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Abstract. This paper empirically evaluates two intrinsic Explainable
Reinforcement Learning (XRL) algorithms on the Remote Electrical Tilt
(RET) optimization problem. In RET optimization, where the electrical
downtilt of the antennas in a cellular network is controlled to optimize
coverage and capacity, explanations are necessary to understand the rea-
sons behind a specific adjustment. First, we formulate the RET problem
in the Reinforcement Learning (RL) framework and describe how we ap-
ply Decomposed Reward Deep Q-Network (drDQN) and Linear Model
U-Tree (LMUT), which are two state-of-the-art XRL algorithms. Then,
we train and test such agents in a realistic simulated network. Our results
highlight both advantages and disadvantages of the algorithms. DrDQN
provides intuitive contrastive local explanations for the agent’s decisions
to adjust the downtilt of an antenna, while achieving the same perfor-
mance as the original DQN algorithm. LMUT reaches high performance
while employing a fully transparent linear model capable of generating
both local and global explanations. On the other hand, drDQN adds a
constraint on the reward design that might be problematic for the specifi-
cation of the objective, whereas LMUT could generate misleading global
feature importance and needs additional developments to provide more
user-interpretable local explanations.

Keywords: Explainable Reinforcement Learning, Reinforcement Learn-
ing, Artificial Intelligence, Remote Electrical Tilt Optimization, Cellular
Networks

1 Introduction

In the last two decades, Reinforcement Learning (RL) has received considerable
attention from the telecommunication domain due to its outstanding perfor-
mance in many applications. Traditional rule-based techniques have been out-
performed by RL algorithms in a variety of complex telecommunication use
cases, such as edge computing [1], radio resource management [2,3], and Remote
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Electrical Tilt (RET) optimization [4–7]. In the RET use case, RL can be used
to control the electrical downtilt of multiple antennas in a cellular network in
order to optimize specific Key Performance Indicators (KPIs).

Despite the superior performance, state-of-the-art RL algorithms lack ex-
plainability and transparency [8, 9], i.e., it is often hard for humans to under-
stand why an RL agent makes a specific decision. This lack of explainability
can hinder the adoption of RL for industrial domains [10–12], as users are less
likely to use an application that they do not trust, and black-box models may
raise ethical issues. In the RET use case, the decision of an RL agent to adjust
the downtilt of an antenna influences the experienced communication bandwidth
of some users. Therefore, it is desirable to understand the reason behind each
decision. Recently, researchers have focused on the development of Explainable
Reinforcement Learning (XRL) methods to enhance RL explainability [8,9]. Such
methods inspect different parts of the RL framework – namely agent’s model,
rewards, and environment state – to extract explanations and provide additional
insights to the system designer.

The main motivation for this paper is that most XRL methods have not
been extensively evaluated in real-world applications, including the telecommu-
nication domain. XRL is, indeed, still a research area in its infancy. A search of
the literature has revealed only few studies that have applied XRL to real-world
problems [13–16], and many promising XRL methods have not been covered by
such studies. Due to this scarcity of results, it is unclear which method best
suits a particular problem and what advantages and disadvantages each method
provides. There is a need for systematic comparisons of XRL methods that can
provide guidelines for the application of XRL.

The purpose of this paper is to empirically evaluate on the RET optimization
problem two promising XRL algorithms: Decomposed Reward Deep Q-Network
(drDQN) [17] and Linear Model U-Tree (LMUT) [18]. For doing so, we first
formulate the RET optimization problem as an RL problem suitable to apply
both drDQN and LMUT and describe how to apply them to such a problem.
In particular, we consider a simplified use case where only one of the antennas
needs to be controlled, which allows checking the explanations provided by the
two XRL methods. Second, we evaluate drDQN and LMUT in a simulated Ra-
dio Access Network (RAN). Since these two XRL algorithms are intrinsic, i.e.,
they modify existing RL algorithms to make them more transparent and provide
explanations by showing their internal mechanism, the performance may be de-
graded compared to the original RL algorithm. Thus, the evaluation considers
both performance and explainability. The results are discussed thoroughly to
highlight the advantages and disadvantages of drDQN and LMUT.

Contributions: The main contributions of this paper are: (i) to present, to
the best of our knowledge, the first study that empirically compares drDQN and
LMUT on the RET use case; (ii) to formulate the RET optimization problem as
an RL problem suitable to apply drDQN and LMUT, as well as to benchmark
other XRL methods in the future; and (iii) to present qualitative results of the
explanations achievable using drDQN and LMUT in the RET use case.
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Outline: Section 2 presents the related work. Section 3 formulates the RET
optimization problem as an RL problem suitable to apply the selected XRL
methods. Section 4 briefly describes drDQN and LMUT with focus on how to
apply them to the RET problem. Section 5 discusses the simulation setup and
the results of the simulations. Section 6 summarizes our findings and the ideas
for future work.

2 Related Work

The relevant literature for this paper comprises two research areas: RL in RET
optimization and XRL. Previous studies have found that RL approaches can
outperform traditional rule-based policies hand-crafted by domain experts in
the RET use case [4–6]. In particular, Vannella et al. [5] demonstrated how
safe RL can outperform rule-based policies in terms of both performance and
safety by training the agent offline on real network data collected under the rule-
based policy. In [6], Vannella et al. showed that an off-policy contextual bandit
algorithm consistently outperforms the rule-based policy in RAN simulations.
Buenestado et al. [4] found that RL can tune several parameters of the antenna,
among which the downtilt, more efficiently than traditional algorithms.

The literature on XRL has developed several promising methods. According
to [8, 9], these methods can be classified into post-hoc and intrinsic methods.
Whereas post-hoc methods rely on an auxiliary model to extract explanations
from the complex agent, intrinsic (or transparent) methods are RL algorithms
that provide explanations by design. Another criterion is given by the scope of
the explanation: a global explanation summarizes the general behavior of the
agent, while a local explanation refers to a specific agent’s decision. Among the
intrinsic methods, Liu et al. [18] proposed LMUT as a transparent model to
learn mimicking a black-box agent. LMUT is a combination of regression trees
and linear regressions. It can provide both global and local explanations. Juoza-
paitis et al. [17] modified existing RL algorithms by decomposing the reward
into a sum of reward components and, consequently, decomposed the agent’s
model to learn separate value functions while still optimizing the total reward.
This idea, known as reward decomposition, was applied, for example, to Deep
Q-Network (DQN) [19] to generate drDQN, which is capable of providing con-
trastive explanations with lightweight post-processing consisting of differences
of Q-components. Starting from drDQN, Terra et al. [16] combined the reward
decomposition idea with SHAP [20], an established feature attribution method
from Explainable AI (XAI), to find correlations between inputs and outputs
of the Q-network. The new method, called Both Ends Explainations for Re-
inforcement Learning (BEERL), was implemented on the RET use case. Re-
garding post-hoc methods, Hayes and Shah [21] devised an algorithm-agnostic
framework to summarize the agent’s policy (i.e., state-to-action mappings) in
natural language by using user-interpretable communicable predicates. Van der
Waa et al. [22] modified the idea in [21] to explain actions in terms of expected
consequences, rather than correlations between state and action, through user-
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interpretable outcomes describing rewards. More specifically, they proposed to
compute the expected outcomes of an action by simulating future steps through
a learned model of the environment. Greydanus et al. [23], instead, considered
agents learning directly from raw images, in which case the XRL methods men-
tioned so far can hardly be successful. The authors used perturbation-based
saliency maps to highlight pixels with a high impact on the action selection.
Iucci et al. [13] applied [17] and [21] to a human-robot collaboration scenario
and showed how having both local and global explanations can help to have a
complete overview of the agent’s behavior.

The existing literature on RL in RET optimization focuses on performance
but neglects explainability. An exception is [16], which applied XRL to the RET
use case. Inspired by it, we design the reward as a linear combination of KPIs
in order to apply drDQN. However, while [16] focuses on developing a new XRL
method and implementing it on the RET problem, our work aims to assess
and compare two existing XRL algorithms, drDQN [17] and LMUT [18], to find
their advantages and drawbacks. To be able to assess explanations, we consider
a RET problem where only one antenna is controlled. This simple setup serves
as a benchmark for XRL and can be used in future work to evaluate other XRL
methods. Among the available XRL methods, we decided to restrict the work to
intrinsic XRL, as it does not suffer from potential inaccuracies of the auxiliary
model present in post-hoc methods. Furthermore, to the best of our knowledge,
no previous study has applied LMUT to a telecommunication problem.

3 RET optimization

In this section, we describe in detail the RET use case, including the explain-
ability aspects we seek in this work, and formulate it as an RL problem suitable
to apply the selected XRL methods.

3.1 System model

We consider a geographical area where B Base Stations (BSs) and U User
Equipments (UEs) are deployed. Each BS is equipped with Ab directional an-
tennas. Thus, the set of antennas A in the cellular network has cardinality
|A| = B · Ab. Fig. 1 shows an example with B = 2, Ab = 3 (three-sectorial
BSs), and cells with hexagonal shape. Given a fixed electrical downtilt of the an-
tennas a2, ..., a|A| ∈ A, the problem is to control the electrical downtilt θ of the
remaining antenna a1 ∈ A, denoted as a hereafter, in order to optimize certain
KPIs. The downtilt is defined as the inclination angle of the main lobe of the
antenna radiation pattern with respect to its horizontal plane [5] (see Fig. 1).

Two important KPIs for mobile network operators are coverage and capac-
ity, which are conceptually defined as follows. Coverage refers to the area from
which a UE can access the cellular network, while capacity refers to the amount
of traffic the cellular network can handle simultaneously. Inspired by [16], we use
Reference Signal Received Power (RSRP) and Signal-to-Interference-plus-Noise
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Fig. 1: Abstract representation of the RET optimization problem. There are two
BSs, each equipped with 3 directional antennas. The downtilt θ of one antenna
needs to be adjusted to optimize coverage and capacity. The downtilt of the
other antennas is fixed.

Ratio (SINR)3 to represent coverage and capacity, respectively. RSRP can be
used to assess whether a coordinate in the area of interest is covered by the
network, as it considers a reference signal from the antenna that has not been
optimized for a specific UE. In contrast, the amount of traffic the network can
handle strongly depends on the number of errors and retransmissions and, con-
sequently, on the SINR to each UE. Note that more sophisticated ways to model
coverage and capacity have been proposed (e.g., [6,7]), but are out of the scope
of this work.

Explainability is important in the RET use case and represents the focus
of this work. When an RL agent adjusts the downtilt θ of the antenna, the
performance may degrade for some users and increase for others. Specifically,
higher values of the downtilt θ reduce the area covered by the antenna, with the
risk of leaving a certain area without coverage , but increase the capacity in the
covered area due to a stronger signal. In contrast, smaller values of θ result in
a larger area covered but lower capacity due to a weaker signal. Essentially, the
problem implies a multi-objective optimization of coverage and capacity with
a clear trade-off determined by the downtilt. For these reasons, it is crucial to
explain the RL agent’s tilt decisions. The specific kind of explanation depends
on the XRL method and will be described in Section 4. For example, a local

3In this work, SINR refers to the SINR in the data plane.
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explanation might highlight which KPI has the most significant impact on an
agent’s decision.

Before formulating the RET use case as an RL problem, it is worth mention-
ing why RL is suitable to solve this problem. A cellular network is a dynamical
system with intricate dynamics that are difficult to model analytically and ac-
curately. There are plenty of factors to take into account, such as propagation
loss of the signal along with fading and shadowing, antenna model, UE mobility,
and the BS selection procedure (also known as cell association). To exemplify,
when θ decreases (i.e., the signal beam turns up), some UEs previously served by
antenna a might be reassigned to another antenna that can serve them better.
Such a complexity of the system dynamics is the primary motivation for using
model-free RL.

3.2 RL problem formulation

Before applying the XRL algorithms, we need to model the RET optimization
problem as an RL problem. We assume a quasi-stationary scenario where the
UEs are static for a certain period. Under this assumption, the KPIs vary only
if θ varies, i.e., they are functions of θ. We define the average RSRP and SINR
per UE as:

RSRP (θ) =
1

U

U∑
i=1

RSRPi(θ) (1)

SINR(θ) =
1

U

U∑
i=1

SINRi(θ) (2)

where RSRPi and SINRi are the RSRP and SINR measured by the UE i in
dBm and dB, respectively. In the following, we use min-max normalized versions
fulfilling RSRP ∈ [−1, 1] and SINR ∈ [−1, 1]. The objective is to find the
optimal downtilt maximizing a linear combination of average RSRP and SINR:

maximize
θ

RSRP (θ) + w · SINR(θ)

subject to θmin ≤ θ ≤ θmax

(3)

where θmin and θmax are preconfigured by domain experts according to safety
regulations and specifications of the antenna. The weight w controls the relative
importance of RSRP and SINR and is set according to the requirements of the
network. This optimization problem can be formulated in the RL framework
by defining state space S, action space A, and reward function r. Let s′ =
(RSRP ′, SINR′, θ′) ∈ S be the system state after an action:

S = {(RSRP, SINR, θ) | (RSRP, SINR) ∈ [−1, 1]2, θ ∈ [0◦, 15◦]} (4)

A = {+δ, 0,−δ}, δ ∈ R (5)

r(s, a, s′) = r(s′) = RSRP + w · SINR, ∀s′ ∈ S (6)
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The state includes the normalized versions of RSRP and SINR, and the downtilt
θ measured in degrees. The action space contains the three actions corresponding
to downtilting (i.e., increasing θ by δ degrees), keeping the same downtilt, and
uptilting (i.e., decreasing θ by δ degrees). The reward received for an action
depends only on the system state s′ ∈ S after applying the action. Since the state
transitions are deterministic under the assumption of static scenario, the reward
r(s, a) associated with an action a ∈ A in the state s ∈ S is also deterministic.
Nevertheless, state transitions and rewards are unknown.

4 XRL algorithms

In this section, we present the selected XRL algorithms, focusing on their appli-
cation to the RET optimization problem. We discuss only the relevant aspects
necessary for the evaluation.

4.1 DrDQN

DrDQN [17] is an intrinsic XRL algorithm that modifies the structure of DQN
in order to provide local explanations. Its main idea is to decompose the reward,
which normally is a single scalar value, into a vector of semantically meaningful
reward components. Following Eq. (6), the reward decomposition for our problem
is as follows:

r(s, a, s′) = r(s′) = rrsrp(s
′) + rsinr(s

′), ∀s′ ∈ S (7)

rrsrp(s
′) = RSRP ′ (8)

rsinr(s
′) = w · SINR′ (9)

This reward decomposition is then incorporated into the drDQN model by using
one separate Deep Neural Networks (DNNs) for each reward component (dif-
ferently from DQN, which uses a single DNN). Therefore, in our problem, the
structure of drDQN consists of two DNNs, as depicted in Fig. 2. The output of
the drDQN model is a Q-vector:

Q(s, a) = [Qrsrp(s, a), Qsinr(s, a)]
T (10)

where Qrsrp and Qsinr are the Q-components corresponding to the reward com-
ponents rrsrp and rsinr. The drDQN agent can be trained in the same way as
any other RL algorithm by directly interacting with the system. Like the origi-
nal DQN, drDQN’s objective is to learn the Q-function, with the only difference
that the Q-function is a sum of Q-components:

Q(s, a) = Qrsrp(s, a) +Qsinr(s, a) (11)

By exploiting such a decomposed structure, the agent can provide contrastive
explanations by calculating the Reward Difference Explanation (RDX) as fol-
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DQN
drDQN

∑
𝑄!"!#(𝑠, 𝑎)

𝑄"$%!(𝑠, 𝑎)

Fig. 2: Structure of drDQN derived from DQN for the RET optimization prob-
lem.

lows:

∆(s, a1, a2) = [∆rsrp(s, a1, a2), ∆sinr(s, a1, a2)]
T

= [Qrsrp(s, a1)−Qrsrp(s, a2), Qsinr(s, a1)−Qsinr(s, a2)]
T

= Q(s, a1)−Q(s, a2) (12)

where positive and negative components of ∆ indicate advantages and disadvan-
tages of action a1 compared to action a2. For example, ∆rsrp > 0 means that,
according to the agent’s model, selecting a1 instead of a2 benefits the RSRP (or,
more specifically, leads to a higher expected discounted rrsrp).

4.2 LMUT

LMUT [18] is an intrinsic XRL method that approximates a black-box model –
in our case DQN – with a transparent model in order to provide both global and
local explanations. The transparent model, made of |A| (i.e., number of actions)
linear trees4, is trained in a supervised manner to predict the Q-values produced
by DQN. Thus, we train three linear trees corresponding to downtilting, keeping
the same tilt, and uptilting. An example of possible LMUT for the RET problem
is illustrated in Fig. 3. The training algorithm incrementally (episode by episode,
online learning) adds a binary split over a feature every time the model cannot
fit the data accurately enough (threshold of Mean Squared Error (MSE)). When
a split happens, a leaf becomes a splitting node, and its linear regression is
no longer updated. In order to support online learning, the linear regression is
trained with Stochastic Gradient Descent (SGD).

4A linear tree is an extension of a regression tree where each leaf contains a linear
regression instead of a scalar value [18]. It provides more expressiveness than standard
regression trees while maintaining transparency.
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Action = downtilt

Fig. 3: Example of LMUT for the RET use case. Only the linear tree correspond-
ing to the downtilt action is shown.

LMUT selects the best feature and value for a split according to the criterion
of maximum variance reduction of Q-values. In [18], the variance reduction is
calculated by considering only the child node with minimum variance, which
encourages always splitting on the smallest or greatest value of a feature (left
or right child node with one instance and zero variance). The consequence is an
unbalanced tree that grows only on one side (left or right) and inevitably becomes
large and hard to interpret. We modified this calculation to a weighted sum of
the variances in the child nodes, with the weight of each child proportional to
the number of instances falling into it. This modification keeps the model small
and easy to investigate for explainability, as illustrated in Section 5.

Local explanations LMUT generates local explanations via rule extraction.
When the LMUT agent has to select an action in a state s ∈ S, the Q-value
Q(s, a) of each action a ∈ A is calculated by using a linear regression in a leaf.
Therefore, it is possible to extract rules A =⇒ B, where A is the logical
conjunction of the splits from the root to the leaf, and B is the linear regression
in the leaf. For example, in the RET problem, a rule can be as follows:

RSRP ∈ (kmin, kmax) =⇒ Q(s, a1) = w0 + w1 ·RSRP + w2 · SINR+ w3 · θ

where kmin and kmax are constants, and wi are the weights of the triggered
linear regression.

Global explanations LMUT provides also a global explanation via feature
importance. Let Nf be the set of splitting nodes in the linear trees using feature
f (e.g., RSRP) to split. The global feature importance of f is defined as:

ϕ(f) =
∑

n∈Ns(f)

ϕn(f) (13)
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That is, the sum over the feature importance for each splitting node n ∈ Nf .
The feature importance for a single splitting node n ∈ Nf is computed as:

ϕn(f) =

(
1 +

|wn,f |2∑F
j=1 |wn,j |2

)
·

(
varn −

C∑
c=1

Ic∑C
i=1 Ii

· varc

)
,∀n ∈ Fs (14)

where F is the number of features, C is the number of child nodes, and vari and
Ii are the variance and the number of Q-values Q(s, a) stored in node i. The
feature importance contains two contributions from the linear regression and the
variance reduction. Both contributions come from the splitting nodes.

5 Evaluation

In this section, we describe the simulation setup and present our simulations’
results. After that, we discuss the advantages and disadvantages of the evaluated
XRL algorithms.

5.1 Simulation setup

We simulated the scenario depicted in Fig. 4 (based on Fig. 1) by using a high-
fidelity RAN simulator employing state-of-the-art models. The scenario consists
of a sectorized LTE cellular network containing 2 BSs, each with 3 directional
antennas, and 1000 UEs whose position was sampled from a uniform random
distribution. The geographical area is a square of 16 000m2 divided into squared
bins of 1m2, which are randomly classified as indoor or outdoor with the same
probability. The downtilt θ of the controlled antenna can vary in the range
[0◦, 15◦] with adjustments of 1◦. In contrast, the downtilt of the other antennas
is fixed to random values sampled from a uniform distribution in [0◦, 15◦]. Ac-
cording to the assumption mentioned in Section 3, the scenario is static except
for the downtilt of the controlled antenna. All the relevant parameters of the
simulation are reported in Table 1.

With this setup, the downtilt θ of the controlled antenna can assume 16 dif-
ferent values. Consequently, there are 16 distinct states. Fig. 5 shows rewards and
reward components obtained by analyzing the 16 possible configurations with
the simulator. Observing the reward curve, we can understand that the optimal
policy consists of reaching θ = 8◦ in the minimum number of actions and then
staying at θ = 8◦ for the rest of the time. It is also worth mentioning that, for
each episode, we reset θ randomly among the 16 possible discrete configurations.

5.2 Performance

We started by training a DQN agent employing a DNN with two 128-neuron hid-
den layers. All the relevant hyperparameters are reported in Table 2. The drDQN
agent, instead, comprises two DNNs, each with the same hyper-parameters from
Table 2 and receiving the same input features (i.e., the complete system state).
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Fig. 4: Simulated scenario. The map is divided in indoor and outdoor bins, col-
ored in dark and light grey, respectively. UEs are represented as green dots,
while antennas are drawn in black. The antenna under control is pointed by a
red arrow.

The learning curves, shown in Fig. 6, indicate that drDQN and DQN agents
converged with a similar trend. With the optimal DQN agent available, we con-
tinued by training LMUT. After some tuning, we ended up with the hyperpa-
rameters in Table 3. Then, we evaluated the fidelity of LMUT with respect to
DQN using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
accuracy, and confusion matrix. Whereas RMSE and MAE measure the differ-
ence of the Q-values provided by LMUT with respect to the targets from DQN
(regression problem), accuracy and confusion matrix measure the difference be-
tween LMUT and DQN in selecting the action (which can also be seen as a
classification problem where the ground truth is the action selected by DQN).
As shown in Table 4, both RMSE and MAE are small, meaning that LMUT can
approximate the DQN model precisely. From Fig. 7, we can observe that LMUT
managed to fit the action selection of the DQN agent perfectly. Furthermore,
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Table 1: Parameteres of the simulated scenario.
Parameter Value

Map size 16 000m2

Number of BSs (B) 2

Inter-site distance ≈ 1414m

Number of antennas per BS (Ab) 3

Range of downtilt (θmin, θmax) [0◦, 15◦]

Variation of downtilt per action (δ) 1◦

Downlink maximum power 40W

Antenna model on BS hv 742215 fitted

Number of UEs (U) 1000

Antenna type on UEs Isotropic

Propagation model Okumura–Hata

Fraction of indoor/outdoor 0.5

Radio technology LTE

Optimization weight (w) 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

reward
avg_rsrp
avg_sinr

Fig. 5: Rewards and reward components for varying downtilt θ in the simulated
scenario.
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Table 2: Hyperparameter to train
DQN and drDQN.

Hyperparameter Value

Optimizer Adam

Learning rate 0.001

Num. hidden layers 2

Num. neurons per layer 128

Activation function tanh

Num. steps per episode 20

Exploration strategy ϵ-greedy

Table 3: Hyperparameteres to train
LMUT.
Hyperparameter Value

Min. MSE to split 0.01

Min. instances to split 50

Min. instances per child 10

Min. variance reduction 0.01

Max. tree depth 50

Optimizer (linear regression) Adam

Number of episodes

Ep
iso

de
 m

ea
n 

re
w

ar
d

drDQN
DQN

Fig. 6: Learning curves of DQN and drDQN.

this fit was achieved with only a few binary splits, which allows inspecting the
model directly as a white box, as depicted in Fig. 8. Such a small model was
expected, given the small state space.

The performance of the trained agents is quantified by the episode mean
reward during the evaluation phase. As reported in Table 5, both drDQN and
LMUT perform optimally like DQN. Considering the duration of an episode (Ta-
ble 1) and the reward at the optimal downtilt (Fig. 5), it is evident that all three
algorithms found the optimal policy. These results help prove the correctness of
the implementation, especially in preparation for the explainability evaluation.
However, it is worth pointing out that this paper focuses on the explainabil-
ity aspects of these algorithms rather than their performance. Such satisfactory
results in terms of performance were expected, considering the small state space.

5.3 Explainability

Once the drDQN and LMUT agents were adequately trained, we evaluated their
explanations. As described in Section 4, drDQN can explain its action selec-
tion by providing contrastive explanations through RDX. Fig. 9 shows two of
such local explanations. In particular, from Fig. 9c, we can understand why the
drDQN agent prefers to downtilt instead of uptilting when θ = 2◦. According to
the agent’s explanation, downtilting outperforms uptilting in terms of expected
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Table 4: Fidelity of LMUT with re-
spect to DQN.

Metric Value

RMSE 0.01

MAE 0.01

Accuracy 1.0

Balanced accuracy 1.0

Table 5: Performance of DQN,
drDQN, and LMUT.

Algorithm Episode mean reward

DQN 7.74

drDQN 7.74

LMUT 7.74

uptilt nop downtilt
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Fig. 7: Confusion matrix of LMUT with respect to DQN.

rsinr but not expected rrsrp, and the agent prefers this action because the benefit
is greater than the loss. This explanation can be confirmed by checking Fig. 5.
Considering the initial state with θ = 2◦, we can observe that downtilting and
then following the optimal policy collects a higher rsinr but a lower rrsrp, in
comparison with uptilting. We also know that downtilting is optimal because it
proceeds towards the optimal configuration (θ = 8◦). Similarly, in Fig. 9d we
can understand why drDQN decides to keep the same downtilt in θ = 8◦. The
agent believes that this action, compared to downtilting, leads to a better overall
reward thanks to a higher rrsrp, despite the cost in terms of rsinr. Once again,
we can verify that the agent’s belief is correct by looking at Fig. 5.

LMUT can generate both global and local explanations, as explained in Sec-
tion 4. Table 7 presents two local explanations for the same cases considered
before for drDQN. It is worth highlighting that the rules for the Q-value compu-
tation can be directly identified from the LMUT model in Fig. 8, but extracting
and listing them is convenient, especially when dealing with a larger model.
When θ = 2◦, the best action is to downtilt, which is optimal, as already argued
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RSRP <= -0.22

Q-value = 

+21.97
-1.84 * RSRP
+1.58 * SINR
-2.80 * downtilt

Y

Q-value = 

+23.52
+0.40 * RSRP
+0.95 * SINR
+1.94 * downtilt

N

(a) Uptilt

RSRP <= 0.34

Q-value = 

+23.02
-1.72 * RSRP
+0.64 * SINR
-3.22 * downtilt

Y

Q-value = 

+22.67
-3.62 * RSRP
-8.32 * SINR
+6.88 * downtilt

N

(b) Keep same tilt

RSRP <= 0.34

RSRP <= -0.72

Y

Q-value = 

+22.78
-3.77 * RSRP
-8.47 * SINR
+6.43 * downtilt

N

Q-value = 

+25.79
-2.08 * RSRP
-2.63 * SINR
-3.77 * downtilt

Y

Q-value = 

+22.30
-6.00 * RSRP
-0.38 * SINR
-9.17 * downtilt

N

(c) Downtilt

Fig. 8: LMUT structure after training. There is one linear tree for each action.

for drDQN. The triggered rule in this situation is:

RSRP ∈ (0.34,+∞) =⇒ Q = +22.78−3.77·RSRP−8.47·SINR+6.43·θ (15)

Linear regression models are transparent by design, as their weights indicate the
relative contribution of each input feature to the output. Thus, we can observe
that, when RSRP ∈ (0.34,+∞), the largest impact is caused by the current
SINR value. Similarly, when θ = 8◦, the best action is to keep the same downtilt
(which is, again, optimal), and the greatest contribution comes from θ.

The global explanation provided by LMUT, which indicates the overall im-
portance of RSRP , SINR, and θ on the LMUT agent’s decision-making, is
shown in Table 6. Surprisingly, the explanation contains a null value for SINR
and θ that, in light of the model in Fig. 8, is fallacious. These features, in fact,
have a non-negligible impact on the Q-function through the linear regression on
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(d) RDX showing the advantage of keeping
the same tilt over downtilting when θ = 8.

Fig. 9: Local explanations generated by drDQN for two different states (θ = 2
and θ = 8), including Q-components (a-b) and RDX (c-d).

the leaf nodes. The root of the problem is that Eqs. (13) and (14) considers only
the splitting nodes in the regression trees and neglects the leaf nodes altogether.

5.4 Discussion

We now critically discuss the results presented in the previous section to gen-
eralize and draw conclusions. We found that both drDQN and LMUT achieve
optimal performance in the considered RET scenario. Despite this finding, we
warn that LMUT might lose performance compared to deep RL algorithms in
more complex RET scenarios with a larger state space (e.g., multiple antennas
to control), since linear trees are less expressive than DNNs. In contrast, due to
its design and convergence proof, drDQN is expected to always keep the same
performance as the state-of-the-art DQN.

Both XRL algorithms have additional requirements compared to standard
RL. DrDQN adds a constraint to the reward design, as the reward needs to be a
sum of reward components. We argue that this requirement is the most critical
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Table 6: Global explanation via feature importance generated by LMUT.
Feature Importance

RSRP 0.82

SINR 0.00

θ 0.00

Table 7: Local explanations via rule extraction generated by LMUT for two
different states (θ = 2◦ and θ = 8◦). The normalized version of θ is denoted by
θ.
State RSRP = 1.00 RSRP = −0.42

SINR = −0.96 SINR = 0.85

θ = 2 (θ = −0.73) θ = 8 (θ = 0.07)

Uptilt rule RSRP ∈ (−0.22,+∞) RSRP ∈ (−∞,−0.22)
⇓ ⇓

Q = 0.40 ·RSRP + 0.95 · SINR Q = −1.84 ·RSRP + 1.58 · SINR

+1.94 · θ + 23.52 = 21.59 −2.80 · θ + 21.97 = 23.89

Keep rule RSRP ∈ (0.34,+∞) RSRP ∈ (−∞, 0.34)
⇓ ⇓

Q = −3.62 ·RSRP − 8.32 · SINR Q = −1.72 ·RSRP + 0.64 · SINR

+6.88 · θ + 22.67 = 22.01 −3.22 · θ + 23.02 = 24.07

Downtilt rule RSRP ∈ (0.34,+∞) RSRP ∈ (−0.72, 0.34)
⇓ ⇓

Q = −3.77 ·RSRP − 8.47 · SINR Q = −6.00 ·RSRP − 0.38 · SINR

+6.43 · θ + 22.78 = 22.39 −9.17 · θ + 22.30 = 23.86

Best Action Downtilt Keep

drawback of drDQN and limits the specification of the optimization objective
in the RET use case. Such a constraint has indeed affected our problem formu-
lation in Section 3 and prevented us from considering different reward designs.
In contrast, LMUT requires a high-performing RL agent that provides targets
for supervised learning, not only for the initial training but also to keep learn-
ing while interacting with the environment. As a consequence, this RL agent
should use an off-policy algorithm to keep learning from experiences generated
by LMUT and providing updated targets for the online training of LMUT.

In terms of model complexity, while drDQN needs to specify the DNN struc-
ture before training, LMUT adapts to the problem and grows its structure as
little as possible to fit the data. In our RET scenario, LMUT fit the data with a
small model, which was easy to inspect directly. In addition, drDQN still employs
black-box DNNs, whereas LMUT is fully transparent with only linear models.

The types of local explanations provided by the two XRL algorithms are
very different. DrDQN can compare two actions by looking at the composition
of future expected rewards (i.e., Q-values). In the RET use case with only three
actions (uptilt, downtilt, and keep the same tilt), we argue that contrastive
explanations are very user-interpretable, as they concisely answer questions in
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the form of ”why did you decide to downtilt instead of uptilting?”. On the
contrary, LMUT cannot provide contrastive explanations. Extracted rules make
how the Q-value is computed transparent but do not provide a direct comparison
with other actions. From a rule head, a more desirable explanation would be to
understand in which sub-range the agent prefers the selected action and what
happens outside that sub-range. Furthermore, the idea of reward decomposition
from drDQN might be integrated into LMUT to enhance its explainability.

Differently from drDQN, LMUT can also provide a global explanation. How-
ever, we showed that this global explanation could be very misleading. The
computation completely neglects the linear regressions at the leaf nodes, which
contribute to the Q-value computation. Modifying this computation is necessary
to make the global explanation more reliable.

6 Conclusions

In this paper, we empirically evaluated two intrinsic XRL algorithms, drDQN
and LMUT, in the RET optimization problem. In terms of explainability, we
conclude that drDQN can provide intuitive contrastive local explanations which
fit perfectly the RET problem. In contrast, even employing a fully transparent
model, we found that LMUT needs further research on the extracted explana-
tions, which are less interpretable than drDQN’s. Surprisingly, we identified an
issue in the global explanation of LMUT, which neglects the critical contribution
of leaf nodes. In terms of performance, our results indicate that both drDQN
and LMUT can perform well in the presented RET use case, with performance
similar to DQN. However, further experiments are needed to test LMUT’s per-
formance with larger state spaces.

Future research directions are as follows. The explainability of LMUT might
be improved by fixing the computation of the global explanation and by de-
veloping more intuitive contrastive explanations extracted from the transparent
model. DrDQN might be extended to support more general functions than simple
sums. Finally, the complexity of the RET scenario might also be increased.
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