, j=1

W̄ B
i j (yi − y j )(yi − y j )

T (17)

C̄LDA = 1

2

l+u∑

i, j=1

W̄ C
i j (yi − y j )(yi − y j )

T (18)

with

W̄ B
i j =

⎧
⎪⎨

⎪⎩

1
l − 1

lc
if wi = w j = c

1
l if wi �= w j
1
u if wi = 0 or w j = 0

(19)

W̄ C
i j =

⎧
⎪⎨

⎪⎩

1
lc

if wi = w j = c

0 if wi �= w j

0 if wi = 0 or w j = 0

(20)

where the training data set is given by {(yi , wi )}l+u
i=1. If (yi , wi )

is a labeled data, wi = c. Otherwise, wi = 0.
The combination is based on weighted summation, given by

B = a B̄LDA + (1 − a)BPCA (21)

C = aC̄LDA + (1 − a)CPCA (22)

where a is the weight parameter to adjust the balance between
the PCA and LDA.

The combination of the PCA and LDA is used for feature
extraction. In a training phase, a trainer should designate
landmarks and floors. Then, the trainer collects Wi-Fi RSS
measurements and assigns labels to them with floor level
and landmark index. Using the separate floor and landmark
training data, the combination of the LDA and PCA makes
each classification model.

In a test phase, given current Wi-Fi RSS observation,
it detects which floor and landmark a user is located on.

1) Floor Estimation: Let T floor be the transformation matrix
obtained from the training phase when wi is defined as the
floor level and y∗ is the current RSS. Then, zfloor∗ (=T floorT y∗)
becomes the transformed current observation. For decision of
a test point, the k-NN algorithm is used to assign floor label
with the most common among its k-NNs [33].

2) Landmark Detection: Similarly, suppose that T land is
the transformation matrix when label wi is defined as the
landmark index, and zland∗ (=T landT

y∗) is the transformed data.
We define the distance metric Dc, given by

Dc = ∥
∥μ̄c − zland∗

∥
∥, c ∈ {landmark1, landmark2, . . .} (23)

with

μ̄c = 1

lc

lc∑

i=1:wi =c

zland
i (24)

where
∑lc

i=1:wi =c indicates the summation over i = 1, . . . , lc,
such that wi = c. The metric Dc represents the distance in
the feature space between the center of the training datapoints
involved to the cth landmark μ̄c and the test datapoint zland∗ .
The distance metric Dc decreases when a user approaches
landmarkc and increases when a user gets far. Thus, we can
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detect if a user is located at some interested landmark by
thresholding the distance metric. We decide the distance-
metric threshold by a 95% confidence interval. Let σ̄c be the
standard deviation of samples of cth landmark, and recall the
set μ̄c and lc are mean and number of the samples. By the rule
of 95% confidence interval, we trigger the detection of the
landmark when Dc is smaller than 1.96 · σ̄c/

√
lc.

Before end of this section, we summarize the sampling step.
While the user’s location is estimated via the particle filter,
the floor and the landmark are also detected. Whenever two
consecutive landmarks are detected, we recognize them as the
start and end points of a user’s path. Then, the estimated path
between the start and end points becomes one trajectory sam-
ple. The trainer gathers a certain amount of the samples and
categorizes them according to the label types (the landmark
and floor indices). Finally, the trajectory learning algorithm is
implemented, which is described in Section IV-B.

B. Learning Trajectory With Kalman Smoother and
Dynamic Time Warping

Suppose that M trajectories Xk
j of length j = 0, . . . ,

N (k) −1 and k = 0, . . . , M −1, which have the same start and
end points, are given from Section IV-A. Then, there exists a
hidden intended trajectory h that is representative of all Xk

j .
For example, h can be an average trajectory of Xk

j .

For considering a realistic indoor localization, the samples
may have different lengths, because people move at different
speeds. Second, some people may generate outlier trajec-
tories although they have the same departure and destina-
tion, e.g., detour. Therefore, it is required to detect outliers.
We apply a combination of dynamic time warping and Kalman
smoother [30] to our trajectory learning approach.

It aims to find one hidden trajectory ht of length t = 0, . . . ,
O − 1. The size of length O is initially set twice the average
length of the trajectories, i.e., O = 2/M · ∑M

k=1 N (k) . The
trajectory learning algorithm considers the trajectories Xk

j
as the observations of the one intended trajectory ht . It is
expressed as

ht+1 = f (ht ) + wh
t , wh ∼ N (0,�h) (25)

Xk
j = hτ k

j
+ wX

j , wX ∼ N (0,�X) (26)

where wh and wX are the Gaussian noises whose covariance
matrices �z and �X are to be estimated. The subscript τ k

j is
time index of h to which the observation Xk

j is mapped. Fig. 2
is helpful to understand (25) and (26), which shows simplified
example results of the trajectory learning. In Fig. 2(a), six dif-
ferent trajectory samples are obtained, and they are represented
as Xk

j , with k = 1, . . . , 6. As in (26), these samples are
represented by a unique hidden trajectory ht . Fig. 2(b) shows
the resultant trajectory of ht in (25).

Estimation of the hidden trajectory ht and the time
indices τ k

j can be done by maximizing the following log

likelihood:
maxτ,�(·) logp(h, τ ; �(·)) (27)

where �(·) denotes both �z and �X. Because it is difficult
to optimize the likelihood over �(·) and τ simultaneously,

Fig. 2. Experimental example of the trajectory learning algorithm.
(a) Trajectory samples. (b) Learned trajectory versus true passage. (c) Added
outlier. (d) Outlier detection via variance.

the previous work [29], [30] reported the optimization algo-
rithm for solving (27). The detailed optimization process is
referred to those.

After the learning part, suppose that h1:n = ∪n
i=1h(i) is a

set of n learned trajectories, where each h(·) has different start
and end points. For example, the start and end points of h(1)

are toilet and room, and those of h(2) are elevator and toilet,
respectively. The learned trajectories h1:n are used for building
the probability Pcl

t , which follows the Gaussian distribution:
Pcl

t ∼ N (
xt ; μcl

t ,�cl
t

)
(28)

and

μcl
t = arghmin‖h1:n − xt‖ (29)

where μcl
t is the closest position among h1:n to the sample xt .

Also, the variance �cl
t is defined as the estimated covariance

�h∗
that is obtained from the Kalman smoother.

Fig. 2 shows the experimental results of the trajectory
learning when six different people move on the same pas-
sage. In Fig. 2(a), individual samples are collected from the
localization results of the particle filter. We note that before
learning trajectories, the particle filter could not use the prior
distribution Pcl

t . Thus, the location results, as the trajectory
samples in Fig. 2(a), are not smooth and inaccurate. However,
their trained result in Fig. 2(b) shows that the learned trajectory
is close to the true passage on which the users walked.
Fig. 2(c) shows the situation when an outlier is added by
the seventh person. We detect the outlier by examining the
estimated covariance �X that implies the differences between
the learned trajectory and the samples. As shown in Fig. 2(d),
the outlier has the outstanding norm of variance. We filter an
outlier by the 95% confidence interval of trajectory samples.
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If a norm of variance of a test sample is outside of the range
(m −1.96 ·σ/

√
n, m +1.96 ·σ/

√
n), where m, σ , and n are the

mean, the standard deviation, and the number of the samples,
it is treated as an outlier.

V. GAUSSIAN PROCESS REGRESSION

WITH FEATURE EXTRACTION

This section presents a combination of a feature extraction
method and a GP modeling, to build a likelihood relationship
between locations and Wi-Fi RSS feature vectors. As the
feature extraction algorithm, we adopt the PCA described in
Section IV-A, which uses only Wi-Fi RSS (unlabeled data),
because we cannot assign labels for Wi-Fi RSSs for the
purpose of positioning due to the unknown AP locations. Let

zt (= T PCAT · yt) ∈ Rr be the feature vector to replace the
raw observation set yt ∈ Rd , such that r � d . We assume
that elements of zt are independent. Then, the likelihood is
defined as the joint distribution, given by

p(zt |xt) =
r∏

j=1

p
(
z j

t |xt
)

=
r∏

j=1

N (
μ

j
xt , σ

j
xt

)
(30)

where z j
t is the j th scalar component in the vector set zt

and N (μ
j
xt , σ

j
xt ) is Gaussian distribution whose mean μ

j
xt and

variance σ
j

xt are calculated from a GP regression.
A GP for regression seeks posterior distributions over func-

tions g(·) from training data {(xi , z j
i )}l

i=1 made by l number
of training datapoints drawn from

z j
i = g(xi) + ε (31)

where the noise ε follows the Gaussian distribution
N (0, σ 2

G P ). Note that the training output z j
i in (31) is different

to the current feature vector z j
t . The key idea underlying

GP is the requirement that the function values at different
datapoints are correlated, where the covariance between two
function values g(xp) and g(xq) depends on the input values
xp and xq . This dependence can be specified via the Gaussian
kernel function k(xp, xq), given by

k(xp, xq) = θ1exp

(− ‖ xp − xq ‖2

2θ2

)

(32)

where θ1 is the signal variance and θ2 is the length scale that
determines how strongly the correlation between datapoints
drops off. Both parameters determine the smoothness of the
functions estimated by the GP. The parameters can be learned
by the conjugate gradient descent method in [34].

Also, the joint distribution over the training outputs
z j = [z j

1, . . . , z j
l ]T is a function of the training inputs

X = [x1, · · · , xl ], with the form

z j ∼ N (
0, K (X, X) + σ 2

GP I
)

(33)

where K (X, X) is l×l kernel matrix whose (p, q)th element is
k(xp, xq) in (32). For any set of values X, one can generate the
matrix K and then sample a set of corresponding targets z j .

Fig. 3. GP distributions with PCA-driven Wi-Fi RSS feature vectors.
(a) GP distribution of the first component in Wi-Fi feature vector.
(b) GP distribution of the second component in Wi-Fi feature vector.

After the training, at an interest point x∗
t , the GP estimates

the output that takes the Gaussian distribution

p
(
g
(
x∗

t

)|x∗
t , X, z j ) = N (

g
(
x∗

t

); μ
j
x∗

t
, σ

j 2

x∗
t

)
(34)

with

μ
j
x∗

t
= K

(
X, x∗

t

)T (
K (X, X) + σ 2

GP I
)−1z j (35)

σ
j 2

x∗
t

= k
(
x∗

t , x∗
t

)

− K (X, x∗
t )

T (
K (X, X) + σ 2

GP I
)−1

K
(
X, x∗

t

)
(36)

where K (X, x∗
t ) is the l × 1 vector whose i th element is

k(xi , x∗
t ). Here, we summarize the estimation process. Initially,

we are given training data X and z j , and we calculate the
kernel matrix K (X, X). When given a query point x∗

t , GP
obtains the kernel vector K (X, x∗

t ), and then estimates the

mean μ
j
x∗

t
and the variance σ

j 2

x∗
t

by (35) and (36). For our

localization, we use μ
j
x∗

t
to represent an RSS distribution

over space. In the following, we provide the example of the
GP estimation for our location by the result of Fig. 3.

Fig. 3 shows the experimental likelihood distributions
that indicate μ

j
x∗

t
over one floor, when x∗

t are defined as
2-D positions on the floor. The original 193-D Wi-Fi RSS
(d = 193) is reduced to 10-D feature vector (r = 10),
and 41 position-labeled data are used. Fig. 3(a) shows the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YOO et al.: INDOOR LOCALIZATION WITHOUT A PRIOR MAP BY TRAJECTORY LEARNING 7

Fig. 4. Results of (a) PCA, (b) LDA, and (c) combination for floor feature extraction from Wi-Fi RSS training data set with respect to the 13th, 14th,
and 15th floors in the experimental building. Training data are collected from 193 APs that are placed over different three floors.

GP distribution of the first components of z1 in the feature
vectors, and Fig. 3(b) shows the distribution of the second
components of z2. We omit the other eight distributions
3 ≤ j ≤ 10. From these results, we confirm that the combina-
tion of the GP regression and the PCA provides the likelihood
distributions without information of the AP locations.

The main difference to general RSS-based localization
approach is availability of AP locations. Remind that the
likelihood function p(yt |xt) in (3), where yt ∈ Rd is a set of
the RSSs measured from d Wi-Fi APs. If we do not know
true locations of the APs, we could not recognize which
floor or area is assigned to p(yt |xt ). For example, we cannot
draw a GP distribution of a Wi-Fi AP onto the true floor where
the AP is located. Therefore, it is useless to apply p(yt |xt)
without the true AP locations. This unrealistic assumption is
eliminated in this paper by suggesting the combination of the
feature extraction and the GP.

VI. EXPERIMENTAL RESULTS

Indoor experiments are conducted on the 13th, 14th,
and 15th floors of the office building 301 at Seoul National
University, where the size of the floor is 47 × 36 m2.
Ten different people participate in the experiment, and they
are not given any guideline about their posture. We record the
user’s trajectories by the camera (GoPro Hero3) equipped on
the helmet. The experimental videos about the results of the
trajectory learning and the integrated localization can be found
at icsl.snu.ac.kr/TrajectoryLearning.avi and
icsl.snu.ac.kr/WifiIndoorLoc.avi, respectively.

The used device is Samsung Galaxy S4 whose CPU is
1.6 GHz with android OS and Wi-Fi communication uses the
IEEE 802.11 protocol. We program the smartphone applica-
tion using Java eclipse for obtaining the Wi-Fi signals and
measurements, and for communication. The scan function of
the Wi-Fi signal in the android platform provides us with
information of mac address, AP name, and decibel level of
the RSS. On the other hand, the computations for the learning
and the localization are performed at the service provider side.
When a notebook (i7 CPU 2.60-GHz and 16-GB RAM) is used
for the setup with 1324 pieces of datapoints, it took 1.81 s for

Fig. 5. Accuracy of floor classification using k-NN after: LDA versus
combination of LDA and PCA.

Fig. 6. Accuracy of classification according to the variation of the balancing
parameter a in (21).

the PCA–LDA feature extraction and 8.58 s for the trajectory
learning.

A total of 193 Wi-Fi APs are placed over the three floors.
Due to signal propagation characteristics, some AP signals are
found over all floors and some appear on only specific floor.
Their variation patterns with respect to floors and location
are recognized via the feature extraction algorithm. There
are two kinds of training data: labeled data (RSS vectors
and corresponding labels) and unlabeled data (RSSs only).
The labeled data are also divided into three types. The first
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Fig. 7. Landmark detection with (a) designated landmarks on experimen-
tal floor, (b) landmark feature extraction from Wi-Fi RSS data set, and
(c) variation of the distance metric Dc corresponding to a user’s movement:
room1 → elevator1 → toilet1 → elevator2 → toilet2 → elevator1 → room1.

type is the RSS and the corresponding floor level. The second
is the RSS and the index of designated landmark. The last is
the RSS and the 2-D position.

While the localization, whenever two consecutive landmarks
are detected (i.e., start and end points of the trajectory),
the estimated trajectory sample is sent to a server. After
gathering a certain amount of trajectory samples, we learn
new trajectories and update the prior distribution of the particle
filter.

A. Floor and Landmark Detections

The dimensionality of Wi-Fi RSS vector is reduced from
193 to 10, and RSSs are scaled from 0 to 1, and the

Fig. 8. Learned trajectories with respect to the number of participants.
(a) Two participants. (b) Ten participants.

total of 1324 training data points is used. Fig. 4 compares
the feature extraction results of the PCA, LDA, and their
combination. Fig. 4(a) shows that the PCA is incompetent
in the floor classification and the LDA in Fig. 4(b) shows
the overfitting of the labeled data by the fact of the different
scales of each dimension. In Fig. 4(c), we confirm that the
combination algorithm gives more clustered, separated, and
scaled result.

Fig. 5 shows the accuracy of the floor classification where k-
NN algorithm (k = 1) is used to decide the floor level. We vary
ratio of the used labeled data from 10% to 100%. For example,
when 10% labeled data are used, 90% of the unlabeled data
are used. The result of the combination algorithm outperforms
the LDA-based classification. A remarkable difference of the
accuracy is found when using a small amount of labeled
training data, which reflects a situation wherein a trainer can
save time and cost for collecting and calibrating training data.

Fig. 6 shows the effect of the balancing parameter a in (21)
according to variation of the number of labeled training data.
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Fig. 9. Results of floor detection as well as history of test data on the feature signal space. (a) Time = 30 s. (b) Time = 1.30 min. (c) Time = 3.30 min

Fig. 10. Results of the position estimation on 14th and 13th floors using the integrated particle filter with the learned map and the GP with feature extraction.
(a) Time = 1.5 min on the 14th floor. (b) Time = 2.5 min on the 14th floor. (c) Time = 3.5 min on the 13th floor. (d) Time = 4.5 min on the 13th floor.

We observe that accuracy decreases as value of a increases
for three cases. Relatively large a denotes that the semisuper-
vised combination focuses FDA than PCA, which results in
inaccurate estimation. In this experiment, the value of a is set
0.2 in accordance with the minimum error shown in Fig. 6.

According to the designated landmarks, such as toilet, room,
and elevator as shown in Fig. 7(a), the clear clustering results
are shown in Fig. 7(b). Fig. 7(c) evaluates the distance metric

with respect to a user’s path: room1 → elevator1 → toilet1 →
elevator2 → toilet2 → elevator1 → room1. We can observe
the variation of the distance between the designated landmarks
and the user location.

B. Trajectory Learning and Positioning

Fig. 8 shows the results of the trajectory learning, where
participants walk along one floor randomly. Trajectories made
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by the different landmarks are remarked by different colors.
Fig. 8(a) and (b) shows the results when samples are collected
by two and ten participants, respectively. As more participants
join in the learning system, it becomes smoother and closer
to the true map.

Fig. 9 shows the history of the test data on the signal
space when the user moves from the 15th to 13th floors.
Fig. 9(a)–(c) shows the trajectories on the signal space, and we
observe that the test points are located onto the each cluster
of the (floor) training data sets. The user walks on the stairs
when changing floors. The test points on the stairs are marked
far from the clusters. The decision of the floor level is done by
k-NN (k = 1) algorithm.

Fig. 10 shows the positioning result of the particle filter,
where we set 50 number of particles. After ten experimental
trials, the average error of the developed algorithm is 2.2 m,
while an error of the localization without the map learning
is 3.6 m. In the worst case, our algorithm has 2.8-m error
and the compared one has 5.1 m. In the best case, each has
1.3- and 2.5-m error.

VII. DISCUSSION

This paper devises an indoor localization method by com-
bining the machine learning techniques. In order to remove
the need for prior map, the trajectory learning is suggested
in which the landmark detection takes an important role of
sampling trajectories. Detection of two consecutive landmarks
produces one trajectory sample, which can be supported by a
landmark selection problem given a fixed number of APs.

In this paper, the clusters of landmarks on Wi-Fi signal
space are recognized via the feature extraction algorithm.
Therefore, given a fixed number of APs, the landmark
selection problem should designate the enough number of
landmarks and satisfy certain clustering (or classification)
performance. A naive method for landmark selection can be
described in the following : 1) initialize N landmark points,
whose index set is given c = {1, . . . , N} and 2) find a subset
s∗ with the maximum cardinality satisfying the clustering
(or the classification) performance. This can be represented as
s∗ ∈ argmaxs∈c{|s| : m(s) < M}, where |s| is the cardinality,
m(s) is a cost function indicating the clustering performance,
and M is a criterion. For instance, m(s) can be defined such
that

m(s) =
∑|s|

i=1

∑
j :w j =i ‖(y j − μi )‖

∑|s|
i=1 ‖(μi − μ)‖

where y j is RSS data and w j is the corresponding landmark
labels. And μ and μi are the mean of all data and the i th class
data, respectively. This function m(s) gauges the degree of
clustering capability in that the denominator represents the
between-class distance that should be large, while the nomi-
nator represents the within-class distance that should be small.

However, the naive approach needs heavy computation in
order to test 2N subsets. On the other hand, the existing
landmark-based localization methods [35]–[37] focus on land-
mark recognition using inertial, magnetic, visual, and GPS
sensors, rather than addressing the landmark selection issue

using Wi-Fi RSSs. Therefore, more in-depth study for the
landmark selection problem needs to be conducted as future
work.

VIII. CONCLUSION

We present an indoor localization with the floor classifi-
cation, the landmark detection, and the trajectory learning.
Wi-Fi RSS is used as sensor observation, but it is not restricted
to apply other kinds of sensors. The trajectory learning is
developed to update map automatically with crowdsourcing
from which we can obtain large amount of qualified training
data. For sampling trajectories, we apply the feature extraction
algorithm to find patterns of RSSs with respect to different
floors and different landmarks. By investigating distances
between a test point and the training data points on the
feature vector space, we successfully detect the changes of
floor and landmark. In order to learn trajectories of unknown
map, Kalman smoother and dynamic time warping are applied.
As a localization framework, the particle filter that uses the
learned map as the prior distribution and the GP modeling
as the likelihood distribution is formulated. The experiments
are conducted on multiple floors in an office building. Many
different people participate in validating experiments and we
confirm that the positioning accuracy is improved by the
learning-aided localization. The proposed approach can be
applied to other types of RSS-based localization, and the
performance can be further enhanced by fusing with different
types of sensors.
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